Yingfu Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6000594/publications.pdf

Version: 2024-02-01

242 papers 17,352 citations

14655 66 h-index 124 g-index

263 all docs

 $\begin{array}{c} 263 \\ \\ \text{docs citations} \end{array}$

263 times ranked 11119 citing authors

#	Article	IF	CITATIONS
1	Structure-Switching Signaling Aptamers. Journal of the American Chemical Society, 2003, 125, 4771-4778.	13.7	916
2	DNA-enhanced peroxidase activity of a DNA aptamer-hemin complex. Chemistry and Biology, 1998, 5, 505-517.	6.0	903
3	Design of Gold Nanoparticleâ€Based Colorimetric Biosensing Assays. ChemBioChem, 2008, 9, 2363-2371.	2.6	701
4	Frozen vs Fresh Fecal Microbiota Transplantation and Clinical Resolution of Diarrhea in Patients With Recurrent <i>Clostridium difficile</i> Infection. JAMA - Journal of the American Medical Association, 2016, 315, 142.	7.4	511
5	Rolling Circle Amplification: Applications in Nanotechnology and Biodetection with Functional Nucleic Acids. Angewandte Chemie - International Edition, 2008, 47, 6330-6337.	13.8	506
6	Kinetics of RNA Degradation by Specific Base Catalysis of Transesterification Involving the 2â€⁻-Hydroxyl Group. Journal of the American Chemical Society, 1999, 121, 5364-5372.	13.7	479
7	Nucleic acid aptamers and enzymes as sensors. Current Opinion in Chemical Biology, 2006, 10, 272-281.	6.1	409
8	In Vitro Selection of Structureâ€Switching Signaling Aptamers. Angewandte Chemie - International Edition, 2005, 44, 1061-1065.	13.8	354
9	DNA Aptamer Folding on Gold Nanoparticles:  From Colloid Chemistry to Biosensors. Journal of the American Chemical Society, 2008, 130, 3610-3618.	13.7	352
10	A catalytic DNA for porphyrin metallation. Nature Structural and Molecular Biology, 1996, 3, 743-747.	8.2	315
11	Paper-Based Bioassays Using Gold Nanoparticle Colorimetric Probes. Analytical Chemistry, 2008, 80, 8431-8437.	6.5	305
12	Structure-Switching Signaling Aptamers: Transducing Molecular Recognition into Fluorescence Signaling. Chemistry - A European Journal, 2004, 10, 1868-1876.	3.3	272
13	Recognition of Anionic Porphyrins by DNA Aptamersâ€. Biochemistry, 1996, 35, 6911-6922.	2.5	265
14	Biologically Inspired Synthetic Enzymes Made from DNA. Chemistry and Biology, 2009, 16, 311-322.	6.0	253
15	Discovery and Biosensing Applications of Diverse RNA-Cleaving DNAzymes. Accounts of Chemical Research, 2017, 50, 2273-2283.	15.6	228
16	Simple and Rapid Colorimetric Biosensors Based on DNA Aptamer and Noncrosslinking Gold Nanoparticle Aggregation. ChemBioChem, 2007, 8, 727-731.	2.6	208
17	An Efficient RNA-Cleaving DNA Enzyme that Synchronizes Catalysis with Fluorescence Signaling. Journal of the American Chemical Society, 2003, 125, 412-420.	13.7	201
18	Multiplexed paper test strip for quantitative bacterial detection. Analytical and Bioanalytical Chemistry, 2012, 403, 1567-1576.	3.7	194

#	Article	IF	Citations
19	Biosensing with DNAzymes. Chemical Society Reviews, 2021, 50, 8954-8994.	38.1	193
20	Fluorogenic DNAzyme Probes as Bacterial Indicators. Angewandte Chemie - International Edition, 2011, 50, 3751-3754.	13.8	189
21	Translating Bacterial Detection by DNAzymes into a Litmus Test. Angewandte Chemie - International Edition, 2014, 53, 12799-12802.	13.8	188
22	Toward an Efficient DNAzymeâ€. Biochemistry, 1997, 36, 5589-5599.	2.5	175
23	Dinucleotide Junction Cleavage Versatility of 8-17 Deoxyribozyme. Chemistry and Biology, 2004, 11, 57-67.	6.0	175
24	Simple and rapid colorimetric enzyme sensing assays using non-crosslinking gold nanoparticle aggregation. Chemical Communications, 2007, , 3729.	4.1	170
25	Fluorescence Activation Imaging of Cytochrome c Released from Mitochondria Using Aptameric Nanosensor. Journal of the American Chemical Society, 2015, 137, 982-989.	13.7	163
26	Aptamers with fluorescence-signaling properties. Methods, 2005, 37, 16-25.	3.8	161
27	Assemblage of Signaling DNA Enzymes with Intriguing Metal-Ion Specificities and pH Dependences. Journal of the American Chemical Society, 2003, 125, 7539-7545.	13.7	150
28	Deoxyribozymes: New players in the ancient game of biocatalysis. Current Opinion in Structural Biology, 1999, 9, 315-323.	5.7	143
29	A Graphene-Based Biosensing Platform Based on the Release of DNA Probes and Rolling Circle Amplification. ACS Nano, 2014, 8, 5564-5573.	14.6	139
30	Aptamer-Based Biosensors for Environmental Monitoring. Frontiers in Chemistry, 2020, 8, 434.	3.6	138
31	Enzymatic Cleavage of Nucleic Acids on Gold Nanoparticles: A Generic Platform for Facile Colorimetric Biosensors. Small, 2008, 4, 810-816.	10.0	136
32	Microgel-Based Inks for Paper-Supported Biosensing Applications. Biomacromolecules, 2008, 9, 935-941.	5.4	136
33	Capping DNA with DNAâ€. Biochemistry, 2000, 39, 3106-3114.	2.5	131
34	Recent Progress in Nucleic Acid Aptamer-Based Biosensors and Bioassays. Sensors, 2008, 8, 7050-7084.	3.8	131
35	Colorimetric Sensing by Using Allostericâ€DNAzymeâ€Coupled Rolling Circle Amplification and a Peptide Nucleic Acid–Organic Dye Probe. Angewandte Chemie - International Edition, 2009, 48, 3512-3515.	13.8	128
36	A Versatile Endoribonuclease Mimic Made of DNA: Characteristics and Applications of the 8–17 RNAâ€Cleaving DNAzyme. ChemBioChem, 2010, 11, 866-879.	2.6	127

