Luc De Vuyst

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6001088/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends in Food Science and Technology, 2004, 15, 67-78.	7.8	1,335
2	Bifidobacteria and Butyrate-Producing Colon Bacteria: Importance and Strategies for Their Stimulation in the Human Gut. Frontiers in Microbiology, 2016, 7, 979.	1.5	1,109
3	Bacteriocins from Lactic Acid Bacteria: Production, Purification, and Food Applications. Journal of Molecular Microbiology and Biotechnology, 2007, 13, 194-199.	1.0	516
4	Functional meat starter cultures for improved sausage fermentation. International Journal of Food Microbiology, 2006, 106, 270-285.	2.1	492
5	The sourdough microflora: biodiversity and metabolic interactions. Trends in Food Science and Technology, 2005, 16, 43-56.	7.8	478
6	Heteropolysaccharides from lactic acid bacteria. FEMS Microbiology Reviews, 1999, 23, 153-177.	3.9	444
7	Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria. International Dairy Journal, 2001, 11, 687-707.	1.5	316
8	The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on fermented foods. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 196-208.	8.2	316
9	Primary metabolite kinetics of bacteriocin biosynthesis by Lactobacillus amylovorus and evidence for stimulation of bacteriocin production under unfavourable growth conditions. Microbiology (United) Tj ETQq1	1 0.7 8.4 314	rg & &Øverlo
10	Dynamics and Biodiversity of Populations of Lactic Acid Bacteria and Acetic Acid Bacteria Involved in Spontaneous Heap Fermentation of Cocoa Beans in Ghana. Applied and Environmental Microbiology, 2007, 73, 1809-1824.	1.4	278
11	Cross-feeding between bifidobacteria and butyrate-producing colon bacteria explains bifdobacterial competitiveness, butyrate production, and gas production. International Journal of Food Microbiology, 2011, 149, 73-80.	2.1	260
12	Systemic availability and metabolism of colonicâ€derived shortâ€chain fatty acids in healthy subjects: a stable isotope study. Journal of Physiology, 2017, 595, 541-555.	1.3	254
13	Inhibitory substances produced by Lactobacilli isolated from sourdoughs—a review. International Journal of Food Microbiology, 2002, 72, 31-43.	2.1	232
14	Yeast diversity of sourdoughs and associated metabolic properties and functionalities. International Journal of Food Microbiology, 2016, 239, 26-34.	2.1	224
15	Biodiversity of Exopolysaccharides Produced by Streptococcus thermophilus Strains Is Reflected in Their Production and Their Molecular and Functional Characteristics. Applied and Environmental Microbiology, 2004, 70, 900-912.	1.4	203
16	Biodiversity and identification of sourdough lactic acid bacteria. Food Microbiology, 2007, 24, 120-127.	2.1	200
17	Population Dynamics and Metabolite Target Analysis of Lactic Acid Bacteria during Laboratory Fermentations of Wheat and Spelt Sourdoughs. Applied and Environmental Microbiology, 2007, 73, 4741-4750.	1.4	195
18	The Microbial Diversity of Traditional Spontaneously Fermented Lambic Beer. PLoS ONE, 2014, 9, e95384.	1.1	195

