Yves Gnanou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/600017/publications.pdf

Version: 2024-02-01

188 papers 10,426 citations

54 h-index 93 g-index

191 all docs

191 docs citations

191 times ranked

6587 citing authors

#	Article	IF	CITATIONS
1	N-Heterocyclic carbenes (NHCs) as organocatalysts and structural components in metal-free polymer synthesis. Chemical Society Reviews, 2013, 42, 2142.	38.1	473
2	Kinetics and Mechanism of Controlled Free-Radical Polymerization of Styrene and n-Butyl Acrylate in the Presence of an Acyclic \hat{l}^2 -Phosphonylated Nitroxide \hat{a} \in . Journal of the American Chemical Society, 2000, 122, 5929-5939.	13.7	397
3	Water-Soluble Stimuli-Responsive Vesicles from Peptide-Based Diblock Copolymers. Angewandte Chemie - International Edition, 2002, 41, 1339-1343.	13.8	377
4	<i>>50th Anniversary Perspective</i> : Polymers with Complex Architectures. Macromolecules, 2017, 50, 1253-1290.	4.8	311
5	Atom Transfer Radical Polymerization of Styrene Using a Novel Octafunctional Initiator: Synthesis of Well-Defined Polystyrene Stars. Macromolecules, 1998, 31, 7218-7225.	4.8	310
6	Metal-Free Alternating Copolymerization of CO ₂ with Epoxides: Fulfilling "Green― Synthesis and Activity. Journal of the American Chemical Society, 2016, 138, 11117-11120.	13.7	246
7	Amphiphilic Stars and Dendrimer-Like Architectures Based on Poly(Ethylene Oxide) and Polystyrene. Macromolecules, 2000, 33, 5418-5426.	4.8	223
8	Acyclic β-Phosphonylated Nitroxides: A New Series of Counter-Radicals for "Livingâ€∤Controlled Free Radical Polymerization. Macromolecules, 2000, 33, 1141-1147.	4.8	202
9	Synthesis by RAFT and Ionic Responsiveness of Double Hydrophilic Block Copolymers Based on Ionic Liquid Monomer Units. Macromolecules, 2008, 41, 6299-6308.	4.8	185
10	Novel Amphiphilic Architectures by Ring-Opening Metathesis Polymerization of Macromonomers. Macromolecules, 1997, 30, 4791-4798.	4.8	180
11	Structure of Polypeptide-Based Diblock Copolymers in Solution:Â Stimuli-Responsive Vesicles and Micelles. Langmuir, 2005, 21, 4308-4315.	3.5	178
12	N-Heterocyclic Carbene-Induced Zwitterionic Ring-Opening Polymerization of Ethylene Oxide and Direct Synthesis of α,ω-Difunctionalized Poly(ethylene oxide)s and Poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 131, 3201-3209.	10 Tf 50 3	302 Td (oxide)
13	Imidazol(in)ium Hydrogen Carbonates as a Genuine Source of <i>N</i> Heterocyclic Carbenes (NHCs): Applications to the Facile Preparation of NHC Metal Complexes and to NHC-Organocatalyzed Molecular and Macromolecular Syntheses. Journal of the American Chemical Society, 2012, 134, 6776-6784.	13.7	164
14	Synthesis and Surface Properties of Amphiphilic Star-Shaped and Dendrimer-like Copolymers Based on Polystyrene Core and Poly(ethylene oxide) Corona. Macromolecules, 2003, 36, 8253-8259.	4.8	146
15	Synthesis of Water-Soluble Star-Block and Dendrimer-like Copolymers Based on Poly(ethylene oxide) and Poly(acrylic acid). Macromolecules, 2003, 36, 3874-3881.	4.8	144
16	Synthesis of \hat{l} ±-Norbornenylpoly(ethylene oxide) Macromonomers and Their Ring-Opening Metathesis Polymerization. Macromolecules, 1996, 29, 4459-4464.	4.8	139
17	Poly(<i>N</i> -heterocyclic-carbene)s and their CO ₂ Adducts as Recyclable Polymer-Supported Organocatalysts for Benzoin Condensation and Transesterification Reactions. Macromolecules, 2011, 44, 1900-1908.	4.8	135
18	Rheological characterization of the gel point: a new interpretation. Macromolecules, 1991, 24, 1321-1326.	4.8	131

