Thomas Pfannschmidt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5999952/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PAP8/pTAC6 Is Part of a Nuclear Protein Complex and Displays RNA Recognition Motifs of Viral Origin. International Journal of Molecular Sciences, 2022, 23, 3059.	4.1	7
2	A Core Module of Nuclear Genes Regulated by Biogenic Retrograde Signals from Plastids. Plants, 2021, 10, 296.	3.5	7
3	The Plastid-Encoded RNA Polymerase-Associated Protein PAP9 Is a Superoxide Dismutase With Unusual Structural Features. Frontiers in Plant Science, 2021, 12, 668897.	3.6	11
4	Occurrence of albinism during wheat androgenesis is correlated with repression of the key genes required for proper chloroplast biogenesis. Planta, 2021, 254, 123.	3.2	5
5	Retrograde signals from endosymbiotic organelles: a common control principle in eukaryotic cells. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190396.	4.0	24
6	Retrograde signals from mitochondria reprogramme skoto-morphogenesis in <i>Arabidopsis thaliana</i> via alternative oxidase 1a. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190567.	4.0	17
7	Nucleoâ€plastidic <scp>PAP</scp> 8/ <scp>pTAC</scp> 6 couples chloroplast formation with photomorphogenesis. EMBO Journal, 2020, 39, e104941.	7.8	27
8	PAP genes are tissue- and cell-specific markers of chloroplast development. Planta, 2018, 248, 629-646.	3.2	23
9	Light and Plastid Signals Regulate Different Sets of Genes in the Albino Mutant Pap7-1. Plant Physiology, 2017, 175, 1203-1219.	4.8	29
10	Regulatory Shifts in Plastid Transcription Play a Key Role in Morphological Conversions of Plastids during Plant Development. Frontiers in Plant Science, 2017, 8, 23.	3.6	205
11	Zmp TAC 12 binds singleâ€stranded nucleic acids and is essential for accumulation of the plastidâ€encoded polymerase complex inÂmaize. New Phytologist, 2015, 206, 1024-1037.	7.3	48
12	Plastid RNA polymerases: orchestration of enzymes with different evolutionary origins controls chloroplast biogenesis during the plant life cycle. Journal of Experimental Botany, 2015, 66, 6957-6973.	4.8	108
13	Identification of Early Nuclear Target Genes of Plastidial Redox Signals that Trigger the Long-Term Response of Arabidopsis to Light Quality Shifts. Molecular Plant, 2015, 8, 1237-1252.	8.3	38
14	A purification strategy for analysis of the DNA/RNA-associated sub-proteome from chloroplasts of mustard cotyledons. Frontiers in Plant Science, 2014, 5, 557.	3.6	3
15	Essential nucleoid proteins in early chloroplast development. Trends in Plant Science, 2013, 18, 186-194.	8.8	180
16	Environmental control of plant nuclear gene expression by chloroplast redox signals. Frontiers in Plant Science, 2012, 3, 257.	3.6	76
17	Identification of Essential Subunits in the Plastid-Encoded RNA Polymerase Complex Reveals Building Blocks for Proper Plastid Development Â. Plant Physiology, 2011, 157, 1043-1055.	4.8	141
18	Novel Regulators in Photosynthetic Redox Control of Plant Metabolism and Gene Expression. Plant Physiology, 2011, 155, 1477-1485.	4.8	176

#	Article	IF	CITATIONS
19	Analysis of oligomeric protein complexes in the chloroplast subâ€proteome of nucleic acidâ€binding proteins from mustard reveals potential redox regulators of plastid gene expression. Proteomics, 2010, 10, 2191-2204.	2.2	88
20	Plastidial retrograde signalling – a true "plastid factor―or just metabolite signatures?. Trends in Plant Science, 2010, 15, 427-435.	8.8	150
21	The long-term response to fluctuating light quality is an important and distinct light acclimation mechanism that supports survival of Arabidopsis thaliana under low light conditions. Planta, 2008, 228, 573-587.	3.2	75
22	Photosynthetic acclimation: State transitions and adjustment of photosystem stoichiometry – functional relationships between shortâ€ŧerm and longâ€ŧerm light quality acclimation in plants. FEBS Journal, 2008, 275, 1080-1088.	4.7	158
23	Chloroplast redox signals: how photosynthesis controls its own genes. Trends in Plant Science, 2003, 8, 33-41.	8.8	462
24	Chloroplast Redox Control of Nuclear Gene Expression—A New Class of Plastid Signals in Interorganellar Communication. Antioxidants and Redox Signaling, 2003, 5, 95-101.	5.4	81
25	Principles of redox control in photosynthesis gene expression. Physiologia Plantarum, 2001, 112, 1-9.	5.2	108
26	The multisubunit chloroplast RNA polymerase A from mustard (Sinapis alba L.). FEBS Journal, 2000, 267, 253-261.	0.2	94
27	Balancing the two photosystems: photosynthetic electron transfer governs transcription of reaction centre genes in chloroplasts. Philosophical Transactions of the Royal Society B: Biological Sciences, 2000, 355, 1351-1359.	4.0	144
28	PTK, the chloroplast RNA polymerase-associated protein kinase from mustard (Sinapis alba), mediates redox control of plastid in vitro transcription. Plant Molecular Biology, 1999, 39, 1013-1023.	3.9	93
29	Direct Transcriptional Control of the Chloroplast Genes psbA and psaAB Adjusts Photosynthesis to Light Energy Distribution in Plants. IUBMB Life, 1999, 48, 271-276.	3.4	97
30	Separation of two classes of plastid DNA-dependent RNA polymerases that are differentially expressed in mustard (Sinapis alba L.) seedlings. Plant Molecular Biology, 1994, 25, 69-81.	3.9	121