#	Article	IF	CITATIONS
19	Acetic acid bacteria in fermented foods and beverages. Current Opinion in Biotechnology, 2018, 49, 115-119.	3.3	194
20	Kinetic analysis of the antibacterial activity of probiotic lactobacilli towards Salmonella enterica serovar Typhimurium reveals a role for lactic acid and other inhibitory compounds. Research in Microbiology, 2006, 157, 241-247.	1.0	189
21	Mutual Cross-Feeding Interactions between Bifidobacterium longum subsp. longum NCC2705 and Eubacterium rectale ATCC 33656 Explain the Bifidogenic and Butyrogenic Effects of Arabinoxylan Oligosaccharides. Applied and Environmental Microbiology, 2015, 81, 7767-7781.	1.4	186
22	Fermentation of cocoa beans: influence of microbial activities and polyphenol concentrations on the flavour of chocolate. Journal of the Science of Food and Agriculture, 2008, 88, 2288-2297.	1.7	184
23	The Biodiversity of Lactic Acid Bacteria in Greek Traditional Wheat Sourdoughs Is Reflected in Both Composition and Metabolite Formation. Applied and Environmental Microbiology, 2002, 68, 6059-6069.	1.4	182
24	Exploring the Impacts of Postharvest Processing on the Microbiota and Metabolite Profiles during Green Coffee Bean Production. Applied and Environmental Microbiology, 2017, 83, .	1.4	162
25	Characterization of the Antagonistic Activity of Lactobacillus amylovorus DCE 471 and Large Scale Isolation of Its Bacteriocin Amylovorin L471. Systematic and Applied Microbiology, 1996, 19, 9-20.	1.2	153
26	Microbial Species Diversity, Community Dynamics, and Metabolite Kinetics of Water Kefir Fermentation. Applied and Environmental Microbiology, 2014, 80, 2564-2572.	1.4	152
27	Correlation of Activities of the Enzymes α-Phosphoglucomutase, UDP-Galactose 4-Epimerase, and UDP-Glucose Pyrophosphorylase with Exopolysaccharide Biosynthesis by Streptococcus thermophilus LY03. Applied and Environmental Microbiology, 2000, 66, 3519-3527.	1.4	149
28	Probiotics in fermented sausages. Meat Science, 2008, 80, 75-78.	2.7	141
29	Yeast diversity of Chanaian cocoa bean heap fermentations. FEMS Yeast Research, 2009, 9, 774-783.	1.1	141
30	Spontaneous organic cocoa bean box fermentations in Brazil are characterized by a restricted species diversity of lactic acid bacteria and acetic acid bacteria. Food Microbiology, 2011, 28, 1326-1338.	2.1	139
31	Influence of Turning and Environmental Contamination on the Dynamics of Populations of Lactic Acid and Acetic Acid Bacteria Involved in Spontaneous Cocoa Bean Heap Fermentation in Ghana. Applied and Environmental Microbiology, 2008, 74, 86-98.	1.4	133
32	Species Diversity, Community Dynamics, and Metabolite Kinetics of the Microbiota Associated with Traditional Ecuadorian Spontaneous Cocoa Bean Fermentations. Applied and Environmental Microbiology, 2011, 77, 7698-7714.	1.4	128
33	Microbial physiology, fermentation kinetics, and process engineering of heteropolysaccharide production by lactic acid bacteria. International Dairy Journal, 2001, 11, 747-757.	1.5	125
34	Influence of Geographical Origin and Flour Type on Diversity of Lactic Acid Bacteria in Traditional Belgian Sourdoughs. Applied and Environmental Microbiology, 2007, 73, 6262-6269.	1.4	125
35	Lactate- and acetate-based cross-feeding interactions between selected strains of lactobacilli, bifidobacteria and colon bacteria in the presence of inulin-type fructans. International Journal of Food Microbiology, 2017, 241, 225-236.	2.1	123
36	Competitiveness and bacteriocin production of Enterococci in the production of Spanish-style dry fermented sausages. International Journal of Food Microbiology, 2000, 57, 33-42.	2.1	118

Luc De Vuyst

#	Article	IF	CITATIONS
37	Hanseniaspora opuntiae, Saccharomyces cerevisiae, Lactobacillus fermentum, and Acetobacter pasteurianus predominate during well-performed Malaysian cocoa bean box fermentations, underlining the importance of these microbial species for a successful cocoa bean fermentation process. Food Microbiology, 2013, 35, 73-85.	2.1	117
38	Microbial Ecology and Process Technology of Sourdough Fermentation. Advances in Applied Microbiology, 2017, 100, 49-160.	1.3	116
39	Taxonomic Structure and Stability of the Bacterial Community in Belgian Sourdough Ecosystems as Assessed by Culture and Population Fingerprinting. Applied and Environmental Microbiology, 2008, 74, 2414-2423.	1.4	115
40	On-farm implementation of a starter culture for improved cocoa bean fermentation and its influence on the flavour of chocolates produced thereof. Food Microbiology, 2012, 30, 379-392.	2.1	114
41	Sourdoughs as a function of their species diversity and process conditions, a meta-analysis. Trends in Food Science and Technology, 2017, 68, 152-159.	7.8	114
42	Indication that the Nitrogen Source Influences Both Amount and Size of Exopolysaccharides Produced by <i>Streptococcus thermophilus</i> LYO3 and Modelling of the Bacterial Growth and Exopolysaccharide Production in a Complex Medium. Applied and Environmental Microbiology, 1999, 65, 2863-2870.	1.4	113
43	Phylogenetic Analysis of a Spontaneous Cocoa Bean Fermentation Metagenome Reveals New Insights into Its Bacterial and Fungal Community Diversity. PLoS ONE, 2012, 7, e38040.	1.1	112
44	Diversity and Functional Properties of Lactic Acid Bacteria Isolated From Wild Fruits and Flowers Present in Northern Argentina. Frontiers in Microbiology, 2019, 10, 1091.	1.5	110
45	Lactic acid bacteria community dynamics and metabolite production of rye sourdough fermentations share characteristics of wheat and spelt sourdough fermentations. Food Microbiology, 2010, 27, 1000-1008.	2.1	109
46	Leuconostoc holzapfelii sp. nov., isolated from Ethiopian coffee fermentation and assessment of sequence analysis of housekeeping genes for delineation of Leuconostoc species. International Journal of Systematic and Evolutionary Microbiology, 2007, 57, 2952-2959.	0.8	102
47	Bifidobacterial inulin-type fructan degradation capacity determines cross-feeding interactions between bifidobacteria and Faecalibacterium prausnitzii. International Journal of Food Microbiology, 2016, 231, 76-85.	2.1	101
48	The in vitro inhibition of Gram-negative pathogenic bacteria by bifidobacteria is caused by the production of organic acids. International Dairy Journal, 2006, 16, 1049-1057.	1.5	100
49	Oxidation of Metabolites Highlights the Microbial Interactions and Role of <i>Acetobacter pasteurianus</i> during Cocoa Bean Fermentation. Applied and Environmental Microbiology, 2014, 80, 1848-1857.	1.4	100
50	Yeast species composition differs between artisan bakery and spontaneous laboratory sourdoughs. FEMS Yeast Research, 2010, 10, 471-481.	1.1	99
51	Influence of Temperature and Backslopping Time on the Microbiota of a Type I Propagated Laboratory Wheat Sourdough Fermentation. Applied and Environmental Microbiology, 2011, 77, 2716-2726.	1.4	95
52	Functional role of yeasts, lactic acid bacteria and acetic acid bacteria in cocoa fermentation processes. FEMS Microbiology Reviews, 2020, 44, 432-453.	3.9	95
53	Validation of the (GTG)5-rep-PCR fingerprinting technique for rapid classification and identification of acetic acid bacteria, with a focus on isolates from Ghanaian fermented cocoa beans. International Journal of Food Microbiology, 2008, 125, 79-90.	2.1	93
54	Comparison of the bacterial species diversity of spontaneous cocoa bean fermentations carried out at selected farms in Ivory Coast and Brazil. Food Microbiology, 2011, 28, 964-973.	2.1	93