#	Article	IF	CITATIONS
19	Harnessing the Potential of Nâ∈Heterocyclic Carbenes for the Rejuvenation of Groupâ∈Transfer Polymerization of (Meth)Acrylics. Angewandte Chemie - International Edition, 2008, 47, 5390-5393.	13.8	128
20	Dendrimer-like PEO Glycopolymers Exhibit Anti-Inflammatory Properties. Journal of the American Chemical Society, 2005, 127, 10132-10133.	13.7	127
21	Toward an Easy Access to Dendrimer-like Poly(ethylene oxide)s. Journal of the American Chemical Society, 2005, 127, 10956-10966.	13.7	127
22	Toward an Easy Access to Asymmetric Stars and Miktoarm Stars by Atom Transfer Radical Polymerization. Macromolecules, 2002, 35, 9001-9008.	4.8	108
23	Group Transfer Polymerization of (Meth)acrylic Monomers Catalyzed by <i>N</i> Heterocyclic Carbenes and Synthesis of All Acrylic Block Copolymers: Evidence for an Associative Mechanism. Macromolecules, 2009, 42, 5996-6005.	4.8	108
24	Scope of the Copper Halide/Bipyridyl System Associated with Calixarene-Based Multihalides for the Synthesis of Well-Defined Polystyrene and Poly(meth)acrylate Stars. Macromolecules, 2000, 33, 7261-7274.	4.8	103
25	pH Responsiveness of Dendrimer-like Poly(ethylene oxide)s. Journal of the American Chemical Society, 2006, 128, 11551-11562.	13.7	100
26	Using UCST Ionic Liquid as a Draw Solute in Forward Osmosis to Treat High-Salinity Water. Environmental Science & Environmenta	10.0	99
27	Metal-free and solvent-free access to $\hat{l}\pm, \hat{l}\%$ -heterodifunctionalized poly(propylene oxide)s by N-heterocyclic carbene-induced ring opening polymerization. Chemical Communications, 2010, 46, 3203.	4.1	97
28	Polymeric Vesicles and Micelles Obtained by Self-Assembly of Ionic Liquid-Based Block Copolymers Triggered by Anion or Solvent Exchange. Macromolecules, 2009, 42, 5167-5174.	4.8	94
29	Synthesis of Dendrimer-Like Polystyrene by Atom Transfer Radical Polymerization and Investigation of Their Viscosity Behavior. Macromolecules, 2005, 38, 3120-3128.	4.8	92
30	Effect of phenol and derivatives on atom transfer radical polymerization in the presence of air. Journal of Polymer Science Part A, 2004, 42, 351-359.	2.3	90
31	Micelles and Polymersomes Obtained by Self-Assembly of Dextran and Polystyrene Based Block Copolymers. Biomacromolecules, 2009, 10, 32-40.	5.4	89
32	Controlled Radical Polymerization of N-Vinylpyrrolidone by Reversible Addition-Fragmentation Chain Transfer Process. Macromolecular Symposia, 2005, 229, 8-17.	0.7	86
33	Synthesis and Characterization of Linear, Hyperbranched, and Dendrimer-Like Polymers Constituted of the Same Repeating Unit. Chemistry - A European Journal, 2001, 7, 3095-3105.	3.3	84
34	Synthesis of star-shaped poly(ethylene oxide). Die Makromolekulare Chemie, 1988, 189, 2885-2892.	1.1	83
35	Nanosized Amorphous Calcium Carbonate Stabilized by Poly(ethylene oxide)-b-poly(acrylic acid) Block Copolymers. Langmuir, 2006, 22, 1875-1879.	3.5	81
36	A "Catalyst Switch―Strategy for the Sequential Metal-Free Polymerization of Epoxides and Cyclic Esters/Carbonate. Macromolecules, 2014, 47, 3814-3822.	4.8	81