#	Article	IF	CITATIONS
37	A DNAzyme Feedback Amplification Strategy for Biosensing. Angewandte Chemie - International Edition, 2017, 56, 6142-6146.	13.8	126
38	DNA Polymerization on Gold Nanoparticles through Rolling Circle Amplification: Towards Novel Scaffolds for Three-Dimensional Periodic Nanoassemblies. Angewandte Chemie - International Edition, 2006, 45, 2409-2413.	13.8	124
39	DNAzyme-Based Biosensors: Immobilization Strategies, Applications, and Future Prospective. ACS Nano, 2021, 15, 13943-13969.	14.6	121
40	Sequence Diversity, Metal Specificity, and Catalytic Proficiency of Metal-Dependent Phosphorylating DNA Enzymes. Chemistry and Biology, 2002, 9, 507-517.	6.0	119
41	Targetâ€Induced Catalytic Assembly of Yâ€Shaped DNA and Its Application for Inâ€Situ Imaging of MicroRNAs. Angewandte Chemie - International Edition, 2018, 57, 9739-9743.	13.8	118
42	DNAzymes: Selected for Applications. Small Methods, 2018, 2, 1700319.	8.6	116
43	A DNAzymeâ€Based Colorimetric Paper Sensor for <i>Helicobacter pylori</i> . Angewandte Chemie - International Edition, 2019, 58, 9907-9911.	13.8	115
44	Targetâ€Induced and Equipmentâ€Free DNA Amplification with a Simple Paper Device. Angewandte Chemie - International Edition, 2016, 55, 2709-2713.	13.8	113
45	Detection of DNA using bioactive paper strips. Chemical Communications, 2009, , 6640.	4.1	104
46	Highâ€Affinity Dimeric Aptamers Enable the Rapid Electrochemical Detection of Wildâ€Type and B.1.1.7 SARSâ€CoVâ€⊋ in Unprocessed Saliva. Angewandte Chemie - International Edition, 2021, 60, 24266-24274.	13.8	101
47	Ligating DNA with DNA. Journal of the American Chemical Society, 2004, 126, 3454-3460.	13.7	100
48	Sequence-function relationships provide new insight into the cleavage site selectivity of the 8-17 RNA-cleaving deoxyribozyme. Nucleic Acids Research, 2008, 36, 1472-1481.	14.5	92
49	A Catalytic DNA Activated by a Specific Strain of Bacterial Pathogen. Angewandte Chemie - International Edition, 2016, 55, 2431-2434.	13.8	91
50	A Smartphone Operated Electrochemical Reader and Actuator that Streamlines the Operation of Electrochemical Biosensors., 2022, 1, 014601.		88
51	Quenching of Fluorophore-Labeled DNA Oligonucleotides by Divalent Metal Ions:Â Implications for Selection, Design, and Applications of Signaling Aptamers and Signaling Deoxyribozymes. Journal of the American Chemical Society, 2006, 128, 780-790.	13.7	86
52	Adsorption and Covalent Coupling of ATP-Binding DNA Aptamers onto Cellulose. Langmuir, 2007, 23, 1300-1302.	3.5	85
53	Signaling Aptamers for Monitoring Enzymatic Activity and for Inhibitor Screening. ChemBioChem, 2004, 5, 1139-1144.	2.6	84
54	A Printed Multicomponent Paper Sensor for Bacterial Detection. Scientific Reports, 2017, 7, 12335.	3.3	82