#	Article	IF	CITATIONS
55	Modelling growth and bacteriocin production by Lactobacillus curvatus LTH 1174 in response to temperature and pH values used for European sausage fermentation processes. International Journal of Food Microbiology, 2003, 81, 41-52.	2.1	90
56	Applying meta-pathway analyses through metagenomics to identify the functional properties of the major bacterial communities of a single spontaneous cocoa bean fermentation process sample. Food Microbiology, 2015, 50, 54-63.	2.1	88
57	Following Coffee Production from Cherries to Cup: Microbiological and Metabolomic Analysis of Wet Processing of Coffea arabica. Applied and Environmental Microbiology, 2019, 85, .	1.4	83
58	Complete genome sequence and comparative analysis of Acetobacter pasteurianus 386B, a strain well-adapted to the cocoa bean fermentation ecosystem. BMC Genomics, 2013, 14, 526.	1.2	81
59	Screening of lactic acid bacteria isolates from dairy and cereal products for exopolysaccharide production and genes involved. International Journal of Food Microbiology, 2007, 118, 250-258.	2.1	80
60	Shotgun Metagenomics of a Water Kefir Fermentation Ecosystem Reveals a Novel Oenococcus Species. Frontiers in Microbiology, 2019, 10, 479.	1.5	80
61	Acetobacter ghanensis sp. nov., a novel acetic acid bacterium isolated from traditional heap fermentations of Ghanaian cocoa beans. International Journal of Systematic and Evolutionary Microbiology, 2007, 57, 1647-1652.	0.8	79
62	Culture-independent exploration of the teat apex microbiota of dairy cows reveals a wide bacterial species diversity. Veterinary Microbiology, 2012, 157, 383-390.	0.8	79
63	Prevalence and impact of single-strain starter cultures of lactic acid bacteria on metabolite formation in sourdough. Food Microbiology, 2011, 28, 1129-1139.	2.1	76
64	Phylogeny and differentiation of species of the genus Gluconacetobacter and related taxa based on multilocus sequence analyses of housekeeping genes and reclassification of Acetobacter xylinus subsp. sucrofermentans as Gluconacetobacter sucrofermentans (Toyosaki et al. 1996) sp. nov., comb. nov International Journal of Systematic and Evolutionary Microbiology, 2010, 60, 2277-2283.	0.8	75
65	Characterization and production of amylovorin L471, a bacteriocin purified from Lactobacillus amylovorus DCE 471 by a novel three-step method The GenBank/EMBL/DDBJ accession number for the sequence reported in this paper is P81927 Microbiology (United Kingdom), 1999, 145, 2559-2568.	0.7	74
66	The microbial diversity of an industrially produced lambic beer shares members of a traditionally produced one and reveals a core microbiota for lambic beer fermentation. Food Microbiology, 2015, 49, 23-32.	2.1	74
67	Weissella fabaria sp. nov., from a Ghanaian cocoa fermentation. International Journal of Systematic and Evolutionary Microbiology, 2010, 60, 1999-2005.	0.8	73
68	Simulation of the effect of sausage ingredients and technology on the functionality of the bacteriocin-producing CTC 494 strain. International Journal of Food Microbiology, 2005, 100, 141-152.	2.1	69
69	Assessment of the yeast species composition of cocoa bean fermentations in different cocoa-producing regions using denaturing gradient gel electrophoresis. FEMS Yeast Research, 2011, 11, 564-574.	1.1	69
70	Effect of sodium chloride on growth and bacteriocin production by Lactobacillus amylovorus DCE 471. International Journal of Food Microbiology, 2003, 88, 29-39.	2.1	67
71	Community Dynamics of Bacteria in Sourdough Fermentations as Revealed by Their Metatranscriptome. Applied and Environmental Microbiology, 2010, 76, 5402-5408.	1.4	67
72	Characterization of strains of Weissella fabalis sp. nov. and Fructobacillus tropaeoli from spontaneous cocoa bean fermentations. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 1709-1716.	0.8	64