3

#	Article	IF	Citations
37	Janus-Type Dendrimer-like Poly(ethylene oxide)s. Journal of the American Chemical Society, 2008, 130, 11662-11676.	13.7	80
38	Synthesis of Multifunctional Dithioesters Using Tetraphosphorus Decasulfide and Their Behavior as RAFT Agents. Macromolecules, 2004, 37, 5513-5519.	4.8	79
39	<i>N</i> -Heterocyclic Carbene-Organocatalyzed Ring-Opening Polymerization of Ethylene Oxide in the Presence of Alcohols or Trimethylsilyl Nucleophiles as Chain Moderators for the Synthesis of α,ï‰-Heterodifunctionalized Poly(ethylene oxide)s. Macromolecules, 2010, 43, 2814-2823.	4.8	79
40	Hydrophilic polyurethane networks based on poly(ethylene oxide): synthesis, characterization, and properties. Potential applications as biomaterials. Macromolecules, 1984, 17, 945-952.	4.8	74
41	Sequential polymerization of ethylene oxide, $\hat{l}\mu$ -caprolactone and $<$ scp $>$ l $<$ lscp $>$ -lactide: a one-pot metal-free route to tri- and pentablock terpolymers. Polymer Chemistry, 2014, 5, 3750-3753.	3.9	72
42	Phosphazene-Promoted Metal-Free Ring-Opening Polymerization of Ethylene Oxide Initiated by Carboxylic Acid. Macromolecules, 2014, 47, 1693-1698.	4.8	71
43	Synthesis of hybrid dendrimer-star polymers by the RAFT process. Chemical Communications, 2004, , 2110-2111.	4.1	69
44	Dendrimer-like polymers: a new class of structurally precise dendrimers with macromolecular generations. New Journal of Chemistry, 2007, 31, 1097.	2.8	69
45	From starâ€shaped to dendritic poly(ethylene oxide)s: Toward increasingly branched architectures by anionic polymerization. Macromolecular Symposia, 1995, 95, 137-150.	0.7	68
46	Molecular structure and elastic behavior of poly(ethylene oxide) networks swollen to equilibrium. Macromolecules, 1987, 20, 1662-1671.	4.8	67
47	Carboxylate Salts as Ideal Initiators for the Metal-Free Copolymerization of CO ₂ with Epoxides: Synthesis of Well-Defined Polycarbonates Diols and Polyols. Macromolecules, 2019, 52, 2431-2438.	4.8	65
48	Expanding the Scope of Group Transfer Polymerization Using $\langle i \rangle N \langle i \rangle$ -Heterocyclic Carbenes as Catalysts: Application to Miscellaneous (Meth)acrylic Monomers and Kinetic Investigations. Macromolecules, 2010, 43, 8853-8861.	4.8	64
49	No matter the order of monomer addition for the synthesis of well-defined block copolymers by sequential group transfer polymerization using N-heterocyclic carbenes as catalysts. Polymer Chemistry, 2011, 2, 1706.	3.9	61
50	Theoretical Mechanistic Investigation into Metal-Free Alternating Copolymerization of CO ₂ and Epoxides: The Key Role of Triethylborane. Macromolecules, 2018, 51, 5600-5607.	4.8	61
51	Polymerization of ethylene oxide with a calixarene-based precursor: Synthesis of eight-arm poly(ethylene oxide) stars by the core-first methodology. Journal of Polymer Science Part A, 2003, 41, 1669-1676.	2.3	60
52	Controlled polymerizations as tools for the design of star-like and dendrimer-like polymers. Polymer International, 2006, 55, 1138-1145.	3.1	58
53	Organocatalysis by hydrogen-bonding: a new approach to controlled/living polymerization of \hat{l}_{\pm} -amino acid N-carboxyanhydrides. Polymer Chemistry, 2015, 6, 6193-6201.	3.9	58
54	Direct access to poly(glycidyl azide) and its copolymers through anionic (co-)polymerization of glycidyl azide. Nature Communications, 2019, 10, 293.	12.8	58

#	Article	IF	CITATIONS
55	Synthesis and Investigation of Surface Properties of Dendrimer-like Copolymers Based on Polystyrene and Poly(tert-butylacrylate). Macromolecules, 2005, 38, 5459-5467.	4.8	57
56	Monodisperse Polystyrene Latex Particles Functionalized by the Macromonomer Technique. Macromolecules, 1998, 31, 2087-2097.	4.8	55
57	Radical Polymerization of Vinyl Acetate with Bis(tetramethylheptadionato)cobalt(II): Coexistence of Three Different Mechanisms. Chemistry - A European Journal, 2009, 15, 4874-4885.	3.3	55
58	From competition to cooperation: a highly efficient strategy towards well-defined (co)polypeptides. Chemical Communications, 2015, 51, 3663-3666.	4.1	55
59	All-Polycarbonate Thermoplastic Elastomers Based on Triblock Copolymers Derived from Triethylborane-Mediated Sequential Copolymerization of CO ₂ with Various Epoxides. Macromolecules, 2020, 53, 5297-5307.	4.8	55
60	Reaction of Cyclic Tetrathiophosphates with Carboxylic Acids as a Means to Generate Dithioesters and Control Radical Polymerization By RAFT. Angewandte Chemie - International Edition, 2003, 42, 2869-2872.	13.8	53
61	Synthesis and Characterization of Poly(styrene-b-n-butyl acrylate-b-styrene) Triblock Copolymers Using a Dialkoxyamine as Initiator. Macromolecules, 2002, 35, 3844-3848.	4.8	51
62	Combination of an Anionic Terminator Multifunctional Initiator and Divergent Carbanionic Polymerization:  Application to the Synthesis of Dendrimer-Like Polymers and of Asymmetric and Miktoarm Stars. Journal of the American Chemical Society, 2008, 130, 1350-1361.	13.7	51
63	Fast and Living Ring-Opening Polymerization of α-Amino Acid <i>N</i> -Carboxyanhydrides Triggered by an "Alliance―of Primary and Secondary Amines at Room Temperature. Biomacromolecules, 2015, 16, 1352-1357.	5.4	51
64	Novel amphiphilic branched copolymers based on polystyrene and poly(ethylene oxide). Macromolecular Chemistry and Physics, 1998, 199, 2501-2510.	2.2	50
65	Core Cross-Linked Multiarm Star Polymers with Aggregation-Induced Emission and Temperature Responsive Fluorescence Characteristics. Macromolecules, 2017, 50, 4217-4226.	4.8	50
66	Synthesis of \hat{l}_{\pm} -norbornenyl polystyrene macromonomers and their ring-opening metathesis polymerization. Macromolecular Rapid Communications, 1996, 17, 137-142.	3.9	48
67	Polyurethanes from Direct Organocatalytic Copolymerization of <i>p</i> àê√osyl Isocyanate with Epoxides. Angewandte Chemie - International Edition, 2021, 60, 1593-1598.	13.8	48
68	Triethylborane-Assisted Synthesis of Random and Block Poly(ester-carbonate)s through One-Pot Terpolymerization of Epoxides, CO ₂ , and Cyclic Anhydrides. Macromolecules, 2021, 54, 2711-2719.	4.8	48
69	N-Heterocyclic carbene-catalysed synthesis of polyurethanes. Polymer Chemistry, 2012, 3, 605.	3.9	47
70	Ring-opening polymerization of I‰-pentadecalactone catalyzed by phosphazene superbases. Polymer Chemistry, 2017, 8, 511-515.	3.9	47
71	AFM Study of Micelle Chaining in Surface Films of Polystyrene-block-Poly(ethylene oxide) Stars at the Air/Water Interface. Langmuir, 2005, 21, 3424-3431.	3.5	46
72	Stars and dendrimer-like architectures by the divergent method using controlled radical polymerization. Macromolecular Symposia, 2001, 174, 333-341.	0.7	45