#	Article	IF	Citations
55	Entrapment of Fluorescent Signaling DNA Aptamers in Solâ´Gel-Derived Silica. Analytical Chemistry, 2005, 77, 4300-4307.	6.5	81
56	Probing the Function of Nucleotides in the Catalytic Cores of the 8aˆ-17 and 10aˆ-23 DNAzymes by Abasic Nucleotide and C3 Spacer Substitutions. Biochemistry, 2010, 49, 7553-7562.	2.5	81
57	DNAzyme-mediated catalysis with only guanosine and cytidine nucleotides. Nucleic Acids Research, 2009, 37, 413-420.	14.5	80
58	A novel far-visible and near-infrared pH probe for monitoring near-neutral physiological pH changes: imaging in live cells. Journal of Materials Chemistry B, 2013, 1, 4281.	5.8	80
59	Diverse high-affinity DNA aptamers for wild-type and B.1.1.7 SARS-CoV-2 spike proteins from a pre-structured DNA library. Nucleic Acids Research, 2021, 49, 7267-7279.	14.5	77
60	Structure-switching allosteric deoxyribozymes. Analytica Chimica Acta, 2005, 534, 41-51.	5.4	75
61	Pullulan Encapsulation of Labile Biomolecules to Give Stable Bioassay Tablets. Angewandte Chemie - International Edition, 2014, 53, 6155-6158.	13.8	75
62	A Paper Sensor Printed with Multifunctional Bio/Nano Materials. Angewandte Chemie - International Edition, 2018, 57, 4549-4553.	13.8	73
63	Using a Riboswitch Sensor to Examine Coenzyme B12 Metabolism and Transport in E. coli. Chemistry and Biology, 2010, 17, 756-765.	6.0	72
64	A DNA-Protein Nanoengine for "On-Demand―Release and Precise Delivery of Molecules. Angewandte Chemie - International Edition, 2005, 44, 5464-5467.	13.8	70
65	In Vitro Selection of Circular DNA Aptamers for Biosensing Applications. Angewandte Chemie - International Edition, 2019, 58, 8013-8017.	13.8	69
66	Integrating programmable DNAzymes with electrical readout for rapid and culture-free bacterial detection using a handheld platform. Nature Chemistry, 2021, 13, 895-901.	13.6	69
67	In Vitro Selection of Structureâ€Switching Signaling Aptamers. Angewandte Chemie, 2005, 117, 1085-1089.	2.0	68
68	Lysozyme-stabilized gold nanoclusters as a novel fluorescence probe for cyanide recognition. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 121, 77-80.	3.9	68
69	A FACSâ€Based Approach to Engineering Artificial Riboswitches. ChemBioChem, 2008, 9, 1906-1911.	2.6	67
70	Programming a topologically constrained DNA nanostructure into a sensor. Nature Communications, 2016, 7, 12074.	12.8	67
71	Discovery of Butyrylcholinesterase-Activated Near-Infrared Fluorogenic Probe for Live-Cell and <i>In Vivo</i> Imaging. ACS Sensors, 2018, 3, 2118-2128.	7.8	67
72	Patterned Paper Sensors Printed with Longâ€Chain DNA Aptamers. Chemistry - A European Journal, 2015, 21, 7369-7373.	3.3	66

#	Article	IF	CITATIONS
73	Printed Paper Sensors for Serum Lactate Dehydrogenase using Pullulan-Based Inks to Immobilize Reagents. Analytical Chemistry, 2015, 87, 9288-9293.	6.5	66
74	Solid-Phase Enzyme Activity Assay Utilizing an Entrapped Fluorescence-Signaling DNA Aptamer. Angewandte Chemie - International Edition, 2006, 45, 3295-3299.	13.8	64
75	Biosensing by Tandem Reactions of Structure Switching, Nucleolytic Digestion, and DNA Amplification of a DNA Assembly. Angewandte Chemie - International Edition, 2015, 54, 9637-9641.	13.8	63
76	Entrapment of Fluorescence Signaling DNA Enzymes in Solâ^'Gel-Derived Materials for Metal Ion Sensing. Analytical Chemistry, 2007, 79, 3494-3503.	6.5	60
77	Biosensors Made of Synthetic Functional Nucleic Acids Toward Better Human Health. Analytical Chemistry, 2020, 92, 327-344.	6.5	60
78	Efficient signaling platforms built from a small catalytic DNA and doubly labeled fluorogenic substrates. Nucleic Acids Research, 2006, 35, 401-405.	14.5	59
79	A Sensitive DNA Enzyme-Based Fluorescent Assay for Bacterial Detection. Biomolecules, 2013, 3, 563-577.	4.0	59
80	Tracing Sequence Diversity Change of RNA-Cleaving Deoxyribozymes under Increasing Selection Pressure during in Vitro Selectionâ€. Biochemistry, 2004, 43, 9695-9707.	2.5	58
81	Selfâ€Assembled Functional DNA Superstructures as Highâ€Density and Versatile Recognition Elements for Printed Paper Sensors. Angewandte Chemie - International Edition, 2018, 57, 12440-12443.	13.8	58
82	Ribbon of DNA Lattice on Gold Nanoparticles for Selective Drug Delivery to Cancer Cells. Angewandte Chemie - International Edition, 2020, 59, 14584-14592.	13.8	56
83	Turning a Kinase Deoxyribozyme into a Sensor. Journal of the American Chemical Society, 2013, 135, 7181-7186.	13.7	54
84	Functional Nucleic Acids for Pathogenic Bacteria Detection. Accounts of Chemical Research, 2021, 54, 3540-3549.	15.6	54
85	A General Approach to the Construction of Structureâ€6witching Reporters from RNA Aptamers. Angewandte Chemie - International Edition, 2010, 49, 7938-7942.	13.8	53
86	Small-Molecule Screening Made Simple for a Difficult Target with a Signaling Nucleic Acid Aptamer that Reports on Deaminase Activity. Angewandte Chemie - International Edition, 2006, 45, 5648-5652.	13.8	52
87	Catalysis and Rational Engineering of trans-Acting pH6DZ1, an RNA-Cleaving and Fluorescence-Signaling Deoxyribozyme with a Four-Way Junction Structure. ChemBioChem, 2006, 7, 1343-1348.	2.6	49
88	Inâ€Vitro Selection of a DNA Aptamer Targeting Degraded Protein Fragments for Biosensing. Angewandte Chemie - International Edition, 2020, 59, 7706-7710.	13.8	49
89	Engineering interlocking DNA rings with weak physical interactions. Nature Communications, 2014, 5, 4279.	12.8	48
90	Highly Specific Recognition of Breast Tumors by an RNA-Cleaving Fluorogenic DNAzyme Probe. Analytical Chemistry, 2015, 87, 569-577.	6.5	48