#	Article	IF	CITATIONS
73	Advances in production and simplified methods for recovery and quantification of exopolysaccharides for applications in food and health. Journal of Dairy Science, 2016, 99, 3229-3238.	1.4	64
74	Complementary Mechanisms for Degradation of Inulin-Type Fructans and Arabinoxylan Oligosaccharides among Bifidobacterial Strains Suggest Bacterial Cooperation. Applied and Environmental Microbiology, 2018, 84, .	1.4	62
75	Carrot Juice Fermentations as Man-Made Microbial Ecosystems Dominated by Lactic Acid Bacteria. Applied and Environmental Microbiology, 2018, 84, .	1.4	62
76	Integrated culturing, modeling and transcriptomics uncovers complex interactions and emergent behavior in a three-species synthetic gut community. ELife, 2018, 7, .	2.8	62
77	Sodium Chloride Reduces Production of Curvacin A, a Bacteriocin Produced by Lactobacillus curvatus Strain LTH 1174, Originating from Fermented Sausage. Applied and Environmental Microbiology, 2004, 70, 2271-2278.	1.4	61
78	Differentiation of species of the family Acetobacteraceae by AFLP DNA fingerprinting: Gluconacetobacter kombuchae is a later heterotypic synonym of Gluconacetobacter hansenii. International Journal of Systematic and Evolutionary Microbiology, 2009, 59, 1771-1786.	0.8	61
79	Community dynamics and metabolite target analysis of spontaneous, backslopped barley sourdough fermentations under laboratory and bakery conditions. International Journal of Food Microbiology, 2016, 228, 22-32.	2.1	60
80	Oxygen and diverse nutrients influence the water kefir fermentation process. Food Microbiology, 2018, 73, 351-361.	2.1	59
81	Reclassification of Lactobacillus brevis strains LMG 11494 and LMG 11984 as Lactobacillus parabrevis sp. nov International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 1553-1557.	0.8	57
82	A Combined Model To Predict the Functionality of the Bacteriocin-Producing Lactobacillus sakei Strain CTC 494. Applied and Environmental Microbiology, 2003, 69, 1093-1099.	1.4	56
83	Lactobacillus namurensis sp. nov., isolated from a traditional Belgian sourdough. International Journal of Systematic and Evolutionary Microbiology, 2007, 57, 223-227.	0.8	56
84	Comparative genome analysis of the candidate functional starter culture strains Lactobacillus fermentum 222 and Lactobacillus plantarum 80 for controlled cocoa bean fermentation processes. BMC Genomics, 2015, 16, 766.	1.2	56
85	Diverse Microbial Composition of Sourdoughs From Different Origins. Frontiers in Microbiology, 2020, 11, 1212.	1.5	56
86	Bacterial community dynamics, lactic acid bacteria species diversity and metabolite kinetics of traditional Romanian vegetable fermentations. Journal of the Science of Food and Agriculture, 2013, 93, 749-760.	1.7	55
87	Bifidobacterium aquikefiri sp. nov., isolated from water kefir. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 1281-1286.	0.8	53
88	Wickerhamomyces anomalus in the sourdough microbial ecosystem. Antonie Van Leeuwenhoek, 2011, 99, 63-73.	0.7	52
89	A novel area of predictive modelling: describing the functionality of beneficial microorganisms in foods. International Journal of Food Microbiology, 2002, 73, 251-259.	2.1	51
90	Competitiveness and Antibacterial Potential of Bacteriocin-Producing Starter Cultures in Different Types of Fermented Sausages. Journal of Food Protection, 2008, 71, 1817-1827.	0.8	51

