
Jesus Capitan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6000766/publications.pdf Version: 2024-02-01

IFSUS CADITAN

#	Article	IF	CITATIONS
1	Experimental Results in Multi-UAV Coordination for Disaster Management and Civil Security Applications. Journal of Intelligent and Robotic Systems: Theory and Applications, 2011, 61, 563-585.	3.4	321
2	Decentralized multi-robot cooperation with auctioned POMDPs. International Journal of Robotics Research, 2013, 32, 650-671.	8.5	83
3	A distributed architecture for a robotic platform with aerial sensor transportation and selfâ€deployment capabilities. Journal of Field Robotics, 2011, 28, 303-328.	6.0	77
4	Cooperative Decision-Making Under Uncertainties for Multi-Target Surveillance with Multiples UAVs. Journal of Intelligent and Robotic Systems: Theory and Applications, 2016, 84, 371-386.	3.4	58
5	Decentralized Sensor Fusion for Ubiquitous Networking Robotics in Urban Areas. Sensors, 2010, 10, 2274-2314.	3.8	37
6	Optimal trajectory planning for cinematography with multiple Unmanned Aerial Vehicles. Robotics and Autonomous Systems, 2021, 140, 103778.	5.1	26
7	Autonomous Surveillance Robots: A Decision-Making Framework for Networked Muiltiagent Systems. IEEE Robotics and Automation Magazine, 2017, 24, 52-64.	2.0	25
8	Decentralized 3D Collision Avoidance for Multiple UAVs in Outdoor Environments. Sensors, 2018, 18, 4101.	3.8	25
9	Decentralized Delayed-State Information Filter (DDSIF): A new approach for cooperative decentralized tracking. Robotics and Autonomous Systems, 2011, 59, 376-388.	5.1	23
10	Autonomous Aerial Filming With Distributed Lighting by a Team of Unmanned Aerial Vehicles. IEEE Robotics and Automation Letters, 2021, 6, 7580-7587.	5.1	23
11	Autonomous Execution of Cinematographic Shots With Multiple Drones. IEEE Access, 2020, 8, 201300-201316.	4.2	21
12	Decentralized safe conflict resolution for multiple robots in dense scenarios. Robotics and Autonomous Systems, 2017, 91, 179-193.	5.1	19
13	Delayed-state information filter for cooperative decentralized tracking. , 2009, , .		17
14	Firemen monitoring with multiple UAVs for search and rescue missions. , 2010, , .		16
15	Decentralized multi-robot cooperation with auctioned POMDPs. , 2012, , .		16
16	Unmanned aerial vehicle abstraction layer: An abstraction layer to operate unmanned aerial vehicles. International Journal of Advanced Robotic Systems, 2020, 17, 172988142092501.	2.1	15
17	Decision-Theoretic Planning with Person Trajectory Prediction for Social Navigation. Advances in Intelligent Systems and Computing, 2016, , 247-258.	0.6	15
18	Autonomous perception techniques for urban and industrial fire scenarios. , 2007, , .		14

JESUS CAPITAN

#	Article	IF	CITATIONS
19	Risk Assessment based on SORA Methodology for a UAS Media Production Application. , 2019, , .		13
20	Unmanned Aerial Traffic Management System Architecture for U-Space In-Flight Services. Applied Sciences (Switzerland), 2021, 11, 3995.	2.5	13
21	Optimal Trajectory Planning for Autonomous Drone Cinematography. , 2019, , .		12
22	Director Tools for Autonomous Media Production with a Team of Drones. Applied Sciences (Switzerland), 2020, 10, 1494.	2.5	11
23	Decentralized cooperation of multiple UAS for multi-target surveillance under uncertainties. , 2014, , .		10
24	Data fusion in ubiquitous networked robot systems for urban services. Annales Des Telecommunications/Annals of Telecommunications, 2012, 67, 355-375.	2.5	9
25	A Dynamic Weighted Area Assignment Based on a Particle Filter for Active Cooperative Perception. IEEE Robotics and Automation Letters, 2020, 5, 736-743.	5.1	9
26	A Multi-Layer Software Architecture for Aerial Cognitive Multi-Robot Systems in Power Line Inspection Tasks. , 2021, , .		9
27	On the Cooperation between Mobile Robots and Wireless Sensor Networks. Studies in Computational Intelligence, 2014, , 67-86.	0.9	8
28	Autonomous Planning for Multiple Aerial Cinematographers. , 2020, , .		8
29	A multiple-UAV architecture for autonomous media production. Multimedia Tools and Applications, 2023, 82, 1905-1934.	3.9	8
30	Decentralized collision avoidance for large teams of robots. , 2013, , .		7
31	Experimental Evaluation of a Team of Multiple Unmanned Aerial Vehicles for Cooperative Construction. IEEE Access, 2021, 9, 6817-6835.	4.2	7
32	Localization System for Lightweight Unmanned Aerial Vehicles in Inspection Tasks. Sensors, 2021, 21, 5937.	3.8	7
33	Alâ€Robotics team: A cooperative multiâ€unmanned aerial vehicle approach for the Mohamed Bin Zayed International Robotic Challenge. Journal of Field Robotics, 2019, 36, 104-124.	6.0	6
34	From Perception to Navigation in Environments with Persons: An Indoor Evaluation of the State of the Art. Sensors, 2022, 22, 1191.	3.8	4
35	A framework to handle threats for UAS operating in the U-space. , 2019, , .		3
36	Accurate fusion of robot, camera and wireless sensors for surveillance applications. , 2009, , .		2

36 Accurate fusion of robot, camera and wireless sensors for surveillance applications. , 2009, , .

JESUS CAPITAN

#	Article	IF	CITATIONS
37	An extension of GHMMs for environments with occlusions and automatic goal discovery for person trajectory prediction. , 2015, , .		2
38	Kassandra : A framework for distributed simulation of heterogeneous cooperating objects. Journal of Systems Architecture, 2017, 73, 28-41.	4.3	2
39	Semantic Mapping with Low-Density Point-Clouds for Service Robots in Indoor Environments. Applied Sciences (Switzerland), 2020, 10, 7154.	2.5	2
40	Kinodynamic planning for an energy-efficient autonomous ornithopter. Computers and Industrial Engineering, 2021, 163, 107814.	6.3	2
41	A Particle-Filter Approach for Active Perception in Networked Robot Systems. Lecture Notes in Computer Science, 2015, , 451-460.	1.3	1
42	Autonomous fire-fighting with heterogeneous team of unmanned aerial vehicles. , 2021, 1, 158-185.		1
43	Threat Management Methodology for Unmanned Aerial Systems Operating in the U-Space. IEEE Access, 2022, 10, 70476-70490.	4.2	1
44	Caso práctico para el diseño de un sistema con múltiples drones para extinción de incendios. , 0, , 2267-2282.		0