#	Article	IF	CITATIONS
91	Simple Fluorescent Sensors Engineered with Catalytic DNA †MgZ†Based on a Non-Classic Allosteric Design. PLoS ONE, 2007, 2, e1224.	2.5	47
92	In vitro selection of small RNA-cleaving deoxyribozymes that cleave pyrimidine–pyrimidine junctions. Nucleic Acids Research, 2008, 36, 4768-4777.	14.5	47
93	Stabilizing Structure-Switching Signaling RNA Aptamers by Entrapment in Sol–Gel Derived Materials for Solid-Phase Assays. Journal of the American Chemical Society, 2012, 134, 10998-11005.	13.7	47
94	Translating Bacterial Detection by DNAzymes into a Litmus Test. Angewandte Chemie, 2014, 126, 13013-13016.	2.0	45
95	A Multiâ€component Allâ€DNA Biosensing System Controlled by a DNAzyme. Angewandte Chemie - International Edition, 2020, 59, 10401-10405.	13.8	45
96	Advances in functional nucleic acid based paper sensors. Journal of Materials Chemistry B, 2020, 8, 3213-3230.	5.8	45
97	The modus operandi of a DNA enzyme: enhancement of substrate basicity. Chemistry and Biology, 1998, 5, 1-12.	6.0	44
98	In vitro selection of RNA-cleaving DNAzymes for bacterial detection. Methods, 2016, 106, 66-75.	3.8	44
99	DNAzymes as key components of biosensing systems for the detection of biological targets. Biosensors and Bioelectronics, 2021, 177, 112972.	10.1	44
100	Aptamers from random sequence space: Accomplishments, gaps and future considerations. Analytica Chimica Acta, 2022, 1196, 339511.	5 . 4	44
101	Enzymatic manipulations of DNA oligonucleotides on microgel: towards development of DNA–microgel bioassays. Chemical Communications, 2007, , 4459.	4.1	43
102	Circular Nucleic Acids: Discovery, Functions and Applications. ChemBioChem, 2020, 21, 1547-1566.	2.6	43
103	A novel phosphorescence sensor for Co ²⁺ ion based on Mnâ€doped ZnS quantum dots. Luminescence, 2014, 29, 151-157.	2.9	41
104	Integrating Deoxyribozymes into Colorimetric Sensing Platforms. Sensors, 2016, 16, 2061.	3.8	41
105	Revitalization of Six Abandoned Catalytic DNA Species Reveals a Common Three-way Junction Framework and Diverse Catalytic Cores. Journal of Molecular Biology, 2006, 357, 748-754.	4.2	40
106	Surface Immobilization of Structure-Switching DNA Aptamers on Macroporous Solâ^'Gel-Derived Films for Solid-Phase Biosensing Applications. Analytical Chemistry, 2011, 83, 957-965.	6.5	40
107	Graphene-DNAzyme-based fluorescent biosensor for Escherichia coli detection. MRS Communications, 2018, 8, 687-694.	1.8	40
108	Selection and applications of synthetic functional DNAs for bacterial detection. TrAC - Trends in Analytical Chemistry, 2020, 124, 115785.	11.4	39

#	Article	IF	Citations
109	Long-period grating refractive index sensor with a modified cladding structure for large operational range and high sensitivity. Applied Optics, 2006, 45, 6142.	2.1	38
110	Targetâ€Induced and Equipmentâ€Free DNA Amplification with a Simple Paper Device. Angewandte Chemie, 2016, 128, 2759-2763.	2.0	38
111	Rapid and Specific Imaging of Extracellular Signaling Molecule Adenosine Triphosphate with a Self-Phosphorylating DNAzyme. Journal of the American Chemical Society, 2021, 143, 15084-15090.	13.7	38
112	A DNAzyme Feedback Amplification Strategy for Biosensing. Angewandte Chemie, 2017, 129, 6238-6242.	2.0	37
113	A DNA Nanoflowerâ€Assisted Separationâ€Free Nucleic Acid Detection Platform with a Commercial Pregnancy Test Strip. Angewandte Chemie - International Edition, 2021, 60, 24823-24827.	13.8	37
114	Optimization of Cladding-Structure-Modified Long-Period-Grating Refractive-Index Sensors. Journal of Lightwave Technology, 2007, 25, 372-380.	4.6	36
115	Arrest of Rolling Circle Amplification by Proteinâ€Binding DNA Aptamers. Chemistry - A European Journal, 2014, 20, 2420-2424.	3.3	36
116	Simple and ultrastable all-inclusive pullulan tablets for challenging bioassays. Chemical Science, 2016, 7, 2342-2346.	7.4	36
117	Characterizing the Secondary Structure and Identifying Functionally Essential Nucleotides of pH6DZ1, a Fluorescence-Signaling and RNA-Cleaving Deoxyribozyme. Biochemistry, 2005, 44, 12066-12076.	2.5	34
118	Characterization of a catalytically efficient acidic RNA-cleaving deoxyribozyme. Nucleic Acids Research, 2005, 33, 7164-7175.	14.5	33
119	Integrating graphene oxide, functional DNA and nucleic-acid-manipulating strategies for amplified biosensing. TrAC - Trends in Analytical Chemistry, 2015, 74, 120-129.	11.4	33
120	Selection and Characterization of an RNAâ€Cleaving DNAzyme Activated by <i>Legionella pneumophila</i> . Angewandte Chemie - International Edition, 2021, 60, 4782-4788.	13.8	32
121	Secondary-Structure Characterization of Two Proficient Kinase Deoxyribozymesâ€. Biochemistry, 2005, 44, 3765-3774.	2.5	30
122	A General Strategy to Create RNA Aptamer Sensors Using "Regulated―Graphene Oxide Adsorption. ACS Applied Materials & Diterfaces, 2014, 6, 21806-21812.	8.0	30
123	A Universal DNA Aptamer that Recognizes Spike Proteins of Diverse SARS oVâ€2 Variants of Concern. Chemistry - A European Journal, 2022, 28, .	3.3	30
124	A DNAzymeâ€Based Colorimetric Paper Sensor for <i>Helicobacter pylori</i> . Angewandte Chemie, 2019, 131, 10012-10016.	2.0	29
125	DNAzyme-Immobilizing Microgel Magnetic Beads Enable Rapid, Specific, Culture-Free, and Wash-Free Electrochemical Quantification of Bacteria in Untreated Urine. ACS Sensors, 2022, 7, 985-994.	7.8	29
126	Enhancing Sensitivity and Selectivity of Long-Period Grating Sensors using Structure-Switching Aptamers Bound to Gold-Doped Macroporous Silica Coatings. Analytical Chemistry, 2011, 83, 7984-7991.	6.5	27

