
Alfonso Valiente-Banuet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6000590/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Facilitation and plant phenotypic evolution. Trends in Plant Science, 2021, 26, 913-923.	8.8	13
2	Phenotypic structure of plant facilitation networks. Ecology Letters, 2021, 24, 509-519.	6.4	16
3	Mexical Shrubland. , 2020, , 532-545.		3
4	Processes underlying the effect of mycorrhizal symbiosis on plant-plant interactions. Fungal Ecology, 2019, 40, 98-106.	1.6	19
5	Mycorrhizal symbiosis increases the benefits of plant facilitative interactions. Ecography, 2019, 42, 447-455.	4.5	23
6	Plant facilitation through mycorrhizal symbiosis is stronger between distantly related plant species. New Phytologist, 2019, 224, 928-935.	7.3	19
7	Incorporating phylogenetic metrics to microbial coâ€occurrence networks based on amplicon sequences to discern community assembly processes. Molecular Ecology Resources, 2019, 19, 1552-1564.	4.8	41
8	Nurse shrubs can receive water stored in the parenchyma of their facilitated columnar cacti. Journal of Arid Environments, 2019, 165, 10-15.	2.4	9
9	A nurse plant benefits from facilitative interactions through mycorrhizae. Plant Biology, 2019, 21, 670-676.	3.8	7
10	Nurse plants transfer more nitrogen to distantly related species. Ecology, 2017, 98, 1300-1310.	3.2	33
11	Same nurse but different time: temporal divergence in the facilitation of plant lineages with contrasted functional syndromes. Functional Ecology, 2016, 30, 1854-1861.	3.6	11
12	Fungal phylogenetic diversity drives plant facilitation. Oecologia, 2016, 181, 533-541.	2.0	8
13	Restoring phylogenetic diversity through facilitation. Restoration Ecology, 2016, 24, 449-455.	2.9	19
14	Soil fungi promote nitrogen transfer among plants involved in long-lasting facilitative interactions. Perspectives in Plant Ecology, Evolution and Systematics, 2016, 18, 45-51.	2.7	37
15	Evidence for phylogenetic correlation of plant–AMF assemblages?. Annals of Botany, 2015, 115, 171-177.	2.9	18
16	Beyond species loss: the extinction of ecological interactions in a changing world. Functional Ecology, 2015, 29, 299-307.	3.6	619
17	Integrating novel chemical weapons and evolutionarily increased competitive ability in success of a tropical invader. New Phytologist, 2015, 205, 1350-1359.	7.3	129
18	Plant phylodiversity enhances soil microbial productivity in facilitation-driven communities. Oecologia, 2014, 174, 909-920.	2.0	44

#	Article	IF	CITATIONS
19	Facilitation allows plant coexistence in <scp>C</scp> uban serpentine soils. Plant Biology, 2014, 16, 711-716.	3.8	12
20	Palynological evidence for Middle Miocene vegetation in the Tehuacán Formation of Puebla, Mexico. Palynology, 2014, 38, 1-27.	1.5	23
21	Nurses experience reciprocal fitness benefits from their distantly related facilitated plants. Perspectives in Plant Ecology, Evolution and Systematics, 2014, 16, 228-235.	2.7	18
22	Abiotic stress tolerance and competitionâ€related traits underlie phylogenetic clustering in soil bacterial communities. Ecology Letters, 2014, 17, 1191-1201.	6.4	98
23	Human impacts on multiple ecological networks act synergistically to drive ecosystem collapse. Frontiers in Ecology and the Environment, 2013, 11, 408-413.	4.0	46
24	Plant Facilitation and Phylogenetics. Annual Review of Ecology, Evolution, and Systematics, 2013, 44, 347-366.	8.3	82
25	The evolution of increased competitive ability, innate competitive advantages, and novel biochemical weapons act in concert for a tropical invader. New Phytologist, 2013, 197, 979-988.	7.3	100
26	Phylogenetic relatedness as a tool in restoration ecology: a meta-analysis. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 1761-1767.	2.6	82
27	Trait divergence and indirect interactions allow facilitation of congeneric species. Annals of Botany, 2012, 110, 1369-1376.	2.9	43
28	Plant facilitation occurs between species differing in their associated arbuscular mycorrhizal fungi. New Phytologist, 2012, 196, 835-844.	7.3	80
29	The network structure of plant–arbuscular mycorrhizal fungi. New Phytologist, 2012, 194, 536-547.	7.3	142
30	Volatile chemicals from leaf litter are associated with invasiveness of a Neotropical weed in Asia. Ecology, 2011, 92, 316-324.	3.2	109
31	A quicker return energy-use strategy by populations of a subtropical invader in the non-native range: a potential mechanism for the evolution of increased competitive ability. Journal of Ecology, 2011, 99, 1116-1123.	4.0	66
32	The relative contribution of abundance and phylogeny to the structure of plant facilitation networks. Oikos, 2011, 120, 1351-1356.	2.7	65
33	Functional and evolutionary correlations of steep leaf angles in the mexical shrubland. Oecologia, 2010, 163, 25-33.	2.0	18
34	The phylogenetic structure of plant facilitation networks changes with competition. Journal of Ecology, 2010, 98, 1454-1461.	4.0	34
35	Speciesâ€ s pecificity of nurse plants for the establishment, survivorship, and growth of a columnar cactus. American Journal of Botany, 2010, 97, 1289-1295.	1.7	51
36	Neighborhood phylodiversity affects plant performance. Ecology, 2010, 91, 3656-3663.	3.2	71

