
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/600017/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	lonic H-bonding organocatalysts for the ring-opening polymerization of cyclic esters and cyclic carbonates. Progress in Polymer Science, 2022, 125, 101484.	11.8	26
2	Using Triethylborane to Manipulate Reactivity Ratios in Epoxide-Anhydride Copolymerization: Application to the Synthesis of Polyethers with Degradable Ester Functions. Molecules, 2022, 27, 466.	1.7	8
3	Expanding the Scope of Boron-Based Ate Complexes by Manipulating Their Reactivity: The Case of Cyclic Esters and Their (Co)Polymers. Macromolecules, 2022, 55, 1800-1810.	2.2	14
4	Orthogonally grown polycarbonate and polyvinyl block copolymers from mechanistically distinct (co)polymerizations. Polymer Chemistry, 2022, 13, 2988-2998.	1.9	4
5	Organocatalytic selective coupling of episulfides with carbon disulfide for the synthesis of poly(trithiocarbonate)s and cyclic trithiocarbonates. Polymer Chemistry, 2022, 13, 3471-3478.	1.9	5
6	Polyurethanes from Direct Organocatalytic Copolymerization of <i>p</i> â€Tosyl Isocyanate with Epoxides. Angewandte Chemie - International Edition, 2021, 60, 1593-1598.	7.2	48
7	Polyurethanes from Direct Organocatalytic Copolymerization of p â€Tosyl Isocyanate with Epoxides. Angewandte Chemie, 2021, 133, 1617-1622.	1.6	10
8	Triethylborane-Assisted Synthesis of Random and Block Poly(ester-carbonate)s through One-Pot Terpolymerization of Epoxides, CO ₂ , and Cyclic Anhydrides. Macromolecules, 2021, 54, 2711-2719.	2.2	48
9	All-Polycarbonate Graft Copolymers with Tunable Morphologies by Metal-Free Copolymerization of CO ₂ with Epoxides. Macromolecules, 2021, 54, 6144-6152.	2.2	21
10	Surfactant-Emulating Amphiphilic Polycarbonates and Other Functional Polycarbonates through Metal-Free Copolymerization of CO ₂ with Ethylene Oxide. ACS Sustainable Chemistry and Engineering, 2021, 9, 10370-10380.	3.2	24
11	Alternating Copolymerization of Epoxides with Isothiocyanates. Macromolecules, 2021, 54, 9474-9481.	2.2	13
12	Iodineâ€transfer polymerization and CuAAC "click―chemistry: A versatile approach toward poly(vinylidene fluoride)â€based amphiphilic triblock terpolymers. Journal of Polymer Science, 2020, 58, 163-171.	2.0	3
13	Versatility of Boron-Mediated Coupling Reaction of Oxetanes and Epoxides with CO ₂ : Selective Synthesis of Cyclic Carbonates or Linear Polycarbonates. ACS Sustainable Chemistry and Engineering, 2020, 8, 13056-13063.	3.2	44
14	Recycling a Borate Complex for Synthesis of Polycarbonate Polyols: Towards an Environmentally Friendly and Costâ€Effective Process. ChemSusChem, 2020, 13, 5080-5087.	3.6	30
15	Complex Star Architectures of Well-Defined Polyethylene-Based Co/Terpolymers. Macromolecules, 2020, 53, 4355-4365.	2.2	11
16	All-Polycarbonate Thermoplastic Elastomers Based on Triblock Copolymers Derived from Triethylborane-Mediated Sequential Copolymerization of CO ₂ with Various Epoxides. Macromolecules, 2020, 53, 5297-5307.	2.2	55
17	Poly(vinylidene fluoride)-based complex macromolecular architectures: From synthesis to properties and applications. Progress in Polymer Science, 2020, 104, 101231.	11.8	40
18	Hydrophilic Stars, Amphiphilic Star Block Copolymers, and Miktoarm Stars with Degradable Polycarbonate Cores. Macromolecules, 2020, 53, 895-904.	2.2	18