#	Article	IF	CITATIONS
127	Proteinâ€Mediated Suppression of Rolling Circle Amplification for Biosensing with an Aptamerâ€Containing DNA Primer. Chemistry - A European Journal, 2020, 26, 5085-5092.	3.3	27
128	Diverse Evolutionary Trajectories Characterize a Community of RNA-Cleaving Deoxyribozymes: A Case Study into the Population Dynamics of In Vitro Selection. Journal of Molecular Evolution, 2005, 61, 192-206.	1.8	26
129	Characterization of an RNA-Cleaving Deoxyribozyme with Optimal Activity at pH 5. Biochemistry, 2009, 48, 7383-7391.	2.5	25
130	Functional Nucleic Acids as Molecular Recognition Elements for Small Organic and Biological Molecules. Current Organic Chemistry, 2011, 15, 557-575.	1.6	25
131	Optimal DNA Templates for Rolling Circle Amplification Revealed by In Vitro Selection. Chemistry - A European Journal, 2015, 21, 8069-8074.	3.3	25
132	Evolution of High-Branching Deoxyribozymes from a Catalytic DNA with a Three-Way Junction. Chemistry and Biology, 2006, 13, 1061-1069.	6.0	24
133	Lighting Up RNA-Cleaving DNAzymes for Biosensing. Journal of Nucleic Acids, 2012, 2012, 1-8.	1.2	24
134	Evolution of a highly functional circular DNA aptamer in serum. Nucleic Acids Research, 2020, 48, 10680-10690.	14.5	24
135	A Lateral Flow Test for <i>Staphylococcus aureus</i> in Nasal Mucus Using a New DNAzyme as the Recognition Element. Angewandte Chemie - International Edition, 2022, 61, e202112346.	13.8	24
136	Influence of Cleavage Site on Global Folding of an RNAâ€Cleaving DNAzyme. ChemBioChem, 2010, 11, 1710-1719.	2.6	23
137	Phosphorescence detection of L-ascorbic acid with surface-attached N-acetyl-L-cysteine and L-cysteine Mn doped ZnS quantum dots. Talanta, 2013, 116, 794-800.	5. 5	23
138	A Catalytic DNA Activated by a Specific Strain of Bacterial Pathogen. Angewandte Chemie, 2016, 128, 2477-2480.	2.0	23
139	Unraveling Determinants of Affinity Enhancement in Dimeric Aptamers for a Dimeric Protein. Scientific Reports, 2019, 9, 17824.	3.3	23
140	Selection and Characterization of an RNAâ€Cleaving DNAzyme Activated by <i>Legionella pneumophila</i> . Angewandte Chemie, 2021, 133, 4832-4838.	2.0	23
141	RNA Protection is Effectively Achieved by Pullulan Film Formation. ChemBioChem, 2017, 18, 502-505.	2.6	22
142	Photoluminescence model for a hybrid aptamer-GaAs optical biosensor. Journal of Applied Physics, 2010, 107, 104702.	2.5	21
143	A Paper Sensor Printed with Multifunctional Bio/Nano Materials. Angewandte Chemie, 2018, 130, 4639-4643.	2.0	21
144	DNAzyme Feedback Amplification: Relaying Molecular Recognition to Exponential DNA Amplification. Chemistry - A European Journal, 2018, 24, 4473-4479.	3.3	21