#	Article	IF	CITATIONS
91	Acetobacter lambici sp. nov., isolated from fermenting lambic beer. International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 1083-1089.	0.8	51
92	Bombella intestini gen. nov., sp. nov., an acetic acid bacterium isolated from bumble bee crop. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 267-273.	0.8	51
93	Microbial acidification, alcoholization, and aroma production during spontaneous lambic beer production. Journal of the Science of Food and Agriculture, 2019, 99, 25-38.	1.7	50
94	Effects of Different Spices Used in Production of Fermented Sausages on Growth of and Curvacin A Production by Lactobacillus curvatus LTH 1174. Applied and Environmental Microbiology, 2004, 70, 4807-4813.	1.4	49
95	Influence of Various Processing Parameters on the Microbial Community Dynamics, Metabolomic Profiles, and Cup Quality During Wet Coffee Processing. Frontiers in Microbiology, 2019, 10, 2621.	1.5	48
96	Lactobacillus crustorum sp. nov., isolated from two traditional Belgian wheat sourdoughs. International Journal of Systematic and Evolutionary Microbiology, 2007, 57, 1461-1467.	0.8	47
97	Pediococcus argentinicus sp. nov. from Argentinean fermented wheat flour and identification of Pediococcus species by pheS, rpoA and atpA sequence analysis. International Journal of Systematic and Evolutionary Microbiology, 2008, 58, 2909-2916.	0.8	47
98	Inulin-type fructan fermentation by bifidobacteria depends on the strain rather than the species and region in the human intestine. Applied Microbiology and Biotechnology, 2016, 100, 4097-4107.	1.7	47
99	Sourdough production: fermentation strategies, microbial ecology, and use of non-flour ingredients. Critical Reviews in Food Science and Nutrition, 2023, 63, 2447-2479.	5.4	46
100	Omics approaches to understand sourdough fermentation processes. International Journal of Food Microbiology, 2019, 302, 90-102.	2.1	44
101	Exploring the Link Between the Geographical Origin of European Fermented Foods and the Diversity of Their Bacterial Communities: The Case of Fermented Meats. Frontiers in Microbiology, 2019, 10, 2302.	1.5	43
102	Temporal shotgun metagenomics of an Ecuadorian coffee fermentation process highlights the predominance of lactic acid bacteria. Current Research in Biotechnology, 2020, 2, 1-15.	1.9	42
103	Enterocin A production by Enterococcus faecium FAIR-E 406 is characterised by a temperature- and pH-dependent switch-off mechanism when growth is limited due to nutrient depletion. International Journal of Food Microbiology, 2006, 107, 159-170.	2.1	39
104	The environmental and intrinsic yeast diversity of Cuban cocoa bean heap fermentations. International Journal of Food Microbiology, 2016, 233, 34-43.	2.1	39
105	Microbial diversity and metabolite composition of Belgian red-brown acidic ales. International Journal of Food Microbiology, 2016, 221, 1-11.	2.1	38
106	Gluconobacter cerevisiae sp. nov., isolated from the brewery environment. International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 1134-1141.	0.8	37
107	The addition of citrate stimulates the production of acetoin and diacetyl by a citrate-positive Lactobacillus crustorum strain during wheat sourdough fermentation. International Journal of Food Microbiology, 2019, 289, 88-105	2.1	37
108	Applicability of <scp><i>Lactobacillus plantarum</i> IMDO</scp> 788 as a starter culture to control vegetable fermentations. Journal of the Science of Food and Agriculture, 2013, 93, 3352-3361.	1.7	36

Luc De Vuyst

#	Article	IF	CITATIONS
109	Acetobacter sicerae sp. nov., isolated from cider and kefir, and identification of species of the genus Acetobacter by dnaK, groEL and rpoB sequence analysis. International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 2407-2415.	0.8	36
110	Metatranscriptome Analysis for Insight into Whole-Ecosystem Gene Expression during Spontaneous Wheat and Spelt Sourdough Fermentations. Applied and Environmental Microbiology, 2011, 77, 618-626.	1.4	35
111	Wort Substrate Consumption and Metabolite Production During Lambic Beer Fermentation and Maturation Explain the Successive Growth of Specific Bacterial and Yeast Species. Frontiers in Microbiology, 2018, 9, 2763.	1.5	35
112	Biphasic kinetics of growth and bacteriocin production with Lactobacillus amylovorus DCE 471 occur under stress conditions. Microbiology (United Kingdom), 2003, 149, 1073-1082.	0.7	34
113	Effect of temperature and pH on the community dynamics of coagulase-negative staphylococci during spontaneous meat fermentation in a model system. Food Microbiology, 2018, 76, 180-188.	2.1	34
114	Comparative genomics of Lactobacillus fermentum suggests a free-living lifestyle of this lactic acid bacterial species. Food Microbiology, 2020, 89, 103448.	2.1	34
115	New insights into the exopolysaccharide production of Streptococcus thermophilus. International Dairy Journal, 2011, 21, 586-591.	1.5	33
116	Continuous production of l(+)-tartaric acid from cis-epoxysuccinate using a membrane recycle reactor. Applied Microbiology and Biotechnology, 2006, 71, 155-163.	1.7	31
117	Modelling contributes to the understanding of the different behaviour of bacteriocin-producing strains in a meat environment. International Dairy Journal, 2002, 12, 247-253.	1.5	30
118	UDP- N -Acetylglucosamine 4-Epimerase Activity Indicates the Presence of N -Acetylgalactosamine in Exopolysaccharides of Streptococcus thermophilus Strains. Applied and Environmental Microbiology, 2001, 67, 3976-3984.	1.4	29
119	Taxonomy and Biodiversity of Sourdough Yeasts and Lactic Acid Bacteria. , 2013, , 105-154.		29
120	A low pH does not determine the community dynamics of spontaneously developed backslopped liquid wheat sourdoughs but does influence their metabolite kinetics. International Journal of Food Microbiology, 2016, 239, 54-64.	2.1	29
121	The Buffer Capacity and Calcium Concentration of Water Influence the Microbial Species Diversity, Grain Growth, and Metabolite Production During Water Kefir Fermentation. Frontiers in Microbiology, 2019, 10, 2876.	1.5	29
122	Streptococcus macedonicus ACA-DC 198 produces the lantibiotic, macedocin, at temperature and pH conditions that prevail during cheese manufacture. International Journal of Food Microbiology, 2006, 107, 138-147.	2.1	28
123	A Combined Metagenomics and Metatranscriptomics Approach to Unravel Costa Rican Cocoa Box Fermentation Processes Reveals Yet Unreported Microbial Species and Functionalities. Frontiers in Microbiology, 2021, 12, 641185.	1.5	28
124	Amino acid conversions by coagulase-negative staphylococci in a rich medium: Assessment of inter- and intraspecies heterogeneity. International Journal of Food Microbiology, 2015, 212, 34-40.	2.1	27
125	Investigation of the instability and low water kefir grain growth during an industrial water kefir fermentation process. Applied Microbiology and Biotechnology, 2017, 101, 2811-2819.	1.7	27
126	Diversity of the dominant bacterial species on sliced cooked pork products at expiration date in the Belgian retail. Food Microbiology, 2017, 65, 236-243.	2.1	27