#	Article	IF	CITATIONS
19	lodineâ€transfer polymerization and CuAAC "click―chemistry: A versatile approach toward poly(vinylidene fluoride)â€based amphiphilic triblock terpolymers. Journal of Polymer Science, 2020, 58, 163-171.	2.0	0
20	Synthesis and Self-Assembly of Well-Defined Star and Tadpole Homo-/Co-/Terpolymers. Macromolecules, 2019, 52, 5583-5589.	2.2	15
21	A new tricrystalline triblock terpolymer by combining polyhomologation and ringâ€opening polymerization. synthesis and thermal properties. Journal of Polymer Science Part A, 2019, 57, 2450-2456.	2.5	7
22	Tetracrystalline Tetrablock Quarterpolymers: Four Different Crystallites under the Same Roof. Angewandte Chemie - International Edition, 2019, 58, 16267-16274.	7.2	13
23	Fast and Complete Neutralization of Thiocarbonylthio Compounds Using Trialkylborane and Oxygen: Application to Their Removal from RAFT-Synthesized Polymers. ACS Macro Letters, 2019, 8, 664-669.	2.3	33
24	Degradable poly(ethylene oxide) through metal-free copolymerization of ethylene oxide with <scp>l</scp> -lactide. Polymer Chemistry, 2019, 10, 3764-3771.	1.9	31
25	Carboxylate Salts as Ideal Initiators for the Metal-Free Copolymerization of CO ₂ with Epoxides: Synthesis of Well-Defined Polycarbonates Diols and Polyols. Macromolecules, 2019, 52, 2431-2438.	2.2	65
26	Poly(vinylidene fluoride)/Polymethylene-Based Block Copolymers and Terpolymers. Macromolecules, 2019, 52, 1976-1984.	2.2	20
27	Tetracrystalline Tetrablock Quarterpolymers: Four Different Crystallites under the Same Roof. Angewandte Chemie, 2019, 131, 16413-16420.	1.6	1
28	Monomodal Ultrahigh-Molar-Mass Polycarbonate Homopolymers and Diblock Copolymers by Anionic Copolymerization of Epoxides with CO ₂ . ACS Macro Letters, 2019, 8, 1594-1598.	2.3	42
29	Direct access to poly(glycidyl azide) and its copolymers through anionic (co-)polymerization of glycidyl azide. Nature Communications, 2019, 10, 293.	5.8	58
30	Ultrafast phosphazeneâ€promoted controlled anionic polymerization of styrenic monomers. Journal of Polymer Science Part A, 2019, 57, 456-464.	2.5	5
31	Boron "stitching―reaction: a powerful tool for the synthesis of polyethylene-based star architectures. Polymer Chemistry, 2018, 9, 1061-1065.	1.9	7
32	CO2 as versatile carbonation agent of glycosides: Synthesis of 5- and 6-membered cyclic glycocarbonates and investigation of their ring-opening. Journal of CO2 Utilization, 2018, 24, 564-571.	3.3	14
33	Block Copolymers of Macrolactones/Small Lactones by a "Catalyst-Switch―Organocatalytic Strategy. Thermal Properties and Phase Behavior. Macromolecules, 2018, 51, 2428-2436.	2.2	30
34	Theoretical Mechanistic Investigation into Metal-Free Alternating Copolymerization of CO ₂ and Epoxides: The Key Role of Triethylborane. Macromolecules, 2018, 51, 5600-5607.	2.2	61
35	Polyhomologation and ATRP: A Perfect Partnership toward Unique Polyethylene-Based Architectures. ACS Symposium Series, 2018, , 1-24.	0.5	1
36	Poly(urethane–carbonate)s from Carbon Dioxide. Macromolecules, 2017, 50, 2320-2328.	2.2	38

#	Article	IF	CITATIONS
37	<i>>50th Anniversary Perspective</i> : Polymers with Complex Architectures. Macromolecules, 2017, 50, 1253-1290.	2.2	311
38	Hydrophobic, Hydrophilic, and Amphiphilic Polyglycocarbonates with Linear and Macrocyclic Architectures from Bicyclic Glycocarbonates Derived from CO ₂ and Glucoside. Macromolecules, 2017, 50, 1362-1370.	2.2	25
39	Polyethyleneâ€Based Tadpole Copolymers. Macromolecular Chemistry and Physics, 2017, 218, 1600568.	1.1	10
40	Self-assembly of poly(ionic liquid) (PIL)-based amphiphilic homopolymers into vesicles and supramolecular structures with dyes and silver nanoparticles. Polymer Chemistry, 2017, 8, 3497-3503.	1.9	26
41	Core Cross-Linked Multiarm Star Polymers with Aggregation-Induced Emission and Temperature Responsive Fluorescence Characteristics. Macromolecules, 2017, 50, 4217-4226.	2.2	50
42	Synthesis of polyglycocarbonates through polycondensation of glucopyranosides with CO ₂ . Polymer Chemistry, 2017, 8, 2640-2646.	1.9	16
43	Ring-opening polymerization of ω-pentadecalactone catalyzed by phosphazene superbases. Polymer Chemistry, 2017, 8, 511-515.	1.9	47
44	Osmotic Heat Engine Using Thermally Responsive Ionic Liquids. Environmental Science & Technology, 2017, 51, 9403-9409.	4.6	18
45	A New Role for CO ₂ : Controlling Agent of the Anionic Ring-Opening Polymerization of Cyclic Esters. Macromolecules, 2017, 50, 6752-6761.	2.2	6
46	Anionic Polymerization of Styrene and 1,3-Butadiene in the Presence of Phosphazene Superbases. Polymers, 2017, 9, 538.	2.0	16
47	Cs ₂ CO ₃ -promoted polycondensation of CO ₂ with diols and dihalides for the synthesis of miscellaneous polycarbonates. Polymer Chemistry, 2016, 7, 4944-4952.	1.9	31
48	Metal-Free Alternating Copolymerization of CO ₂ with Epoxides: Fulfilling "Green― Synthesis and Activity. Journal of the American Chemical Society, 2016, 138, 11117-11120.	6.6	246
49	Well-defined 4-arm stars with hydroxy-terminated polyethylene, polyethylene-b-polycaprolactone and polyethylene-b-(polymethyl methacrylate) ₂ arms. Polymer Chemistry, 2016, 7, 5507-5511.	1.9	13
50	Well-defined (co)polypeptides bearing pendant alkyne groups. Polymer Chemistry, 2016, 7, 3487-3491.	1.9	16
51	Lithium-Assisted Copolymerization of CO ₂ /Cyclohexene Oxide: A Novel and Straightforward Route to Polycarbonates and Related Block Copolymers. Macromolecules, 2016, 49, 2484-2492.	2.2	28
52	Using UCST Ionic Liquid as a Draw Solute in Forward Osmosis to Treat High-Salinity Water. Environmental Science & Technology, 2016, 50, 1039-1045.	4.6	99
53	From competition to cooperation: a highly efficient strategy towards well-defined (co)polypeptides. Chemical Communications, 2015, 51, 3663-3666.	2.2	55
54	Triblock and pentablock terpolymers by sequential base-assisted living cationic copolymerization of functionalized vinyl ethers. Polymer Chemistry, 2015, 6, 1236-1247.	1.9	7