#	Article	IF	CITATIONS
145	Highâ€Affinity Dimeric Aptamers Enable the Rapid Electrochemical Detection of Wildâ€Type and B.1.1.7 SARSâ€CoVâ€2 in Unprocessed Saliva. Angewandte Chemie, 2021, 133, 24468-24476.	2.0	21
146	Characterization of pH3DZ1 — An RNA-cleaving deoxyribozyme with optimal activity at pH 3. Canadian Journal of Chemistry, 2007, 85, 261-273.	1.1	20
147	A Deoxyribozyme with a Novel Guanine Quartet-Helix Pseudoknot Structure. Journal of Molecular Biology, 2008, 375, 960-968.	4.2	20
148	Automating multi-step paper-based assays using integrated layering of reagents. Lab on A Chip, 2017, 17, 943-950.	6.0	20
149	Electrophoretic Concentration and Electrical Lysis of Bacteria in a Microfluidic Device Using a Nanoporous Membrane. Micromachines, 2017, 8, 45.	2.9	20
150	Selection and characterization of DNA aptamers for detection of glutamate dehydrogenase from Clostridium difficile. Biochimie, 2018, 145, 151-157.	2.6	20
151	LISzyme Biosensors: DNAzymes Embedded in an Anti-biofouling Platform for Hands-free Real-Time Detection of Bacterial Contamination in Milk. ACS Nano, 2022, 16, 29-37.	14.6	20
152	Multiple Occurrences of an Efficient Self-Phosphorylating Deoxyribozyme Motif. Biochemistry, 2007, 46, 2198-2204.	2.5	19
153	Selfâ€Assembled Functional DNA Superstructures as Highâ€Density and Versatile Recognition Elements for Printed Paper Sensors. Angewandte Chemie, 2018, 130, 12620-12623.	2.0	19
154	Label-Free Fiber Optic Biosensors With Enhanced Sensitivity. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13, 1691-1696.	2.9	18
155	Decoding Toxicity. Journal of Biological Chemistry, 2010, 285, 41627-41636.	3.4	18
156	A Complex RNA-Cleaving DNAzyme That Can Efficiently Cleave a Pyrimidine–Pyrimidine Junction. Journal of Molecular Biology, 2010, 400, 689-701.	4.2	18
157	An Efficient Catalytic DNA that Cleaves L-RNA. PLoS ONE, 2015, 10, e0126402.	2.5	18
158	Sol–Gelâ€Derived Biohybrid Materials Incorporating Longâ€Chain DNA Aptamers. Angewandte Chemie - International Edition, 2017, 56, 10686-10690.	13.8	18
159	Synthesis and evaluation of glucosamine-6-phosphate analogues as activators of glmS riboswitch. Tetrahedron, 2012, 68, 9405-9412.	1.9	17
160	Targetâ€Induced Catalytic Assembly of Yâ€Shaped DNA and Its Application for Inâ€Situ Imaging of MicroRNAs. Angewandte Chemie, 2018, 130, 9887-9891.	2.0	17
161	A Highly Specific DNA Aptamer for RNase H2 from <i>Clostridium difficile</i> . ACS Applied Materials & amp; Interfaces, 2021, 13, 9464-9471.	8.0	17
162	Aptamers for SARS oVâ€2: Isolation, Characterization, and Diagnostic and Therapeutic Developments. Analysis & Sensing, 2022, 2, .	2.0	17

#	Article	IF	CITATIONS
163	Characterization of non-8–17 sequences uncovers structurally diverse RNA-cleaving deoxyribozymes. Molecular BioSystems, 2011, 7, 2139.	2.9	16
164	Modulation of DNAâ€Modified Goldâ€Nanoparticle Stability in Salt with Concatemeric Singleâ€Stranded DNAs for Colorimetric Bioassay Development. Chemistry - A European Journal, 2011, 17, 2052-2056.	3.3	16
165	Exploring Intermolecular Interactions of a Substrate Binding Protein Using a Riboswitch-Based Sensor. Chemistry and Biology, 2013, 20, 1502-1512.	6.0	16
166	Evolution of an Enzyme from a Noncatalytic Nucleic Acid Sequence. Scientific Reports, 2015, 5, 11405.	3.3	15
167	Detection of DNA Amplicons of Polymerase Chain Reaction Using Litmus Test. Scientific Reports, 2017, 7, 3110.	3.3	15
168	Characterization of long RNA-cleaving deoxyribozymes with short catalytic cores: the effect of excess sequence elements on the outcome of in vitro selection. Nucleic Acids Research, 2006, 34, 2445-2454.	14.5	14
169	A genotype-to-phenotype map of in vitro selected RNA-cleaving DNAzymes: implications for accessing the target phenotype. Nucleic Acids Research, 2009, 37, 3545-3557.	14.5	14
170	The Structural Diversity of Deoxyribozymes. Molecules, 2010, 15, 6269-6284.	3.8	14
171	Detection of Bacteria Using Fluorogenic DNAzymes. Journal of Visualized Experiments, 2012, , .	0.3	14
172	Fluorescence Analysis of the Properties of Structure-Switching DNA Aptamers Entrapped in Sol–Gel-Derived Silica Materials. Chemistry of Materials, 2014, 26, 1896-1904.	6.7	14
173	Colorimetric Detection of Uranyl Using a Litmus Test. Frontiers in Chemistry, 2018, 6, 332.	3.6	14
174	A DNA Barcodeâ€Based Aptasensor Enables Rapid Testing of Porcine Epidemic Diarrhea Viruses in Swine Saliva Using Electrochemical Readout. Angewandte Chemie - International Edition, 2022, 61, .	13.8	14
175	Advancements in using reporter DNAzymes for identifying pathogenic bacteria at speed and with convenience. Future Microbiology, 2011, 6, 973-976.	2.0	13
176	Developing Fluorogenic RNA-Cleaving DNAzymes for Biosensing Applications. Methods in Molecular Biology, 2012, 848, 395-418.	0.9	13
177	Assessing the Amount of Quadruplex Structures Present within G2-Tract Synthetic Random-Sequence DNA Libraries. PLoS ONE, 2013, 8, e64131.	2.5	13
178	Fast-responding functional DNA superstructures for stimuli-triggered protein release. Chemical Science, 2021, 12, 8282-8287.	7.4	13
179	Therapeutic Peptides: New Arsenal Against Drug Resistant Pathogens. Current Pharmaceutical Design, 2014, 20, 771-792.	1.9	13
180	An Unintentional Discovery of a Fluorogenic DNA Probe for Ribonucleaseâ€l. ChemBioChem, 2020, 21, 464-468.	2.6	12