#	Article	IF	CITATIONS
127	Enhanced mannitol biosynthesis by the fruit origin strain Fructobacillus tropaeoli CRL 2034. Applied Microbiology and Biotechnology, 2017, 101, 6165-6177.	1.7	27
128	Curing of Cocoa Beans: Fine-Scale Monitoring of the Starter Cultures Applied and Metabolomics of the Fermentation and Drying Steps. Frontiers in Microbiology, 2020, 11, 616875.	1.5	27
129	Comparative genome analysis of Pediococcus damnosus LMG 28219, a strain well-adapted to the beer environment. BMC Genomics, 2015, 16, 267.	1.2	26
130	Microbiota and metabolites of aged bottled gueuze beers converge to the same composition. Food Microbiology, 2015, 47, 1-11.	2.1	26
131	Impact of starter culture, ingredients, and flour type on sourdough bread volatiles as monitored by selected ion flow tube-mass spectrometry. Food Research International, 2018, 106, 254-262.	2.9	26
132	Reclassification of Lactobacillus amylophilus LMG 11400 and NRRL B-4435 as Lactobacillus amylotrophicus sp. nov International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 2523-2527.	0.8	25
133	The Functional Role of Lactic Acid Bacteria in Cocoa Bean Fermentation. , 0, , 301-325.		25
134	Novel acetic acid bacteria from cider fermentations: Acetobacter conturbans sp. nov. and Acetobacter fallax sp. nov. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 6163-6171.	0.8	25
135	Kinetics and modelling of sourdough lactic acid bacteria. Trends in Food Science and Technology, 2005, 16, 95-103.	7.8	24
136	Carnobacterium iners sp. nov., a psychrophilic, lactic acid-producing bacterium from the littoral zone of an Antarctic pond. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 1370-1375.	0.8	24
137	The metagenome-assembled genome of Candidatus Oenococcus aquikefiri from water kefir represents the species Oenococcus sicerae. Food Microbiology, 2020, 88, 103402.	2.1	24
138	Sugars relevant for sourdough fermentation stimulate growth of and bacteriocin production by Lactobacillus amylovorus DCE 471. International Journal of Food Microbiology, 2006, 112, 102-111.	2.1	23
139	Fermented meats (and the symptomatic case of the Flemish food pyramid): Are we heading towards the vilification of a valuable food group?. International Journal of Food Microbiology, 2018, 274, 67-70.	2.1	23
140	In vitro kinetic analysis of carbohydrate and aromatic amino acid metabolism of different members of the human colon. International Journal of Food Microbiology, 2008, 124, 27-33.	2.1	22
141	Microbial production of conjugated linoleic and linolenic acids in fermented foods: Technological bottlenecks. European Journal of Lipid Science and Technology, 2012, 114, 486-491.	1.0	22
142	Microbial communities involved in KaÅŸar cheese ripening. Food Microbiology, 2015, 46, 587-595.	2.1	22
143	Assessment of the contribution of cocoa-derived strains of Acetobacter ghanensis and Acetobacter senegalensis to the cocoa bean fermentation process through a genomic approach. Food Microbiology, 2016, 58, 68-78.	2.1	22
144	Identification of acetic acid bacteria through matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and report of Gluconobacter nephelii Kommanee et al. 2011 and Gluconobacter uchimurae Tanasupawat et al. 2012 as later heterotypic synonyms of Gluconobacter	1.2	21

japonicus Malimas et al. 2009 and Gluconobacter oxydans (Henneberg 1897) De Ley 1961 (Approved Lists) Tj ETQq0 0 0 rgBT /Overlock