#	Article	IF	CITATIONS
55	Well-Defined Polyethylene-Based Random, Block, and Bilayered Molecular Cobrushes. Macromolecules, 2015, 48, 3556-3562.	2.2	37
56	Organocatalysis by hydrogen-bonding: a new approach to controlled/living polymerization of α-amino acid N-carboxyanhydrides. Polymer Chemistry, 2015, 6, 6193-6201.	1.9	58
57	Polyhomologation based on in situ generated boron-thexyl-silaboracyclic initiating sites: a novel strategy towards the synthesis of polyethylene-based complex architectures. Chemical Communications, 2015, 51, 9936-9938.	2.2	24
58	Fast and Living Ring-Opening Polymerization of α-Amino Acid <i>N</i> -Carboxyanhydrides Triggered by an "Alliance―of Primary and Secondary Amines at Room Temperature. Biomacromolecules, 2015, 16, 1352-1357.	2.6	51
59	Oneâ€pot synthesis of linear―and threeâ€arm starâ€tetrablock quarterpolymers via sequential metalâ€free ringâ€opening polymerization using a "catalyst switch―strategy. Journal of Polymer Science Part A, 2015, 53, 304-312.	2.5	31
60	Synthesis and self-assembly of Chitosan- g -Polystyrene copolymer: A new route for the preparation of heavy metal nanoparticles. Journal of Colloid and Interface Science, 2015, 438, 110-115.	5.0	11
61	Sequential polymerization of ethylene oxide, ε-caprolactone and <scp>l</scp> -lactide: a one-pot metal-free route to tri- and pentablock terpolymers. Polymer Chemistry, 2014, 5, 3750-3753.	1.9	72
62	Well-defined polyethylene molecular brushes by polyhomologation and ring opening metathesis polymerization. Polymer Chemistry, 2014, 5, 6431-6434.	1.9	34
63	Polymethyleneâ€Based Copolymers by Polyhomologation or by Its Combination with Controlled/Living and Living Polymerizations. Macromolecular Rapid Communications, 2014, 35, 378-390.	2.0	23
64	Phosphazene-Promoted Metal-Free Ring-Opening Polymerization of Ethylene Oxide Initiated by Carboxylic Acid. Macromolecules, 2014, 47, 1693-1698.	2.2	71
65	A "Catalyst Switch―Strategy for the Sequential Metal-Free Polymerization of Epoxides and Cyclic Esters/Carbonate. Macromolecules, 2014, 47, 3814-3822.	2.2	81
66	Phosphazene-promoted anionic polymerization. Polimery, 2014, 59, 49-59.	0.4	43
67	Anionic polymerization and polyhomologation: an ideal combination to synthesize polyethylene-based block copolymers. Chemical Communications, 2013, 49, 8952.	2.2	31
68	N-Heterocyclic carbenes (NHCs) as organocatalysts and structural components in metal-free polymer synthesis. Chemical Society Reviews, 2013, 42, 2142.	18.7	473
69	Synthesis of complex polymeric architectures using multilithiated carbanionic initiators—Comparison with other approaches. Progress in Polymer Science, 2013, 38, 30-62.	11.8	14
70	Imidazol(in)ium Hydrogen Carbonates as a Genuine Source of <i>N</i> -Heterocyclic Carbenes (NHCs): Applications to the Facile Preparation of NHC Metal Complexes and to NHC-Organocatalyzed Molecular and Macromolecular Syntheses. Journal of the American Chemical Society, 2012, 134, 6776-6784.	6.6	164
71	N-Heterocyclic carbene-catalysed synthesis of polyurethanes. Polymer Chemistry, 2012, 3, 605.	1.9	47
72	Poly(<i>N</i> -heterocyclic-carbene)s and their CO ₂ Adducts as Recyclable Polymer-Supported Organocatalysts for Benzoin Condensation and Transesterification Reactions. Macromolecules, 2011, 44, 1900-1908.	2.2	135