#	Article	IF	Citations
181	Phosphoester-transfer mechanism of an RNA-cleaving acidic deoxyribozyme revealed by radioactivity tracking and enzymatic digestion. Chemical Communications, 2006, , 2359.	4.1	11
182	Turning Tryptophanase into Odor-Generating Biosensors. Angewandte Chemie - International Edition, 2014, 53, 2620-2622.	13.8	11
183	Serendipitous Discovery of a Guanine-rich DNA Molecule with a Highly Stable Structure in Urea. Scientific Reports, 2018, 8, 1935.	3.3	11
184	A Highly Efficient Molecular Cloning Platform that Utilises a Small Bacterial Toxin Gene. ChemBioChem, 2013, 14, 733-738.	2.6	10
185	An inkjet-printed bioactive paper sensor that reports ATP through odour generation. Analyst, The, 2014, 139, 4775.	3.5	10
186	A Quarter Century of In Vitro Selection. Journal of Molecular Evolution, 2015, 81, 137-139.	1.8	10
187	Determination of Mercury(II) by Fluorescence Using Deoxyribonucleic Acid Stabilized Silver Nanoclusters. Analytical Letters, 2015, 48, 281-290.	1.8	10
188	Engineering Micrometerâ€Sized DNA Tracks for Highâ€Speed DNA Synthesis and Biosensing. Angewandte Chemie - International Edition, 2020, 59, 22947-22951.	13.8	10
189	Functional Nucleic Acids Under Unusual Conditions. ChemBioChem, 2021, 22, 2368-2383.	2.6	10
190	Exploration of Structure-Switching in the Design of Aptamer Biosensors. Advances in Biochemical Engineering/Biotechnology, 2013, 140, 69-92.	1.1	9
191	Sequence Mutation and Structural Alteration Transform a Noncatalytic DNA Sequence into an Efficient RNA-Cleaving DNAzyme. Journal of Molecular Evolution, 2015, 81, 245-253.	1.8	9
192	In Vitro Selection of DNA Aptamers that Binds Geniposide. Molecules, 2017, 22, 383.	3.8	9
193	A Universal DNA Aptamer that Recognizes Spike Proteins of Diverse SARSâ€CoVâ€2 Variants of Concern. Chemistry - A European Journal, 2022, 28, e202200524.	3.3	9
194	Complexation of well-controlled low-molecular weight polyelectrolytes with antisense oligonucleotides. Colloid and Polymer Science, 2005, 283, 1197-1205.	2.1	8
195	Isolation of DNA Aptamers for CDPâ€Ribitol Synthase, and Characterization of Their Inhibitory and Structural Properties. ChemBioChem, 2007, 8, 2052-2057.	2.6	8
196	Controlling biotinylation of microgels and modeling streptavidin uptake. Colloid and Polymer Science, 2011, 289, 659-666.	2.1	8
197	Quality Control Certification of RNA Aptamerâ€Based Detection. ChemBioChem, 2013, 14, 987-992.	2.6	8
198	In Vitro Selection of Circular DNA Aptamers for Biosensing Applications. Angewandte Chemie, 2019, 131, 8097-8101.	2.0	8

#	Article	IF	CITATIONS
199	Highly Sensitive RNAâ€Cleaving DNAzyme Sensors from Surfaceâ€toâ€Surface Product Enrichment. ChemBioChem, 2020, 21, 632-637.	2.6	8
200	Optical biosensors utilizing graphene and functional DNA molecules. Journal of Materials Research, 2017, 32, 2973-2983.	2.6	7
201	One-pot high-yield synthesis of Pd nanocubes for Pd-Ir nanocube-based immunoassay of nucleocapsid protein from SARS-CoV-2. Analytical and Bioanalytical Chemistry, 2021, 413, 4635-4644.	3.7	7
202	Investigation of discordant SARS-CoV-2 RT-PCR results using minimally processed saliva. Scientific Reports, 2022, 12, 2806.	3.3	7
203	One Solution for All: Searching for Universal Aptamers for Constantly Mutating Spike Proteins of SARSâ€CoVâ€2. ChemMedChem, 2022, 17, .	3.2	7
204	Inâ€Vitro Selection of a DNA Aptamer Targeting Degraded Protein Fragments for Biosensing. Angewandte Chemie, 2020, 132, 7780-7784.	2.0	6
205	Identification of a Toxic Peptide through Bidirectional Expression of Small RNAs. ChemBioChem, 2009, 10, 238-241.	2.6	5
206	Examination of Bacterial Inhibition Using a Catalytic DNA. PLoS ONE, 2014, 9, e115640.	2.5	5
207	RiboFACSeq: A new method for investigating metabolic and transport pathways in bacterial cells by combining a riboswitch-based sensor, fluorescence-activated cell sorting and next-generation sequencing. PLoS ONE, 2017, 12, e0188399.	2.5	5
208	Ribbon of DNA Lattice on Gold Nanoparticles for Selective Drug Delivery to Cancer Cells. Angewandte Chemie, 2020, 132, 14692-14700.	2.0	5
209	A DNA Barcodeâ€Based Aptasensor Enables Rapid Testing of Porcine Epidemic Diarrhea Viruses in Swine Saliva Using Electrochemical Readout. Angewandte Chemie, 2022, 134, .	2.0	5
210	Aptamers for SARSâ€CoVâ€2: Isolation, Characterization, and Diagnostic and Therapeutic Developments. Analysis & Sensing, 0, , .	2.0	5
211	Understanding DNA-based catalysis one molecule at a time. Nature Chemical Biology, 2007, 3, 753-754.	8.0	4
212	Functional Nucleic Acids for Fluorescence-Based Biosensing Applications. Springer Series on Fluorescence, 2011, , 201-221.	0.8	4
213	Artificial Riboswitch Selection: A FACS-Based Approach. Methods in Molecular Biology, 2014, 1111, 57-75.	0.9	4
214	In Vitro Selection of New DNA Aptamers for Human Vascular Endothelial Growth Factor 165. ChemBioChem, 2020, 21, 2029-2036.	2.6	4
215	A Syringeâ∈Based DNAzyme Sensor for Bacterial Detection. Analysis & Sensing, 2021, 1, 95-100.	2.0	4
216	Targetâ€Dependent Protection of DNA Aptamers against Nucleolytic Digestion Enables Signalâ€On Biosensing with Toeholdâ€Mediated Rolling Circle Amplification. Chemistry - A European Journal, 2021, 27, 14543-14549.	3.3	4