#	Article	IF	CITATIONS
145	Temporal Shotgun Metagenomics Revealed the Potential Metabolic Capabilities of Specific Microorganisms During Lambic Beer Production. Frontiers in Microbiology, 2020, 11, 1692.	1.5	21
146	Roasting-induced changes in cocoa beans with respect to the mood pyramid. Food Chemistry, 2020, 332, 127467.	4.2	21
147	Technological and Environmental Features Determine the Uniqueness of the Lambic Beer Microbiota and Production Process. Applied and Environmental Microbiology, 2021, 87, e0061221.	1.4	21
148	Expolysaccharides from lactic acid bacteria: Technological bottlenecks and practical solutions. Macromolecular Symposia, 1999, 140, 31-41.	0.4	20
149	The narrowing down of inoculated communities of coagulase-negative staphylococci in fermented meat models is modulated by temperature and pH. International Journal of Food Microbiology, 2018, 274, 52-59.	2.1	20
150	Pervasiveness of Staphylococcus carnosus over Staphylococcus xylosus is affected by the level of acidification within a conventional meat starter culture set-up. International Journal of Food Microbiology, 2018, 274, 60-66.	2.1	20
151	Impact of process conditions on the microbial community dynamics and metabolite production kinetics of teff sourdough fermentations under bakery and laboratory conditions. Food Science and Nutrition, 2018, 6, 1438-1455.	1.5	20
152	Characterization of novel Gluconobacter species from fruits and fermented food products: Gluconobacter cadivus sp. nov., Gluconobacter vitians sp. nov. and Gluconobacter potus sp. nov. International Journal of Systematic and Evolutionary Microbiology, 2019, 71, .	0.8	20
153	Streptococcus thermophilus ST 111 produces a stable high-molecular-mass exopolysaccharide in milk-based medium. International Dairy Journal, 2004, 14, 857-864.	1.5	19
154	Interactions of Meat-Associated Bacteriocin-Producing Lactobacilli with Listeria innocua under Stringent Sausage Fermentation Conditions. Journal of Food Protection, 2005, 68, 2078-2084.	0.8	19
155	Lactobacillus porcinae sp. nov., isolated from traditional Vietnamese nem chua. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 1754-1759.	0.8	19
156	Raw meat quality and salt levels affect the bacterial species diversity and community dynamics during the fermentation of pork mince. Food Microbiology, 2020, 89, 103434.	2.1	19
157	Antimicrobial potential of probiotic or potentially probiotic lactic acid bacteria, the first results of the international European research project PROPATH of the PROEUHEALTH cluster. Microbial Ecology in Health and Disease, 2004, 16, 125-130.	3.8	18
158	The bacteriocin producerLactobacillus amylovorus DCE 471 is a competitive starter culture for type II sourdough fermentations. Journal of the Science of Food and Agriculture, 2007, 87, 1726-1736.	1.7	17
159	The Use of Less Conventional Meats or Meat with High pH Can Lead to the Growth of Undesirable Microorganisms during Natural Meat Fermentation. Foods, 2020, 9, 1386.	1.9	17
160	The Type and Concentration of Inoculum and Substrate as Well as the Presence of Oxygen Impact the Water Kefir Fermentation Process. Frontiers in Microbiology, 2021, 12, 628599.	1.5	17
161	Functional yeast starter cultures for cocoa fermentation. Journal of Applied Microbiology, 2022, 133, 39-66.	1.4	17
162	Carbon dioxide stimulates the production of amylovorin L by Lactobacillus amylovorus DCE 471, while enhanced aeration causes biphasic kinetics of growth and bacteriocin production. International Journal of Food Microbiology, 2005, 105, 191-202.	2.1	16