#	Article	IF	CITATIONS
73	No matter the order of monomer addition for the synthesis of well-defined block copolymers by sequential group transfer polymerization using N-heterocyclic carbenes as catalysts. Polymer Chemistry, 2011, 2, 1706.	1.9	61
74	Macromolecular Engineering of Polypeptides Using the Ring-Opening Polymerization of α-Amino Acid N-Carboxyanhydrides. , 2011, , 519-540.		6
75	Sequential functionalization of janusâ€type dendrimerâ€like poly(ethylene oxide)s with camptothecin and folic acid. Journal of Polymer Science Part A, 2011, 49, 2839-2849.	2.5	23
76	Dendritic Carrier Based on PEC: Design and Degradation of Acidâ€sensitive Dendrimerâ€like Poly(ethylene) Tj ETC	2q0 0 0 rg8 2.0	3T /Overlock

77	<i>N</i> -Heterocyclic Carbene-Organocatalyzed Ring-Opening Polymerization of Ethylene Oxide in the Presence of Alcohols or Trimethylsilyl Nucleophiles as Chain Moderators for the Synthesis of α,ï‰-Heterodifunctionalized Poly(ethylene oxide)s. Macromolecules, 2010, 43, 2814-2823.	2.2	79
78	Expanding the Scope of Group Transfer Polymerization Using <i>N</i> -Heterocyclic Carbenes as Catalysts: Application to Miscellaneous (Meth)acrylic Monomers and Kinetic Investigations. Macromolecules, 2010, 43, 8853-8861.	2.2	64
79	Metal-free and solvent-free access to α,ï‰-heterodifunctionalized poly(propylene oxide)s by N-heterocyclic carbene-induced ring opening polymerization. Chemical Communications, 2010, 46, 3203.	2.2	97
80	Morphological Changes Induced by Addition of Polystyrene to Dextranâ€Polystyrene Block Copolymer Solutions. Macromolecular Symposia, 2009, 281, 113-118.	0.4	3
81	Radical Polymerization of Vinyl Acetate with Bis(tetramethylheptadionato)cobalt(II): Coexistence of Three Different Mechanisms. Chemistry - A European Journal, 2009, 15, 4874-4885.	1.7	55
82	In situ mid-IR and UV–visible spectroscopies applied to the determination of kinetic parameters in the anionic copolymerization of styrene and isoprene. Polymer, 2009, 50, 1351-1357.	1.8	43
83	N-Heterocyclic Carbene-Induced Zwitterionic Ring-Opening Polymerization of Ethylene Oxide and Direct Synthesis of α,ω-Difunctionalized Poly(ethylene oxide)s and Poly(ethylene) Tj ETQq1 1 0.784314 rgBT 131. 3201-3209.	Overlock 1	10 Tf 50 342
84	Fast Access to Dendrimer-like Poly(ethylene oxide)s through Anionic Ring-Opening Polymerization of Ethylene Oxide and Use of Nonprotected Glycidol as Branching Agent. Macromolecules, 2009, 42, 7292-7298.	2.2	34
85	Group Transfer Polymerization of (Meth)acrylic Monomers Catalyzed by <i>N</i> -Heterocyclic Carbenes and Synthesis of All Acrylic Block Copolymers: Evidence for an Associative Mechanism. Macromolecules, 2009, 42, 5996-6005.	2.2	108
86	Polymeric Vesicles and Micelles Obtained by Self-Assembly of Ionic Liquid-Based Block Copolymers Triggered by Anion or Solvent Exchange. Macromolecules, 2009, 42, 5167-5174.	2.2	94
87	Micelles and Polymersomes Obtained by Self-Assembly of Dextran and Polystyrene Based Block Copolymers. Biomacromolecules, 2009, 10, 32-40.	2.6	89
88	Step-Growth Polymerization of Terephthaldehyde Catalyzed by N-Heterocyclic Carbenes. Macromolecules, 2009, 42, 4932-4936.	2.2	44
89	Harnessing the Potential of Nâ€Heterocyclic Carbenes for the Rejuvenation of Groupâ€Transfer Polymerization of (Meth)Acrylics. Angewandte Chemie - International Edition, 2008, 47, 5390-5393.	7.2	128
90	Combination of an Anionic Terminator Multifunctional Initiator and Divergent Carbanionic Polymerization:  Application to the Synthesis of Dendrimer-Like Polymers and of Asymmetric and Miktoarm Stars. Journal of the American Chemical Society, 2008, 130, 1350-1361.	6.6	51

