
Gregory J Quirk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6000890/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Novel Insular/Orbital-Prelimbic Circuit That Prevents Persistent Avoidance in a Rodent Model of Compulsive Behavior. Biological Psychiatry, 2023, 93, 1000-1009.	1.3	4
2	Characterizing Different Strategies for Resolving Approach-Avoidance Conflict. Frontiers in Neuroscience, 2021, 15, 608922.	2.8	16
3	Time-Dependent Recruitment of Prelimbic Prefrontal Circuits for Retrieval of Fear Memory. Frontiers in Behavioral Neuroscience, 2021, 15, 665116.	2.0	12
4	A NeuroD1 AAV-Based Gene Therapy for Functional Brain Repair after Ischemic Injury through InÂVivo Astrocyte-to-Neuron Conversion. Molecular Therapy, 2020, 28, 217-234.	8.2	163
5	Functional Disruption of Cerebello-thalamo-cortical Networks in Obsessive-Compulsive Disorder. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2020, 5, 438-447.	1.5	19
6	Neural mechanisms of persistent avoidance in OCD: A novel avoidance devaluation study. NeuroImage: Clinical, 2020, 28, 102404.	2.7	10
7	Prolonged avoidance training exacerbates OCD-like behaviors in a rodent model. Translational Psychiatry, 2020, 10, 212.	4.8	9
8	Functional disruption in prefrontal-striatal network in obsessive-compulsive disorder. Psychiatry Research - Neuroimaging, 2020, 300, 111081.	1.8	18
9	Divergent projections of the prelimbic cortex bidirectionally regulate active avoidance. ELife, 2020, 9, .	6.0	33
10	Distinct projections from the prelimbic cortex modulate active avoidance. FASEB Journal, 2020, 34, 1-1.	0.5	0
11	The Storytelling Brain: How Neuroscience Stories Help Bridge the Gap between Research and Society. Journal of Neuroscience, 2019, 39, 8285-8290.	3.6	21
12	The study of active avoidance: A platform for discussion. Neuroscience and Biobehavioral Reviews, 2019, 107, 229-237.	6.1	48
13	Neuroscience Research and Mentoring in Puerto Rico: What Succeeds in This Environment?. Journal of Neuroscience, 2019, 39, 776-782.	3.6	5
14	Individual variability in behavior and functional networks predicts vulnerability using an animal model of PTSD. Nature Communications, 2019, 10, 2372.	12.8	46
15	Prefrontal circuits signaling active avoidanceÂretrieval and extinction. Psychopharmacology, 2019, 236, 399-406.	3.1	27
16	The nature and nurture of education. Npj Science of Learning, 2018, 3, 6.	2.8	2
17	Alteration of BDNF in the medial prefrontal cortex and the ventral hippocampus impairs extinction of avoidance. Neuropsychopharmacology, 2018, 43, 2636-2644.	5.4	49
18	Active avoidance requires inhibitory signaling in the rodent prelimbic prefrontal cortex. ELife, 2018, 7,	6.0	66

#	Article	IF	CITATIONS
19	Thalamic Regulation of Sucrose Seeking during Unexpected Reward Omission. Neuron, 2017, 94, 388-400.e4.	8.1	142
20	When scientific paradigms lead to tunnel vision: lessons from the study of fear. Npj Science of Learning, 2017, 2, .	2.8	58
21	Less fear, more diversity. PLoS Biology, 2017, 15, e2002079.	5.6	3
22	Viewpoints: Dialogues on the functional role of the ventromedial prefrontal cortex. Nature Neuroscience, 2016, 19, 1545-1552.	14.8	135
23	Bidirectional Modulation of Extinction of Drug Seeking by Deep Brain Stimulation of the Ventral Striatum. Biological Psychiatry, 2016, 80, 682-690.	1.3	49
24	An Avoidance-Based Rodent Model of Exposure With Response Prevention Therapy for Obsessive-Compulsive Disorder. Biological Psychiatry, 2016, 80, 534-540.	1.3	48
25	Circuit-Based Corticostriatal Homologies Between Rat and Primate. Biological Psychiatry, 2016, 80, 509-521.	1.3	265