#	Article	IF	CITATIONS
73	Latex Particles by Miniemulsion Ring-Opening Metathesis Polymerization. Macromolecules, 2005, 38, 7977-7982.	4.8	45
74	Star Block Copolymers and Hexafullerene Stars via Derivatization of Star-Shaped Polystyrenes. Macromolecules, 1999, 32, 1043-1054.	4.8	44
75	Aggregation and Surface Morphology of a Poly(ethylene oxide)-block-polystyrene Three-Arm Star Polymer at the Air/Water Interface Studied by AFM. Macromolecules, 2002, 35, 6483-6485.	4.8	44
76	Step-Growth Polymerization of Terephthaldehyde Catalyzed by N-Heterocyclic Carbenes. Macromolecules, 2009, 42, 4932-4936.	4.8	44
77	Versatility of Boron-Mediated Coupling Reaction of Oxetanes and Epoxides with CO ₂ : Selective Synthesis of Cyclic Carbonates or Linear Polycarbonates. ACS Sustainable Chemistry and Engineering, 2020, 8, 13056-13063.	6.7	44
78	Dispersion Ring-Opening Metathesis Polymerization of Norbornene Using PEO-Based Stabilizers. Macromolecules, 2002, 35, 9262-9269.	4.8	43
79	Association of Adhesive Spheres Formed by Hydrophobically End-Capped PEO. 2. Influence of the Alkyl End-Group Length and the Chain Backbone Architecture. Macromolecules, 2003, 36, 1341-1348.	4.8	43
80	Design of PEO-based ruthenium carbene for aqueous metathesis polymerization. Synthesis by the "macromonomer method―and application in the miniemulsion metathesis polymerization of norbornene. Journal of Polymer Science Part A, 2006, 44, 2784-2793.	2.3	43
81	In situ mid-IR and UV–visible spectroscopies applied to the determination of kinetic parameters in the anionic copolymerization of styrene and isoprene. Polymer, 2009, 50, 1351-1357.	3.8	43
82	Phosphazene-promoted anionic polymerization. Polimery, 2014, 59, 49-59.	0.7	43
83	Newly Designed Star-Shaped Polystyrene:Â Synthesis and Characterization. Macromolecules, 1998, 31, 6748-6755.	4.8	42
84	Synthesis of Stars and Starlike Block Copolymers from a Trialkoxyamine Used as Initiator. Macromolecules, 2002, 35, 2481-2486.	4.8	42
85	Monomodal Ultrahigh-Molar-Mass Polycarbonate Homopolymers and Diblock Copolymers by Anionic Copolymerization of Epoxides with CO ₂ . ACS Macro Letters, 2019, 8, 1594-1598.	4.8	42
86	Polystyrene-block-Poly(ethylene oxide) Stars as Surface Films at the Air/Water Interface. Langmuir, 2005, 21, 7380-7389.	3.5	40
87	Poly(vinylidene fluoride)-based complex macromolecular architectures: From synthesis to properties and applications. Progress in Polymer Science, 2020, 104, 101231.	24.7	40
88	Polystyrene-b-Poly(tert-butyl acrylate) and Polystyrene-b-Poly(acrylic acid) Dendrimer-Like Copolymers:Â Two-Dimensional Self-Assembly at the Airâ^'Water Interface. Langmuir, 2007, 23, 2531-2538.	3.5	39
89	Synthesis of functionalized multiarm poly(ethylene oxide) stars. Polymer, 2003, 44, 5067-5074.	3.8	38
90	Poly(urethane–carbonate)s from Carbon Dioxide. Macromolecules, 2017, 50, 2320-2328.	4.8	38