YVES GNANOU

#	Article	IF	CITATIONS
91	Janus-Type Dendrimer-like Poly(ethylene oxide)s. Journal of the American Chemical Society, 2008, 130, 11662-11676.	6.6	80
92	Synthesis by RAFT and Ionic Responsiveness of Double Hydrophilic Block Copolymers Based on Ionic Liquid Monomer Units. Macromolecules, 2008, 41, 6299-6308.	2.2	185
93	Bicompartmentalized Polymer Particles by Tandem ROMP and ATRP in Miniemulsion. Macromolecules, 2008, 41, 3015-3022.	2.2	31
94	Polystyrene-b-Poly(tert-butyl acrylate) and Polystyrene-b-Poly(acrylic acid) Dendrimer-Like Copolymers:Â Two-Dimensional Self-Assembly at the Airâ^'Water Interface. Langmuir, 2007, 23, 2531-2538.	1.6	39
95	Dendrimer-like polymers: a new class of structurally precise dendrimers with macromolecular generations. New Journal of Chemistry, 2007, 31, 1097.	1.4	69
96	Bouquet-type Dendrimerlike Poly(ethylene Oxide)s with a Focal Aldehyde and Peripheral Hydroxyls. Biomacromolecules, 2007, 8, 2374-2378.	2.6	22
97	Synthesis and Characterization of Diaminodithio- and Aminotrithiophosphoric Acid Esters. Phosphorus, Sulfur and Silicon and the Related Elements, 2007, 182, 1233-1244.	0.8	14
98	Two-Dimensional Polymeric Nanomaterials through Cross-linking of Polybutadiene-b-Poly(ethylene) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 5
99	Cross-linking of polybutadiene at the air/water interface: Toward an easy access to two-dimensional polymeric materials. Journal of Colloid and Interface Science, 2007, 311, 315-321.	5.0	12
100	Hybrid Polymer Particles by Tandem Ring-Opening Metathesis and Atom Transfer Radical Polymerizations in Aqueous Miniemulsion. Macromolecules, 2006, 39, 5589-5591.	2.2	29
101	Nanosized Amorphous Calcium Carbonate Stabilized by Poly(ethylene oxide)-b-poly(acrylic acid) Block Copolymers. Langmuir, 2006, 22, 1875-1879.	1.6	81
102	pH Responsiveness of Dendrimer-like Poly(ethylene oxide)s. Journal of the American Chemical Society, 2006, 128, 11551-11562.	6.6	100
103	Design of PEO-based ruthenium carbene for aqueous metathesis polymerization. Synthesis by the "macromonomer method―and application in the miniemulsion metathesis polymerization of norbornene. Journal of Polymer Science Part A, 2006, 44, 2784-2793.	2.5	43
104	Design and use of macromonomers as steric stabilizers for the synthesis of novel functional particles in dispersed media. Polymer International, 2006, 55, 1146-1154.	1.6	10
105	Controlled polymerizations as tools for the design of star-like and dendrimer-like polymers. Polymer	16	59

105	International, 2006, 55, 1138-1145.	1.6	58
106	High Performance Poly(styrene-b-diene-b-styrene) Triblock Copolymers from a Hydrocarbon-Soluble and Additive-Free Dicarbanionic Initiator. Journal of the American Chemical Society, 2006, 128, 8158-8159.	6.6	20
107	Synthesis of latex particles by ring-opening metathesis polymerization. Polymer, 2005, 46, 1067-1075.	1.8	29
	Propagation of a Dalusthulana Latow by Catalytic Hydrogenetics of a Dalubyta 1.4 diana Dagad		

108Preparation of a Polyethylene Latex by Catalytic Hydrogenation of a Polybuta-1,4-diene-Based
Dispersion. Macromolecular Rapid Communications, 2005, 26, 1711-1715.2.016