26	A Cross Species Approach to Understanding DBS Modulation of Fear. Brain Stimulation, 2015, 8, 986-988.	1.6	2
27	Persistent active avoidance correlates with activity in prelimbic cortex and ventral striatum. Frontiers in Behavioral Neuroscience, 2015, 9, 184.	2.0	88
28	Enhancement of Fear Extinction with Deep Brain Stimulation: Evidence for Medial Orbitofrontal Involvement. Neuropsychopharmacology, 2015, 40, 1726-1733.	5.4	39
29	A temporal shift in the circuits mediating retrieval of fear memory. Nature, 2015, 519, 460-463.	27.8	404
30	Revisiting the Role of Infralimbic Cortex in Fear Extinction with Optogenetics. Journal of Neuroscience, 2015, 35, 3607-3615.	3.6	301
31	The effect of repeated exposure to ethanol on pre-existing fear memories in rats. Psychopharmacology, 2015, 232, 3615-3622.	3.1	23
32	Neural Structures Mediating Expression and Extinction of Platform-Mediated Avoidance. Journal of Neuroscience, 2014, 34, 9736-9742.	3.6	150
33	Hippocampal–Prefrontal BDNF and Memory for Fear Extinction. Neuropsychopharmacology, 2014, 39, 2161-2169.	5.4	157
34	Ethnic Differences in Physiological Responses to Fear Conditioned Stimuli. PLoS ONE, 2014, 9, e114977.	2.5	18
35	Fear signaling in the prelimbic-amygdala circuit: a computational modeling and recording study. Journal of Neurophysiology, 2013, 110, 844-861.	1.8	28
36	The Brain-Derived Neurotrophic Factor Val66Met Polymorphism Predicts Response to Exposure Therapy in Posttraumatic Stress Disorder. Biological Psychiatry, 2013, 73, 1059-1063.	1.3	139

#	Article	IF	CITATIONS
37	Prelimbic and Infralimbic Neurons Signal Distinct Aspects of Appetitive Instrumental Behavior. PLoS ONE, 2013, 8, e57575.	2.5	78
38	Deep brain stimulation of the ventral striatum increases BDNF in the fear extinction circuit. Frontiers in Behavioral Neuroscience, 2013, 7, 102.	2.0	48
39	Deep brain stimulation of the ventral striatum enhances extinction of conditioned fear. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8764-8769.	7.1	124
40	Gating of Fear in Prelimbic Cortex by Hippocampal and Amygdala Inputs. Neuron, 2012, 76, 804-812.	8.1	393
41	A time-dependent role of midline thalamic nuclei in the retrieval of fear memory. Neuropharmacology, 2012, 62, 457-463.	4.1	84
42	Correlations between psychological tests and physiological responses during fear conditioning and renewal. Biology of Mood & Anxiety Disorders, 2012, 2, 16.	4.7	16
43	Fear Extinction as a Model for Translational Neuroscience: Ten Years of Progress. Annual Review of Psychology, 2012, 63, 129-151.	17.7	1,202
44	Memory for Fear Extinction Requires mGluR5-Mediated Activation of Infralimbic Neurons. Cerebral Cortex, 2011, 21, 727-735.	2.9	91
45	Dissociable Roles of Prelimbic and Infralimbic Cortices, Ventral Hippocampus, and Basolateral Amygdala in the Expression and Extinction of Conditioned Fear. Neuropsychopharmacology, 2011, 36, 529-538.	5.4	991
46	Editing out fear. Nature, 2010, 463, 36-37.	27.8	0
47	Prefrontal control of fear: more than just extinction. Current Opinion in Neurobiology, 2010, 20, 231-235.	4.2	513
48	Erasing Fear Memories with Extinction Training: Figure 1 Journal of Neuroscience, 2010, 30, 14993-14997.	3.6	206
49	Infralimbic D2 Receptors Are Necessary for Fear Extinction and Extinction-Related Tone Responses. Biological Psychiatry, 2010, 68, 1055-1060.	1.3	116
50	Induction of Fear Extinction with Hippocampal-Infralimbic BDNF. Science, 2010, 328, 1288-1290.	12.6	408
51	Acquisition of Fear and Extinction in Lateral Amygdala: A Modeling Study. , 2010, , .		0
52	Sustained Conditioned Responses in Prelimbic Prefrontal Neurons Are Correlated with Fear Expression and Extinction Failure. Journal of Neuroscience, 2009, 29, 8474-8482.	3.6	449