#	Article	IF	CITATIONS
217	Construction and Application of Riboswitch-Based Sensors That Detect Metabolites Within Bacterial Cells. Methods in Molecular Biology, 2014, 1103, 177-197.	0.9	4
218	Deoxyribozymes: Catalytically Active DNA Molecules. , 2006, , 228-261.		3
219	Incorporation of an inducible nucleotide analog into DNA by DNA polymerases. Bioorganic and Medicinal Chemistry, 2009, 17, 2859-2863.	3.0	3
220	Artificially Created Nucleic Acids and Peptides/Proteins in Chemical Biology. Journal of Nucleic Acids, 2013, 2013, 1-2.	1.2	3
221	Topological DNA Assemblies Containing Identical or Fraternal Twins. ChemBioChem, 2016, 17, 1142-1145.	2.6	3
222	Colorimetric Detection of Bacteria Using Litmus Test. Journal of Visualized Experiments, 2016, , .	0.3	3
223	A DNA Switch for Detecting Single Nucleotide Polymorphism within a Long DNA Sequence Under Denaturing Conditions. Chemistry - A European Journal, 2020, 26, 592-596.	3.3	3
224	Engineering Micrometerâ€Sized DNA Tracks for Highâ€Speed DNA Synthesis and Biosensing. Angewandte Chemie, 2020, 132, 23147-23151.	2.0	3
225	Targetâ€Mediated 5'â€Exonuclease Digestion of DNA Aptamers with RecJ to Modulate Rolling Circle Amplification for Biosensing. ChemBioChem, 2021, , .	2.6	3
226	In vitro selection of deoxyribozymes with DNA capping activity. Nucleic Acids Symposium Series, 1999, 42, 237-238.	0.3	2
227	Evolving Wonder-RNAs in a Test Tube. Journal of Molecular Evolution, 2013, 77, 197-198.	1.8	2
228	Investigation of RNA structure-switching aptamers in tunable sol–gel-derived materials. Journal of Sol-Gel Science and Technology, 2019, 89, 234-243.	2.4	2
229	An Effective Method for Quantifying RNA Expression of lbsCâ€SibC, a Type I Toxinâ€Antitoxin System in <i>Escherichia coli</i> . ChemBioChem, 2020, 21, 3120-3130.	2.6	2
230	A Multiâ€component Allâ€DNA Biosensing System Controlled by a DNAzyme. Angewandte Chemie, 2020, 132, 10487-10491.	2.0	2
231	A DNA Nanoflower Assisted Separationâ€free Nucleic Acid Detection Platform with Commercial Pregnancy Test Strip. Angewandte Chemie, 0, , .	2.0	2
232	Sol–Gelâ€Derived Biohybrid Materials Incorporating Longâ€Chain DNA Aptamers. Angewandte Chemie, 2017, 129, 10826-10830.	2.0	2
233	Facile Synthesis of Pd-Ir Nanocubes for Biosensing. Frontiers in Chemistry, 2021, 9, 775220.	3.6	2
234	A Lateral Flow Test for <i>Staphylococcus aureus</i> in Nasal Mucus Using a New DNAzyme as the Recognition Element. Angewandte Chemie, 2022, 134, .	2.0	2

#	Article	IF	Citations
235	Quantifying DNA damage on paper sensors <i>via</i> controlled template-independent DNA polymerization. Chemical Science, 2022, 13, 6496-6501.	7.4	2
236	Small Size, Big Impact: Bacterial Functional Nucleic Acids and Their Applications. , 2014, , 309-323.		1
237	A Dual Reporter System for Detecting RNA Interactions in Bacterial Cells. ChemBioChem, 2014, 15, 2703-2709.	2.6	0
238	Frontispiece: DNAzyme Feedback Amplification: Relaying Molecular Recognition to Exponential DNA Amplification. Chemistry - A European Journal, 2018, 24, .	3.3	0
239	A DNA Switch for Detecting Single Nucleotide Polymorphism within a Long DNA Sequence Under Denaturing Conditions. Chemistry - A European Journal, 2020, 26, 568-568.	3.3	0
240	Rücktitelbild: Engineering Micrometerâ€Sized DNA Tracks for Highâ€Speed DNA Synthesis and Biosensing (Angew. Chem. 51/2020). Angewandte Chemie, 2020, 132, 23548-23548.	2.0	0
241	Rücktitelbild: Inâ€Vitro Selection of a DNA Aptamer Targeting Degraded Protein Fragments for Biosensing (Angew. Chem. 20/2020). Angewandte Chemie, 2020, 132, 8042-8042.	2.0	0
242	DNAzymes: Synthetic Enzymes Made of DNA. , 2019, , 1-16.		0