#	Article	IF	CITATIONS
109	Synthesis of acid-sensitive latices by ring-opening metathesis polymerization. Journal of Polymer Science Part A, 2005, 43, 217-229.	2.5	21
110	Cyanoxyl-mediated free-radical polymerization of acrylic acid: Its scope and limitations. Journal of Polymer Science Part A, 2005, 43, 519-533.	2.5	14
111	Controlled Radical Polymerization ofN-Vinylpyrrolidone by Reversible Addition-Fragmentation Chain Transfer Process. Macromolecular Symposia, 2005, 229, 8-17.	0.4	86
112	Dendrimer-like PEO Glycopolymers Exhibit Anti-Inflammatory Properties. Journal of the American Chemical Society, 2005, 127, 10132-10133.	6.6	127
113	Polymacromonomers:  Dynamics of Dilute and Nondilute Solutions. Macromolecules, 2005, 38, 2400-2409.	2.2	25
114	MALDI-TOF Analysis of Dendrimer-like Poly(ethylene oxide)s. Macromolecules, 2005, 38, 10609-10613.	2.2	22
115	Polystyrene-block-Poly(ethylene oxide) Stars as Surface Films at the Air/Water Interface. Langmuir, 2005, 21, 7380-7389.	1.6	40
116	Synthesis of Dendrimer-Like Polystyrene by Atom Transfer Radical Polymerization and Investigation of Their Viscosity Behavior. Macromolecules, 2005, 38, 3120-3128.	2.2	92
117	AFM Study of Micelle Chaining in Surface Films of Polystyrene-block-Poly(ethylene oxide) Stars at the Air/Water Interface. Langmuir, 2005, 21, 3424-3431.	1.6	46
118	Latex Particles by Miniemulsion Ring-Opening Metathesis Polymerization. Macromolecules, 2005, 38, 7977-7982.	2.2	45
119	Interfacial Behavior of Anionically Synthesized Amphiphilic Star Block Copolymers Based on Polybutadiene and Poly(ethylene oxide) at the Air/Water Interface. Macromolecules, 2005, 38, 7754-7767.	2.2	35
120	Toward an Easy Access to Dendrimer-like Poly(ethylene oxide)s. Journal of the American Chemical Society, 2005, 127, 10956-10966.	6.6	127
121	Structure of Polypeptide-Based Diblock Copolymers in Solution:Â Stimuli-Responsive Vesicles and Micelles. Langmuir, 2005, 21, 4308-4315.	1.6	178
122	Synthesis and Investigation of Surface Properties of Dendrimer-like Copolymers Based on Polystyrene and Poly(tert-butylacrylate). Macromolecules, 2005, 38, 5459-5467.	2.2	57
123	Synthesis of Multifunctional Dithioesters Using Tetraphosphorus Decasulfide and Their Behavior as RAFT Agents. Macromolecules, 2004, 37, 5513-5519.	2.2	79
124	Effect of phenol and derivatives on atom transfer radical polymerization in the presence of air. Journal of Polymer Science Part A, 2004, 42, 351-359.	2.5	90
125	Synthesis of polybutadiene-based particles via dispersion ring-opening metathesis polymerization. Journal of Polymer Science Part A, 2004, 42, 1154-1163.	2.5	17
126	Comparative behavior of polybutadiene and polynorbornene-based latices prepared by dispersion ring-opening metathesis polymerization with a poly(ethylene oxide) macromonomer. Journal of Polymer Science Part A, 2004, 42, 2705-2716.	2.5	11

#	Article	IF	CITATIONS
127	Dependence of the kinetics of the anionic polymerization of methyl methacrylate on the concentration in active centers. Journal of Polymer Science Part A, 2004, 42, 4964-4975.	2.5	1
128	1,4-Polybutadiene-Based Particles Prepared by Aqueous Suspension Ring-Opening Metathesis Polymerization. Macromolecules, 2004, 37, 7619-7627.	2.2	27
129	Synthesis of hybrid dendrimer-star polymers by the RAFT process. Chemical Communications, 2004, , 2110-2111.	2.2	69
130	Synthesis of PS Star Polymers from Tetracarbanionic Initiators. Macromolecular Symposia, 2004, 215, 41-50.	0.4	8
131	Synthesis of Water-Soluble Star-Block and Dendrimer-like Copolymers Based on Poly(ethylene oxide) and Poly(acrylic acid). Macromolecules, 2003, 36, 3874-3881.	2.2	144
132	SAXS from Four-Arm Polyelectrolyte Stars in Semi-Dilute Solutions. Macromolecular Chemistry and Physics, 2003, 204, 89-97.	1.1	20
133	Reaction of Cyclic Tetrathiophosphates with Carboxylic Acids as a Means to Generate Dithioesters and Control Radical Polymerization By RAFT. Angewandte Chemie - International Edition, 2003, 42, 2869-2872.	7.2	53
134	Polymerization of ethylene oxide with a calixarene-based precursor: Synthesis of eight-arm poly(ethylene oxide) stars by the core-first methodology. Journal of Polymer Science Part A, 2003, 41, 1669-1676.	2.5	60
135	Synthesis of functionalized multiarm poly(ethylene oxide) stars. Polymer, 2003, 44, 5067-5074.	1.8	38
136	Association of Adhesive Spheres Formed by Hydrophobically End-Capped PEO. 2. Influence of the Alkyl End-Group Length and the Chain Backbone Architecture. Macromolecules, 2003, 36, 1341-1348.	2.2	43
137	Synthesis and Surface Properties of Amphiphilic Star-Shaped and Dendrimer-like Copolymers Based on Polystyrene Core and Poly(ethylene oxide) Corona. Macromolecules, 2003, 36, 8253-8259.	2.2	146
138	Controlled radical polymerization in the presence of b-phosphonylated nitroxide - kinetics, mechanism and macromolecular architectures. Polimery, 2003, 48, 499-504.	0.4	2
139	Dispersion Polymerization of Styrene in Ethanolâ^'Water Mixture Using Polystyrene-b-poly(ethylene) Tj ETQq1 1 (0.784314 2.2	rgBT /Over <mark>l</mark> o
140	Aggregation and Surface Morphology of a Poly(ethylene oxide)-block-polystyrene Three-Arm Star Polymer at the Air/Water Interface Studied by AFM. Macromolecules, 2002, 35, 6483-6485.	2.2	44
141	Synthesis of Stars and Starlike Block Copolymers from a Trialkoxyamine Used as Initiator. Macromolecules, 2002, 35, 2481-2486.	2.2	42
142	Toward an Easy Access to Asymmetric Stars and Miktoarm Stars by Atom Transfer Radical Polymerization. Macromolecules, 2002, 35, 9001-9008.	2.2	108
143	Synthesis and Characterization of Poly(styrene-b-n-butyl acrylate-b-styrene) Triblock Copolymers Using a Dialkoxyamine as Initiator. Macromolecules, 2002, 35, 3844-3848.	2.2	51
144	Dispersion Ring-Opening Metathesis Polymerization of Norbornene Using PEO-Based Stabilizers. Macromolecules, 2002, 35, 9262-9269.	2.2	43