#	Article	IF	CITATIONS
37	Evolutionary tradeoffs for nitrogen allocation to photosynthesis versus cell walls in an invasive plant. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1853-1856.	7.1	275
38	Phylogenetic signatures of facilitation and competition in successional communities. Journal of Ecology, 2009, 97, 1171-1180.	4.0	96
39	Don't Diss Integration: A Comment on Ricklefs's Disintegrating Communities. American Naturalist, 2009, 174, 919-927.	2.1	83
40	Temporal shifts from facilitation to competition occur between closely related taxa. Journal of Ecology, 2008, 96, 489-494.	4.0	149
41	Riparian Mesquite bushes are important for bird conservation in tropical arid Mexico. Journal of Arid Environments, 2008, 72, 1146-1163.	2.4	10
42	Seed dispersal by domestic goats in a semiarid thornscrub of Mexico. Journal of Arid Environments, 2008, 72, 1973-1976.	2.4	34
43	The Nested Assembly of Plant Facilitation Networks Prevents Species Extinctions. American Naturalist, 2008, 172, 751-760.	2.1	147
44	Pollination biology of the hemiepiphytic cactus Hylocereus undatus in the Tehuacán Valley, Mexico. Journal of Arid Environments, 2007, 68, 1-8.	2.4	35
45	Evidences on the migratory movements of the nectar-feeding bat Leptonycteris curasoae in Mexico using random amplified polymorphic DNA (RAPD). Journal of Arid Environments, 2007, 68, 248-259.	2.4	21
46	In situ Management and Domestication of Plants in Mesoamerica. Annals of Botany, 2007, 100, 1101-1115.	2.9	259
47	Facilitation can increase the phylogenetic diversity of plant communities. Ecology Letters, 2007, 10, 1029-1036.	6.4	307
48	Evolution of hydraulic traits in closely related species pairs from mediterranean and nonmediterranean environments of North America. New Phytologist, 2007, 176, 718-726.	7.3	70
49	Ant diversity andÂitsÂrelationship with vegetation andÂsoil factors inÂanÂalluvial fan ofÂtheÂTehuacán Valley, Mexico. Acta Oecologica, 2006, 29, 316-323.	1.1	40
50	Reproductive biology of Opuntia: A review. Journal of Arid Environments, 2006, 64, 549-585.	2.4	123
51	Do biotic interactions shape both sides of the humped-back model of species richness in plant communities?. Ecology Letters, 2006, 9, 767-773.	6.4	517
52	Reproductive Biology in Wild and Silvicultural Managed Populations of Escontria chiotilla (Cactaceae) in the Tehuacán Valley, Central Mexico. Genetic Resources and Crop Evolution, 2006, 53, 277-287.	1.6	26
53	Diurnal and Nocturnal Pollination of Marginatocereus marginatus (Pachycereeae: Cactaceae) in Central Mexico. Annals of Botany, 2006, 97, 423-427.	2.9	44
54	Modern Quaternary plant lineages promote diversity through facilitation of ancient Tertiary lineages. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16812-16817.	7.1	238