#	Article	IF	CITATIONS
163	A putative transport protein is involved in citrulline excretion and re-uptake during arginine deiminase pathway activity by Lactobacillus sakei. Research in Microbiology, 2013, 164, 216-225.	1.0	16
164	Monitoring of starter cultureâ€initiated liquid wheat and teff sourdough fermentations by selected ion flow tubeâ€inass spectrometry. Journal of the Science of Food and Agriculture, 2018, 98, 3501-3512.	1.7	16
165	Species Pervasiveness Within the Group of Coagulase-Negative Staphylococci Associated With Meat Fermentation Is Modulated by pH. Frontiers in Microbiology, 2018, 9, 2232.	1.5	16
166	Variability within the dominant microbiota of sliced cooked poultry products at expiration date in the Belgian retail. Food Microbiology, 2018, 73, 209-215.	2.1	15
167	Genome-Scale Metabolic Reconstruction of Acetobacter pasteurianus 386B, a Candidate Functional Starter Culture for Cocoa Bean Fermentation. Frontiers in Microbiology, 2019, 10, 2801.	1.5	15
168	Application of a High-Throughput Amplicon Sequencing Method to Chart the Bacterial Communities that Are Associated with European Fermented Meats from Different Origins. Foods, 2020, 9, 1247.	1.9	14
169	Lemon juice and apple juice used as source of citrate and malate, respectively, enhance the formation of buttery aroma compounds and/or organic acids during Type 2 and Type 3 sourdough productions performed with Companilactobacillus crustorum LMG 23699. International Journal of Food Microbiology, 2021, 339, 109020.	2.1	14
170	Mass transfer limitations in diffusion-limited isotropic hollow fiber bioreactors. Biotechnology Letters, 1999, 13, 317-323.	0.5	13
171	Short communication: Subtyping of Staphylococcus haemolyticus isolates from milk and corresponding teat apices to verify the potential teat-skin origin of intramammary infections in dairy cows. Journal of Dairy Science, 2015, 98, 7893-7898.	1.4	13
172	Whole-Genome Sequence Analysis of Bombella intestini LMG 28161T, a Novel Acetic Acid Bacterium Isolated from the Crop of a Red-Tailed Bumble Bee, Bombus lapidarius. PLoS ONE, 2016, 11, e0165611.	1.1	12
173	Title is missing!. , 1999, 8, 159-168.		11
174	Leuconostoc rapi sp. nov., isolated from sous-vide-cooked rutabaga. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 2586-2590.	0.8	11
175	Selected Ion Flow Tube–Mass Spectrometry for Online Monitoring of Submerged Fermentations: A Case Study of Sourdough Fermentation. Journal of Agricultural and Food Chemistry, 2015, 63, 829-835.	2.4	11
176	New insights into the citrate metabolism of Enterococcus faecium FAIR-E 198 and its possible impact on the production of fermented dairy products. International Dairy Journal, 2011, 21, 580-585.	1.5	10
177	Isolation of novel homopolysaccharide-producing lactic acid bacteria from Romanian raw milk and fermented dairy products. European Food Research and Technology, 2013, 237, 609-615.	1.6	10
178	Amplicon-Based High-Throughput Sequencing Method Capable of Species-Level Identification of Coagulase-Negative Staphylococci in Diverse Communities. Microorganisms, 2020, 8, 897.	1.6	10
179	Effects of glucose and oxygen on arginine metabolism by coagulase-negative staphylococci. Food Microbiology, 2017, 65, 170-178.	2.1	9
180	Monitoring of volatile production in cooked poultry products using selected ion flow tube-mass spectrometry. Food Research International, 2019, 119, 196-206.	2.9	9

#	Article	IF	CITATIONS
181	Potential of Bacteria from Alternative Fermented Foods as Starter Cultures for the Production of Wheat Sourdoughs. Microorganisms, 2020, 8, 1534.	1.6	9
182	Comparative genome analysis of Lactobacillus mudanjiangensis, an understudied member of the Lactobacillus plantarum group. Microbial Genomics, 2019, 5, .	1.0	9
183	Microbial Ecology of Traditional Beer Fermentations. , 2017, , .		9
184	Process characteristics of exopolysaccharide production by <i>streptococcus thermophilus</i> . Macromolecular Symposia, 1999, 140, 43-52.	0.4	8
185	The effect of heteropolysaccharide-producing strains of Streptococcus thermophilus on the texture and organoleptic properties of low-fat yoghurt. International Journal of Dairy Technology, 2011, 64, 536-543.	1.3	8
186	Acetic Acid Bacteria in Fermented Food and Beverage Ecosystems. , 2016, , 73-99.		8
187	High-throughput amplicon sequencing to assess the impact of processing factors on the development of microbial communities during spontaneous meat fermentation. International Journal of Food Microbiology, 2021, 354, 109322.	2.1	8
188	Isolation of bacteriocins through expanded bed adsorption using a hydrophobic interaction medium. Bioseparation, 2001, 10, 45-50.	0.7	7
189	Mapping the dominant microbial species diversity at expiration date of raw meat and processed meats from equine origin, an underexplored meat ecosystem, in the Belgian retail. International Journal of Food Microbiology, 2019, 289, 189-199.	2.1	7
190	Complete and Annotated Genome Sequence of the Sourdough Lactic Acid Bacterium Lactobacillus fermentum IMDO 130101. Genome Announcements, 2018, 6, .	0.8	6
191	Peptide Extracts from Cultures of Certain Lactobacilli Inhibit Helicobacter pylori. Probiotics and Antimicrobial Proteins, 2010, 2, 26-36.	1.9	5
192	Genome-scale metabolic modeling of Acetobacter pasteurianus 386B reveals its metabolic adaptation to cocoa fermentation conditions. Food Microbiology, 2020, 92, 103597.	2.1	5
193	Gluconacetobacter dulcium sp. nov., a novel Gluconacetobacter species from sugar-rich environments. International Journal of Systematic and Evolutionary Microbiology, 2021, 71, .	0.8	5
194	Microbiomes Associated With the Surfaces of Northern Argentinian Fruits Show a Wide Species Diversity. Frontiers in Microbiology, 0, 13, .	1.5	5
195	The application of selected ion flow tube-mass spectrometry to follow volatile formation in modified-atmosphere-packaged cooked ham. Food Research International, 2019, 123, 601-611.	2.9	2

196 Fermentation and Acidification Ingredients. , 2009, , 227-252.