#	Article	IF	CITATIONS
145	Water-Soluble Stimuli-Responsive Vesicles from Peptide-Based Diblock Copolymers. Angewandte Chemie - International Edition, 2002, 41, 1339-1343.	7.2	377
146	Complexes based on alkylboranes and ,-unsaturated carbonyl compounds as bicomponent transfer agents for free-radical polymerisation. Macromolecular Chemistry and Physics, 2002, 203, 1819-1823.	1.1	4
147	Kinetic investigation of the anionic polymerization of MMA using sparteine as lf -ligand. Polymer, 2002, 43, 7195-7205.	1.8	3
148	Stars and dendrimer-like architectures by the divergent method using controlled radical polymerization. Macromolecular Symposia, 2001, 174, 333-341.	0.4	45
149	Novel Gemini-Type Reactive Dispersants Based on PS/PEO Block Copolymers: Synthesis and Application. Macromolecules, 2001, 34, 4451-4458.	2.2	36
150	Triblock copolymers based on styrene andn-butyl acrylate by nitroxide-mediated radical polymerization: problems and solutions. Macromolecular Symposia, 2001, 165, 43-54.	0.4	16
151	Linear, hyperbranched, and dendrimer-like polymers containing phosphorus: synthesis and properties. Macromolecular Symposia, 2001, 174, 301-306.	0.4	5
152	Monodispersed polystyrene latex particles functionalized by the macromonomer technique. II. Application in immunodiagnosis. Polymers for Advanced Technologies, 2001, 12, 494-499.	1.6	20
153	Synthesis and Characterization of Linear, Hyperbranched, and Dendrimer-Like Polymers Constituted of the Same Repeating Unit. Chemistry - A European Journal, 2001, 7, 3095-3105.	1.7	84
154	Free-Radical Polymerization of Styrene in CO2 /Ethanol Mixed Supercritical Fluid. Macromolecular Chemistry and Physics, 2001, 202, 2857-2863.	1.1	9
155	New insights into the mechanism of 1,2-bis(trimethyl-silyloxy)-tetraphenylethane-induced free radical polymerization: application to the synthesis of block and graft copolymers. Macromolecular Chemistry and Physics, 2000, 201, 74-83.	1.1	13
156	Triethylborane and methyl vinyl ketone as a bicom-ponent transfer agent for the polymerisation of styrene. Macromolecular Rapid Communications, 2000, 21, 901-904.	2.0	7
157	Amphiphilic block copolymers using miscellaneous ï‰-functional poly(ethylene oxide)'s as transfer agent. Macromolecular Chemistry and Physics, 2000, 201, 1833-1839.	1.1	15
158	Dependence of transfer reaction on solvent in the free radical polymerization of styrene: application to the synthesis of PS/PEO copolymers using PEO-based transfer agents. Macromolecular Chemistry and Physics, 2000, 201, 2805-2810.	1.1	5
159	New insight into the mechanism of the reaction between α,β-unsaturated carbonyl compounds and triethylborane (Brown's reaction). Tetrahedron Letters, 2000, 41, 1195-1198.	0.7	34
160	Amphiphilic Stars and Dendrimer-Like Architectures Based on Poly(Ethylene Oxide) and Polystyrene. Macromolecules, 2000, 33, 5418-5426.	2.2	223
161	Scope of the Copper Halide/Bipyridyl System Associated with Calixarene-Based Multihalides for the Synthesis of Well-Defined Polystyrene and Poly(meth)acrylate Stars. Macromolecules, 2000, 33, 7261-7274.	2.2	103
162	Acyclic β-Phosphonylated Nitroxides: A New Series of Counter-Radicals for "Livingâ€∤Controlled Free Radical Polymerization. Macromolecules, 2000, 33, 1141-1147.	2.2	202

