Nicholas Furnham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5999843/publications.pdf

Version: 2024-02-01

46 papers

2,965 citations

201674 27 h-index 223800 46 g-index

48 all docs 48 docs citations

times ranked

48

4741 citing authors

#	Article	IF	CITATIONS
1	Chemogenomics and bioinformatics approaches for prioritizing kinases as drug targets for neglected tropical diseases. Advances in Protein Chemistry and Structural Biology, 2021, 124, 187-223.	2.3	2
2	Schistosomiasis Drug Discovery in the Era of Automation and Artificial Intelligence. Frontiers in Immunology, 2021, 12, 642383.	4.8	10
3	Structural and Genomic Insights Into Pyrazinamide Resistance in Mycobacterium tuberculosis Underlie Differences Between Ancient and Modern Lineages. Frontiers in Molecular Biosciences, 2021, 8, 619403.	3.5	2
4	Prediction of rifampicin resistance beyond the RRDR using structure-based machine learning approaches. Scientific Reports, 2020, 10, 18120.	3.3	30
5	Combining structure and genomics to understand antimicrobial resistance. Computational and Structural Biotechnology Journal, 2020, 18, 3377-3394.	4.1	17
6	In silico Strategies to Support Fragment-to-Lead Optimization in Drug Discovery. Frontiers in Chemistry, 2020, 8, 93.	3.6	122
7	Unveiling the Kinomes of Leishmania infantum and L. braziliensis Empowers the Discovery of New Kinase Targets and Antileishmanial Compounds. Computational and Structural Biotechnology Journal, 2019, 17, 352-361.	4.1	16
8	Exploring Enzyme Evolution from Changes in Sequence, Structure, and Function. Methods in Molecular Biology, 2019, 1851, 263-275.	0.9	8
9	Mechanism and Catalytic Site Atlas (M-CSA): a database of enzyme reaction mechanisms and active sites. Nucleic Acids Research, 2018, 46, D618-D623.	14.5	151
10	Genome-wide analysis of multi- and extensively drug-resistant Mycobacterium tuberculosis. Nature Genetics, 2018, 50, 307-316.	21.4	271
11	To what extent do structural changes in catalytic metal sites affect enzyme function?. Journal of Inorganic Biochemistry, 2018, 179, 40-53.	3.5	55
12	Computationally-guided drug repurposing enables the discovery of kinase targets and inhibitors as new schistosomicidal agents. PLoS Computational Biology, 2018, 14, e1006515.	3.2	29
13	Understanding molecular consequences of putative drug resistant mutations in Mycobacterium tuberculosis. Scientific Reports, 2018, 8, 15356.	3.3	64
14	Understanding enzyme function evolution from a computational perspective. Current Opinion in Structural Biology, 2017, 47, 131-139.	5.7	36
15	The complex relationship between the emerging flaviviruses: dengue and Zika. Biochemist, 2017, 39, 18-21.	0.5	1
16	Complementary Sources of Protein Functional Information: The Far Side of GO. Methods in Molecular Biology, 2017, 1446, 263-274.	0.9	1
17	Discovery of New Anti-Schistosomal Hits by Integration of QSAR-Based Virtual Screening and High Content Screening. Journal of Medicinal Chemistry, 2016, 59, 7075-7088.	6.4	67
18	FunTree: advances in a resource for exploring and contextualising protein function evolution. Nucleic Acids Research, 2016, 44, D317-D323.	14.5	13