#	Article	IF	CITATIONS
55	Does cladode inclination restrict microhabitat distribution for <i>Opuntia puberula</i> (Cactaceae)?. American Journal of Botany, 2005, 92, 700-708.	1.7	7
56	Geographic differentiation in the pollination system of the columnar cactus <i>Pachycereus pecten</i> â€ <i>aboriginum</i> . American Journal of Botany, 2004, 91, 850-855.	1.7	35
57	Pollination biology of the columnar cactus Pachycereus pecten-aboriginum in north-western México. Journal of Arid Environments, 2004, 56, 117-127.	2.4	40
58	â€~Convergent' traits of mediterranean woody plants belong to pre-mediterranean lineages. Biological Journal of the Linnean Society, 2003, 78, 415-427.	1.6	91
59	Evolution of <i>Polaskia chichipe</i> (Cactaceae) under domestication in the Tehuacán Valley, central Mexico: reproductive biology. American Journal of Botany, 2003, 90, 593-602.	1.7	62
60	THE ROLE OF SEED DISPERSERS IN THE POPULATION DYNAMICS OF THE COLUMNAR CACTUS NEOBUXBAUMIA TETETZO. Ecology, 2002, 83, 2617-2629.	3.2	84
61	Vulnerabilidad de los sistemas de polinización de cactáceas columnares de México. Revista Chilena De Historia Natural, 2002, 75, 99.	1.2	23
62	Mexical plant phenology: is it similar to Mediterranean communities?. Botanical Journal of the Linnean Society, 2002, 138, 297-303.	1.6	15
63	Pre-columbian soil erosion, persistent ecological changes, and collapse of a subsistence agricultural economy in the semi-arid Tehuacán Valley, Mexico's â€~Cradle of Maize'. Journal of Arid Environments, 2001, 47, 47-75.	2.4	50
64	Recursos vegetales del valle de Tehuacán-Cuicatlan, México. Economic Botany, 2001, 55, 129-166.	1.7	161
65	Fruit-Feeding Behavior of the Bats Leptonycteris curasoae and Choeronycteris mexicana in Flight Cage Experiments: Consequences for Dispersal of Columnar Cactus Seeds1. Biotropica, 2000, 32, 552.	1.6	11
66	Seasonal distribution of the long-nosed bat (Leptonycteris curasoae) in North America: does a generalized migration pattern really exist?. Journal of Biogeography, 1999, 26, 1065-1077.	3.0	94
67	Biotic interactions and the population dynamics of the long-lived columnar cactus <i>Neobuxbaumia tetetzo</i> in the TehuacÃ _i n Valley, Mexico. Canadian Journal of Botany, 1999, 77, 203-208.	1.1	38
68	Morphological variation and the process of domestication of Stenocereus stellatus (Cactaceae) in Central Mexico. American Journal of Botany, 1999, 86, 522-33.	1.7	21
69	Reproductive biology and the process of domestication of the columnar cactus Stenocereus Stellatus in Central Mexico. American Journal of Botany, 1999, 86, 534-42.	1.7	19
70	Fire and resprouting in Mediterranean ecosystems: insights from an external biogeographical region, the mexical shrubland. American Journal of Botany, 1999, 86, 1655-61.	1.7	9
71	Paleoclimatic changes during the Late Pleistocene - Holocene in Laguna BabÃcora, near the Chihuahuan Desert, México. Canadian Journal of Earth Sciences, 1998, 35, 1168-1179.	1.3	42
72	Germination and early seedling growth of Tehuacan Valley cacti species: the role of soils and seed ing growth. Journal of Arid Environments, 1998, 39, 21-31.	2.4	56

#	Article	IF	CITATIONS
73	The chaparral vegetation in Mexico undernonmediterranean climate: the convergence and Madrean-Tethyan hypothesesreconsidered. American Journal of Botany, 1998, 85, 1398-408.	1.7	11

Pollination biology of two columnar cacti (Neobuxbaumia mezcalaensis and Neobuxbaumia) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 702 T

75	Pollination biology of two winter-blooming giant columnar cacti in the Tehuacán Valley, central Mexico. Journal of Arid Environments, 1997, 37, 331-341.	2.4	76
76	Ethnobotany and domestication in Xoconochtli,Stenocereus stellatus (Cactaceae), in the Tehuacán Valley and La Mixteca Baja, México. Economic Botany, 1997, 51, 279-292.	1.7	91
77	Ecological relationships between columnar cacti and nectar-feeding bats in Mexico. Journal of Tropical Ecology, 1996, 12, 103-119.	1.1	201
78	Spatial relationships between cacti and nurse shrubs in a semi-arid environment in central Mexico. Journal of Vegetation Science, 1991, 2, 15-20.	2.2	186
79	Shade as a Cause of the Association Between the Cactus Neobuxbaumia Tetetzo and the Nurse Plant Mimosa Luisana in the Tehuacan Valley, Mexico. Journal of Ecology, 1991, 79, 961.	4.0	402
80	Interaction between the cactusNeobuxbaumia tetetzoand the nurse shrubMimosa luisana. Journal of Vegetation Science, 1991, 2, 11-14.	2.2	125