#	Article	IF	CITATIONS
91	Well-Defined Polyethylene-Based Random, Block, and Bilayered Molecular Cobrushes. Macromolecules, 2015, 48, 3556-3562.	4.8	37
92	Novel Gemini-Type Reactive Dispersants Based on PS/PEO Block Copolymers: Synthesis and Application. Macromolecules, 2001, 34, 4451-4458.	4.8	36
93	Interfacial Behavior of Anionically Synthesized Amphiphilic Star Block Copolymers Based on Polybutadiene and Poly(ethylene oxide) at the Air/Water Interface. Macromolecules, 2005, 38, 7754-7767.	4.8	35
94	New insight into the mechanism of the reaction between $\hat{l}\pm,\hat{l}^2$ -unsaturated carbonyl compounds and triethylborane (Brownâ \in [™] s reaction). Tetrahedron Letters, 2000, 41, 1195-1198.	1.4	34
95	Fast Access to Dendrimer-like Poly(ethylene oxide)s through Anionic Ring-Opening Polymerization of Ethylene Oxide and Use of Nonprotected Glycidol as Branching Agent. Macromolecules, 2009, 42, 7292-7298.	4.8	34
96	Well-defined polyethylene molecular brushes by polyhomologation and ring opening metathesis polymerization. Polymer Chemistry, 2014, 5, 6431-6434.	3.9	34
97	Fast and Complete Neutralization of Thiocarbonylthio Compounds Using Trialkylborane and Oxygen: Application to Their Removal from RAFT-Synthesized Polymers. ACS Macro Letters, 2019, 8, 664-669.	4.8	33
98	Anionic polymerization of lactams in the presence of metal dialkoxyaluminum hydrides: presentation of a new mechanism. Macromolecules, 1992, 25, 2004-2016.	4.8	32
99	Bicompartmentalized Polymer Particles by Tandem ROMP and ATRP in Miniemulsion. Macromolecules, 2008, 41, 3015-3022.	4.8	31
100	Anionic polymerization and polyhomologation: an ideal combination to synthesize polyethylene-based block copolymers. Chemical Communications, 2013, 49, 8952.	4.1	31
101	Oneâ€pot synthesis of linear―and threeâ€arm starâ€ŧetrablock quarterpolymers via sequential metalâ€free ringâ€opening polymerization using a "catalyst switch―strategy. Journal of Polymer Science Part A, 2015, 53, 304-312.	2.3	31
102	Cs ₂ CO ₃ -promoted polycondensation of CO ₂ with diols and dihalides for the synthesis of miscellaneous polycarbonates. Polymer Chemistry, 2016, 7, 4944-4952.	3.9	31
103	Degradable poly(ethylene oxide) through metal-free copolymerization of ethylene oxide with <scp>l</scp> -lactide. Polymer Chemistry, 2019, 10, 3764-3771.	3.9	31
104	Block Copolymers of Macrolactones/Small Lactones by a "Catalyst-Switch―Organocatalytic Strategy. Thermal Properties and Phase Behavior. Macromolecules, 2018, 51, 2428-2436.	4.8	30
105	Recycling a Borate Complex for Synthesis of Polycarbonate Polyols: Towards an Environmentally Friendly and Costâ€Effective Process. ChemSusChem, 2020, 13, 5080-5087.	6.8	30
106	Synthesis and Characterization of C60End-Capped Poly(ethylene oxide) Stars. Macromolecules, 1998, 31, 6030-6033.	4.8	29
107	Synthesis of latex particles by ring-opening metathesis polymerization. Polymer, 2005, 46, 1067-1075.	3 . 8	29
108	Hybrid Polymer Particles by Tandem Ring-Opening Metathesis and Atom Transfer Radical Polymerizations in Aqueous Miniemulsion. Macromolecules, 2006, 39, 5589-5591.	4.8	29