#	Article	IF	Citations
19	Chopping and Changing: the Evolution of the Flavin-dependent Monooxygenases. Journal of Molecular Biology, 2016, 428, 3131-3146.	4.2	75
20	QSAR-Driven Discovery of Novel Chemical Scaffolds Active against <i>Schistosoma mansoni</i> Journal of Chemical Information and Modeling, 2016, 56, 1357-1372.	5.4	47
21	Large-Scale Analysis Exploring Evolution of Catalytic Machineries and Mechanisms in Enzyme Superfamilies. Journal of Molecular Biology, 2016, 428, 253-267.	4.2	55
22	The Classification and Evolution of Enzyme Function. Biophysical Journal, 2015, 109, 1082-1086.	0.5	95
23	CATH: comprehensive structural and functional annotations for genome sequences. Nucleic Acids Research, 2015, 43, D376-D381.	14.5	399
24	Known Allergen Structures Predict Schistosoma mansoni IgE-Binding Antigens in Human Infection. Frontiers in Immunology, 2015, 6, 26.	4.8	25
25	Comparisons of Allergenic and Metazoan Parasite Proteins: Allergy the Price of Immunity. PLoS Computational Biology, 2015, 11, e1004546.	3.2	43
26	The Catalytic Site Atlas 2.0: cataloging catalytic sites and residues identified in enzymes. Nucleic Acids Research, 2014, 42, D485-D489.	14.5	168
27	The evolution of enzyme function in the isomerases. Current Opinion in Structural Biology, 2014, 26, 121-130.	5.7	33
28	EC-BLAST: a tool to automatically search and compare enzyme reactions. Nature Methods, 2014, 11, 171-174.	19.0	112
29	Exploring the Biological and Chemical Complexity of the Ligases. Journal of Molecular Biology, 2014, 426, 2098-2111.	4.2	11
30	Abstracting knowledge from the protein data bank. Biopolymers, 2013, 99, 183-188.	2.4	6
31	THE RAMACHANDRAN PLOT AND PROTEIN STRUCTURE VALIDATION. , 2013, , 62-75.		19
32	Exploring the Evolution of Novel Enzyme Functions within Structurally Defined Protein Superfamilies. PLoS Computational Biology, 2012, 8, e1002403.	3.2	80
33	FunTree: a resource for exploring the functional evolution of structurally defined enzyme superfamilies. Nucleic Acids Research, 2012, 40, D776-D782.	14.5	44
34	New functional families (FunFams) in CATH to improve the mapping of conserved functional sites to 3D structures. Nucleic Acids Research, 2012, 41, D490-D498.	14.5	188
35	Current challenges in genome annotation through structural biology and bioinformatics. Current Opinion in Structural Biology, 2012, 22, 594-601.	5.7	14
36	Extending CATH: increasing coverage of the protein structure universe and linking structure with function. Nucleic Acids Research, 2011, 39, D420-D426.	14.5	126

#	Article	IF	CITATIONS
37	Model-building strategies for low-resolution X-ray crystallographic data. Acta Crystallographica Section D: Biological Crystallography, 2009, 65, 121-127.	2.5	19
38	Missing in action: enzyme functional annotations in biological databases. Nature Chemical Biology, 2009, 5, 521-525.	8.0	53
39	Comparative modelling by restraint-based conformational sampling. BMC Structural Biology, 2008, 8, 7.	2.3	8
40	Structural basis for inhibition of homologous recombination by the RecX protein. EMBO Journal, 2008, 27, 2259-2269.	7.8	41
41	Assembly and Channel Opening in a Bacterial Drug Efflux Machine. Molecular Cell, 2008, 30, 114-121.	9.7	155
42	Structure and Mechanism of Drug Efflux Machinery in Gram Negative Bacteria. Current Drug Targets, 2008, 9, 719-728.	2.1	28
43	Structure of an Xrcc4–DNA ligase IV yeast ortholog complex reveals a novel BRCT interaction mode. DNA Repair, 2006, 5, 362-368.	2.8	60
44	Is one solution good enough?. Nature Structural and Molecular Biology, 2006, 13, 184-185.	8.2	110
45	Conformer generation under restraints. Current Opinion in Structural Biology, 2006, 16, 160-165.	5.7	24
46	Knowledge-Based Real-Space Explorations for Low-Resolution Structure Determination. Structure, 2006, 14, 1313-1320.	3.3	27