#	Article	IF	CITATIONS
163	Kinetics and Mechanism of Controlled Free-Radical Polymerization of Styrene andn-Butyl Acrylate in the Presence of an Acyclic β-Phosphonylated Nitroxideâ€. Journal of the American Chemical Society, 2000, 122, 5929-5939.	6.6	397
164	Star Block Copolymers and Hexafullerene Stars via Derivatization of Star-Shaped Polystyrenes. Macromolecules, 1999, 32, 1043-1054.	2.2	44
165	STRATEGIES FOR THE SYNTHESIS OF LINEAR, HYPERBRANCHED POLYMERS AND DENDRIMERS INCORPORATING P=N BONDS Phosphorus Research Bulletin, 1999, 10, 748-751.	0.1	0
166	Atom Transfer Radical Polymerization of Styrene Using a Novel Octafunctional Initiator: Synthesis of Well-Defined Polystyrene Stars. Macromolecules, 1998, 31, 7218-7225.	2.2	310
167	Novel amphiphilic branched copolymers based on polystyrene and poly(ethylene oxide). Macromolecular Chemistry and Physics, 1998, 199, 2501-2510.	1.1	50
168	Newly Designed Star-Shaped Polystyrene:Â Synthesis and Characterization. Macromolecules, 1998, 31, 6748-6755.	2.2	42
169	Synthesis and Characterization of C60End-Capped Poly(ethylene oxide) Stars. Macromolecules, 1998, 31, 6030-6033.	2.2	29
170	Monodisperse Polystyrene Latex Particles Functionalized by the Macromonomer Technique. Macromolecules, 1998, 31, 2087-2097.	2.2	55
171	New Ïfâ€Î¼ ligands for the anionic polymerization of methacrylates in apolar medium. Macromolecular Symposia, 1998, 132, 249-262.	0.4	9
172	Novel styrene-butadiene block copolymers by sequential and statistical copolymerization of corresponding macromonomers. Macromolecular Symposia, 1998, 128, 21-37.	0.4	6
173	Synthesis of α- and ω-norbornenyl-polybutadiene macromonomers and their ring-opening metathesis polymerization. Macromolecular Chemistry and Physics, 1998, 199, 1405-1412.	1.1	17
174	Fractionation of Poly(ethylene oxide) Star Samples by Supercritical Fluids. Polymer Journal, 1997, 29, 910-913.	1.3	12
175	Novel Amphiphilic Architectures by Ring-Opening Metathesis Polymerization of Macromonomers. Macromolecules, 1997, 30, 4791-4798.	2.2	180
176	Synthesis of α-Norbornenylpoly(ethylene oxide) Macromonomers and Their Ring-Opening Metathesis Polymerization. Macromolecules, 1996, 29, 4459-4464.	2.2	139
177	Synthesis of α-norbornenyl polystyrene macromonomers and their ring-opening metathesis polymerization. Macromolecular Rapid Communications, 1996, 17, 137-142.	2.0	48
178	From starâ€ s haped to dendritic poly(ethylene oxide)s: Toward increasingly branched architectures by anionic polymerization. Macromolecular Symposia, 1995, 95, 137-150.	0.4	68
179	Reactivity of †living' t-butyl acrylic anions towards aldehydes: application to the synthesis of hydroxyl-terminated polyacrylates and their related copolymers. Polymer, 1994, 35, 4011-4014.	1.8	3
180	Anionic polymerization of lactams in the presence of metal dialkoxyaluminum hydrides: presentation of a new mechanism. Macromolecules, 1992, 25, 2004-2016.	2.2	32

YVES GNANOU

#	Article	IF	CITATIONS
181	Rheological characterization of the gel point: a new interpretation. Macromolecules, 1991, 24, 1321-1326.	2.2	131
182	Synthesis and characterization of block copolymers containing poly(tert.butyl acrylate) blocks. Polymer, 1991, 32, 2278-2282.	1.8	27
183	Synthesis of poly(t-butyl acrylate) macromonomers. Polymer, 1990, 31, 967-970.	1.8	24
184	Synthesis and characterization of high molecular weight poly(tert.butyl acrylate). Polymer Bulletin, 1990, 24, 39-43.	1.7	18
185	Elastic behavior of hydrophilic polyurethane networks prepared from poly(dioxolane). Macromolecules, 1990, 23, 4299-4304.	2.2	9
186	Synthesis of star-shaped poly(ethylene oxide). Die Makromolekulare Chemie, 1988, 189, 2885-2892.	1.1	83
187	Molecular structure and elastic behavior of poly(ethylene oxide) networks swollen to equilibrium. Macromolecules, 1987, 20, 1662-1671.	2.2	67
188	Hydrophilic polyurethane networks based on poly(ethylene oxide): synthesis, characterization, and properties. Potential applications as biomaterials. Macromolecules, 1984, 17, 945-952.	2.2	74