#	Article	IF	Citations
109	Dispersion Polymerization of Styrene in Ethanolâ 'Water Mixture Using Polystyrene-b-poly(ethylene) Tj ETQq1 1 ().784314 ı 4.8	gBT Overloo
110	Two-Dimensional Polymeric Nanomaterials through Cross-linking of Polybutadiene-b-Poly(ethylene) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 50
111	Lithium-Assisted Copolymerization of CO ₂ /Cyclohexene Oxide: A Novel and Straightforward Route to Polycarbonates and Related Block Copolymers. Macromolecules, 2016, 49, 2484-2492.	4.8	28
112	Synthesis and characterization of block copolymers containing poly(tert.butyl acrylate) blocks. Polymer, 1991, 32, 2278-2282.	3.8	27
113	1,4-Polybutadiene-Based Particles Prepared by Aqueous Suspension Ring-Opening Metathesis Polymerization. Macromolecules, 2004, 37, 7619-7627.	4.8	27
114	Self-assembly of poly(ionic liquid) (PIL)-based amphiphilic homopolymers into vesicles and supramolecular structures with dyes and silver nanoparticles. Polymer Chemistry, 2017, 8, 3497-3503.	3.9	26
115	lonic H-bonding organocatalysts for the ring-opening polymerization of cyclic esters and cyclic carbonates. Progress in Polymer Science, 2022, 125, 101484.	24.7	26
116	Polymacromonomers:  Dynamics of Dilute and Nondilute Solutions. Macromolecules, 2005, 38, 2400-2409.	4.8	25
117	Hydrophobic, Hydrophilic, and Amphiphilic Polyglycocarbonates with Linear and Macrocyclic Architectures from Bicyclic Glycocarbonates Derived from CO ₂ and Glucoside. Macromolecules, 2017, 50, 1362-1370.	4.8	25
118	Synthesis of poly(t-butyl acrylate) macromonomers. Polymer, 1990, 31, 967-970.	3.8	24
119	Polyhomologation based on in situ generated boron-thexyl-silaboracyclic initiating sites: a novel strategy towards the synthesis of polyethylene-based complex architectures. Chemical Communications, 2015, 51, 9936-9938.	4.1	24
120	Surfactant-Emulating Amphiphilic Polycarbonates and Other Functional Polycarbonates through Metal-Free Copolymerization of CO ₂ with Ethylene Oxide. ACS Sustainable Chemistry and Engineering, 2021, 9, 10370-10380.	6.7	24
121	Sequential functionalization of janusâ€type dendrimerâ€like poly(ethylene oxide)s with camptothecin and folic acid. Journal of Polymer Science Part A, 2011, 49, 2839-2849.	2.3	23
122	Polymethyleneâ€Based Copolymers by Polyhomologation or by Its Combination with Controlled/Living and Living Polymerizations. Macromolecular Rapid Communications, 2014, 35, 378-390.	3.9	23
123	MALDI-TOF Analysis of Dendrimer-like Poly(ethylene oxide)s. Macromolecules, 2005, 38, 10609-10613.	4.8	22
124	Bouquet-type Dendrimerlike Poly(ethylene Oxide)s with a Focal Aldehyde and Peripheral Hydroxyls. Biomacromolecules, 2007, 8, 2374-2378.	5.4	22
125	Synthesis of acid-sensitive latices by ring-opening metathesis polymerization. Journal of Polymer Science Part A, 2005, 43, 217-229.	2.3	21
126	All-Polycarbonate Graft Copolymers with Tunable Morphologies by Metal-Free Copolymerization of CO ₂ with Epoxides. Macromolecules, 2021, 54, 6144-6152.	4.8	21

#	Article	IF	CITATIONS
127	Monodispersed polystyrene latex particles functionalized by the macromonomer technique. II. Application in immunodiagnosis. Polymers for Advanced Technologies, 2001, 12, 494-499.	3.2	20
128	SAXS from Four-Arm Polyelectrolyte Stars in Semi-Dilute Solutions. Macromolecular Chemistry and Physics, 2003, 204, 89-97.	2.2	20
129	High Performance Poly(styrene-b-diene-b-styrene) Triblock Copolymers from a Hydrocarbon-Soluble and Additive-Free Dicarbanionic Initiator. Journal of the American Chemical Society, 2006, 128, 8158-8159.	13.7	20
130	Dendritic Carrier Based on PEG: Design and Degradation of Acidâ€sensitive Dendrimerâ€like Poly(ethylene) Tj ET	-Qq <u>0</u> ,0 0 r	gBT /Overlock 20
131	Poly(vinylidene fluoride)/Polymethylene-Based Block Copolymers and Terpolymers. Macromolecules, 2019, 52, 1976-1984.	4.8	20
132	Synthesis and characterization of high molecular weight poly(tert.butyl acrylate). Polymer Bulletin, 1990, 24, 39-43.	3.3	18
133	Osmotic Heat Engine Using Thermally Responsive Ionic Liquids. Environmental Science & Emp; Technology, 2017, 51, 9403-9409.	10.0	18
134	Hydrophilic Stars, Amphiphilic Star Block Copolymers, and Miktoarm Stars with Degradable Polycarbonate Cores. Macromolecules, 2020, 53, 895-904.	4.8	18
135	Synthesis of polybutadiene-based particles via dispersion ring-opening metathesis polymerization. Journal of Polymer Science Part A, 2004, 42, 1154-1163.	2.3	17
136	Synthesis of \hat{l}_{\pm} - and $i\%$ -norbornenyl-polybutadiene macromonomers and their ring-opening metathesis polymerization. Macromolecular Chemistry and Physics, 1998, 199, 1405-1412.	2.2	17
137	Triblock copolymers based on styrene andn-butyl acrylate by nitroxide-mediated radical polymerization: problems and solutions. Macromolecular Symposia, 2001, 165, 43-54.	0.7	16
138	Preparation of a Polyethylene Latex by Catalytic Hydrogenation of a Polybuta-1,4-diene-Based Dispersion. Macromolecular Rapid Communications, 2005, 26, 1711-1715.	3.9	16
139	Well-defined (co)polypeptides bearing pendant alkyne groups. Polymer Chemistry, 2016, 7, 3487-3491.	3.9	16
140	Synthesis of polyglycocarbonates through polycondensation of glucopyranosides with CO ₂ . Polymer Chemistry, 2017, 8, 2640-2646.	3.9	16
141	Anionic Polymerization of Styrene and 1,3-Butadiene in the Presence of Phosphazene Superbases. Polymers, 2017, 9, 538.	4 . 5	16
142	Amphiphilic block copolymers using miscellaneous ï‰-functional poly(ethylene oxide)'s as transfer agent. Macromolecular Chemistry and Physics, 2000, 201, 1833-1839.	2.2	15
143	Synthesis and Self-Assembly of Well-Defined Star and Tadpole Homo-/Co-/Terpolymers. Macromolecules, 2019, 52, 5583-5589.	4.8	15
144	Cyanoxyl-mediated free-radical polymerization of acrylic acid: Its scope and limitations. Journal of Polymer Science Part A, 2005, 43, 519-533.	2.3	14