53	Signaling Aversive Events in the Midbrain: Worse than Expected. Neuron, 2009, 61, 655-656.	8.1	5
54	Systemic Propranolol Acts Centrally to Reduce Conditioned Fear in Rats Without Impairing Extinction. Biological Psychiatry, 2009, 65, 887-892.	1.3	99

#	Article	IF	CITATIONS
55	Neural Mechanisms of Extinction Learning and Retrieval. Neuropsychopharmacology, 2008, 33, 56-72.	5.4	1,399
56	Modeling Acquisition and Extinction of Conditioned Fear in LA Neurons using Learning Algorithm. Proceedings of the American Control Conference, 2007, , .	0.0	3
57	Learning Not to Fear: A Neural Systems Approach. , 2007, , 60-77.		2
58	Consolidation of Fear Extinction Requires NMDA Receptor-Dependent Bursting in the Ventromedial Prefrontal Cortex. Neuron, 2007, 53, 871-880.	8.1	460
59	Activity in Prelimbic Cortex Is Necessary for the Expression of Learned, But Not Innate, Fears. Journal of Neuroscience, 2007, 27, 840-844.	3.6	493
60	A Role for the Human Dorsal Anterior Cingulate Cortex in Fear Expression. Biological Psychiatry, 2007, 62, 1191-1194.	1.3	425
61	Translating findings from basic fear research to clinical psychiatry in Puerto Rico. Puerto Rico Health Sciences Journal, 2007, 26, 321-8.	0.2	6
62	Prefrontal Mechanisms in Extinction of Conditioned Fear. Biological Psychiatry, 2006, 60, 337-343.	1.3	616
63	Extinction: New Excitement for an Old Phenomenon. Biological Psychiatry, 2006, 60, 317-318.	1.3	32
64	Prefrontal involvement in the regulation of emotion: convergence of rat and human studies. Current Opinion in Neurobiology, 2006, 16, 723-727.	4.2	605
65	Microstimulation reveals opposing influences of prelimbic and infralimbic cortex on the expression of conditioned fear. Learning and Memory, 2006, 13, 728-733.	1.3	593
66	Stuck in time without a nucleus: Theoretical comment on Sangha et al. (2005) Behavioral Neuroscience, 2005, 119, 1155-1157.	1.2	0
67	Lesions of the Basal Amygdala Block Expression of Conditioned Fear But Not Extinction. Journal of Neuroscience, 2005, 25, 9680-9685.	3.6	197
68	Consolidation of Fear Extinction Requires Protein Synthesis in the Medial Prefrontal Cortex. Journal of Neuroscience, 2004, 24, 5704-5710.	3.6	423
69	Learning Not to Fear, Faster. Learning and Memory, 2004, 11, 125-126.	1.3	11
70	Neuronal signalling of fear memory. Nature Reviews Neuroscience, 2004, 5, 844-852.	10.2	1,266
71	Stimulation of Medial Prefrontal Cortex Decreases the Responsiveness of Central Amygdala Output Neurons. Journal of Neuroscience, 2003, 23, 8800-8807.	3.6	820
72	Inhibition of the Amygdala: Key to Pathological States?. Annals of the New York Academy of Sciences, 2003, 985, 263-272.	3.8	277

#	Article	IF	CITATIONS
73	Memory for Extinction of Conditioned Fear Is Long-lasting and Persists Following Spontaneous Recovery. Learning and Memory, 2002, 9, 402-407.	1.3	300
74	Neurons in medial prefrontal cortex signal memory for fear extinction. Nature, 2002, 420, 70-74.	27.8	1,692
75	The Role of Ventromedial Prefrontal Cortex in the Recovery of Extinguished Fear. Journal of Neuroscience, 2000, 20, 6225-6231.	3.6	877
76	Early malnutrition followed by nutritional restoration lowers the conduction velocity and excitability of the corticospinal tract. Brain Research, 1995, 670, 277-282.	2.2	25
77	Fear conditioning enhances short-latency auditory responses of lateral amygdala neurons: Parallel recordings in the freely behaving rat. Neuron, 1995, 15, 1029-1039.	8.1	745
78	Stress disorders of families of the disappeared: A controlled study in Honduras. Social Science and Medicine, 1994, 39, 1675-1679.	3.8	42