#	Article	IF	CITATIONS
145	Synthesis and Characterization of Diaminodithio- and Aminotrithiophosphoric Acid Esters. Phosphorus, Sulfur and Silicon and the Related Elements, 2007, 182, 1233-1244.	1.6	14
146	Synthesis of complex polymeric architectures using multilithiated carbanionic initiatorsâ€"Comparison with other approaches. Progress in Polymer Science, 2013, 38, 30-62.	24.7	14
147	CO2 as versatile carbonation agent of glycosides: Synthesis of 5- and 6-membered cyclic glycocarbonates and investigation of their ring-opening. Journal of CO2 Utilization, 2018, 24, 564-571.	6.8	14
148	Expanding the Scope of Boron-Based Ate Complexes by Manipulating Their Reactivity: The Case of Cyclic Esters and Their (Co)Polymers. Macromolecules, 2022, 55, 1800-1810.	4.8	14
149	New insights into the mechanism of 1,2-bis(trimethyl-silyloxy)-tetraphenylethane-induced free radical polymerization: application to the synthesis of block and graft copolymers. Macromolecular Chemistry and Physics, 2000, 201, 74-83.	2.2	13
150	Well-defined 4-arm stars with hydroxy-terminated polyethylene, polyethylene-b-polycaprolactone and polyethylene-b-(polymethyl methacrylate) ₂ arms. Polymer Chemistry, 2016, 7, 5507-5511.	3.9	13
151	Tetracrystalline Tetrablock Quarterpolymers: Four Different Crystallites under the Same Roof. Angewandte Chemie - International Edition, 2019, 58, 16267-16274.	13.8	13
152	Alternating Copolymerization of Epoxides with Isothiocyanates. Macromolecules, 2021, 54, 9474-9481.	4.8	13
153	Fractionation of Poly(ethylene oxide) Star Samples by Supercritical Fluids. Polymer Journal, 1997, 29, 910-913.	2.7	12
154	Cross-linking of polybutadiene at the air/water interface: Toward an easy access to two-dimensional polymeric materials. Journal of Colloid and Interface Science, 2007, 311, 315-321.	9.4	12
155	Comparative behavior of polybutadiene and polynorbornene-based latices prepared by dispersion ring-opening metathesis polymerization with a poly(ethylene oxide) macromonomer. Journal of Polymer Science Part A, 2004, 42, 2705-2716.	2.3	11
156	Synthesis and self-assembly of Chitosan- g -Polystyrene copolymer: A new route for the preparation of heavy metal nanoparticles. Journal of Colloid and Interface Science, 2015, 438, 110-115.	9.4	11
157	Complex Star Architectures of Well-Defined Polyethylene-Based Co/Terpolymers. Macromolecules, 2020, 53, 4355-4365.	4.8	11
158	Design and use of macromonomers as steric stabilizers for the synthesis of novel functional particles in dispersed media. Polymer International, 2006, 55, 1146-1154.	3.1	10
159	Polyethyleneâ€Based Tadpole Copolymers. Macromolecular Chemistry and Physics, 2017, 218, 1600568.	2.2	10
160	Polyurethanes from Direct Organocatalytic Copolymerization of p â€Tosyl Isocyanate with Epoxides. Angewandte Chemie, 2021, 133, 1617-1622.	2.0	10
161	Elastic behavior of hydrophilic polyurethane networks prepared from poly(dioxolane). Macromolecules, 1990, 23, 4299-4304.	4.8	9
162	New $\hat{I}f\hat{a}\in \hat{I}V$ ligands for the anionic polymerization of methacrylates in apolar medium. Macromolecular Symposia, 1998, 132, 249-262.	0.7	9

#	Article	IF	CITATIONS
163	Free-Radical Polymerization of Styrene in CO2 /Ethanol Mixed Supercritical Fluid. Macromolecular Chemistry and Physics, 2001, 202, 2857-2863.	2.2	9
164	Synthesis of PS Star Polymers from Tetracarbanionic Initiators. Macromolecular Symposia, 2004, 215, 41-50.	0.7	8
165	Using Triethylborane to Manipulate Reactivity Ratios in Epoxide-Anhydride Copolymerization: Application to the Synthesis of Polyethers with Degradable Ester Functions. Molecules, 2022, 27, 466.	3.8	8
166	Triethylborane and methyl vinyl ketone as a bicom-ponent transfer agent for the polymerisation of styrene. Macromolecular Rapid Communications, 2000, 21, 901-904.	3.9	7
167	Triblock and pentablock terpolymers by sequential base-assisted living cationic copolymerization of functionalized vinyl ethers. Polymer Chemistry, 2015, 6, 1236-1247.	3.9	7
168	Boron "stitching―reaction: a powerful tool for the synthesis of polyethylene-based star architectures. Polymer Chemistry, 2018, 9, 1061-1065.	3.9	7
169	A new tricrystalline triblock terpolymer by combining polyhomologation and ringâ€opening polymerization. synthesis and thermal properties. Journal of Polymer Science Part A, 2019, 57, 2450-2456.	2.3	7
170	Novel styrene-butadiene block copolymers by sequential and statistical copolymerization of corresponding macromonomers. Macromolecular Symposia, 1998, 128, 21-37.	0.7	6
171	Macromolecular Engineering of Polypeptides Using the Ring-Opening Polymerization of $\hat{l}\pm$ -Amino Acid N-Carboxyanhydrides., 2011,, 519-540.		6
172	A New Role for CO ₂ : Controlling Agent of the Anionic Ring-Opening Polymerization of Cyclic Esters. Macromolecules, 2017, 50, 6752-6761.	4.8	6
173	Dependence of transfer reaction on solvent in the free radical polymerization of styrene: application to the synthesis of PS/PEO copolymers using PEO-based transfer agents. Macromolecular Chemistry and Physics, 2000, 201, 2805-2810.	2.2	5
174	Linear, hyperbranched, and dendrimer-like polymers containing phosphorus: synthesis and properties. Macromolecular Symposia, 2001, 174, 301-306.	0.7	5
175	Ultrafast phosphazeneâ€promoted controlled anionic polymerization of styrenic monomers. Journal of Polymer Science Part A, 2019, 57, 456-464.	2.3	5
176	Organocatalytic selective coupling of episulfides with carbon disulfide for the synthesis of poly(trithiocarbonate)s and cyclic trithiocarbonates. Polymer Chemistry, 2022, 13, 3471-3478.	3.9	5
177	Complexes based on alkylboranes and ,-unsaturated carbonyl compounds as bicomponent transfer agents for free-radical polymerisation. Macromolecular Chemistry and Physics, 2002, 203, 1819-1823.	2.2	4
178	Orthogonally grown polycarbonate and polyvinyl block copolymers from mechanistically distinct (co)polymerizations. Polymer Chemistry, 2022, 13, 2988-2998.	3.9	4
179	Reactivity of †living' t-butyl acrylic anions towards aldehydes: application to the synthesis of hydroxyl-terminated polyacrylates and their related copolymers. Polymer, 1994, 35, 4011-4014.	3.8	3
180	Kinetic investigation of the anionic polymerization of MMA using sparteine as lf -ligand. Polymer, 2002, 43, 7195-7205.	3.8	3

#	Article	lF	CITATIONS
181	Morphological Changes Induced by Addition of Polystyrene to Dextranâ€Polystyrene Block Copolymer Solutions. Macromolecular Symposia, 2009, 281, 113-118.	0.7	3
182	lodineâ€transfer polymerization and CuAAC "click―chemistry: A versatile approach toward poly(vinylidene fluoride)â€based amphiphilic triblock terpolymers. Journal of Polymer Science, 2020, 58, 163-171.	3.8	3
183	Controlled radical polymerization in the presence of b-phosphonylated nitroxide - kinetics, mechanism and macromolecular architectures. Polimery, 2003, 48, 499-504.	0.7	2
184	Dependence of the kinetics of the anionic polymerization of methyl methacrylate on the concentration in active centers. Journal of Polymer Science Part A, 2004, 42, 4964-4975.	2.3	1
185	Polyhomologation and ATRP: A Perfect Partnership toward Unique Polyethylene-Based Architectures. ACS Symposium Series, 2018, , 1-24.	0.5	1
186	Tetracrystalline Tetrablock Quarterpolymers: Four Different Crystallites under the Same Roof. Angewandte Chemie, 2019, 131, 16413-16420.	2.0	1
187	STRATEGIES FOR THE SYNTHESIS OF LINEAR, HYPERBRANCHED POLYMERS AND DENDRIMERS INCORPORATING P=N BONDS Phosphorus Research Bulletin, 1999, 10, 748-751.	0.6	O
188	lodineâ€transfer polymerization and CuAAC "click―chemistry: A versatile approach toward poly(vinylidene fluoride)â€based amphiphilic triblock terpolymers. Journal of Polymer Science, 2020, 58, 163-171.	3.8	0