Isis Ricaño-Ponce

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5999275/publications.pdf

Version: 2024-02-01

29 papers

3,324 citations

331670 21 h-index 30 g-index

33 all docs 33 docs citations

33 times ranked 7387 citing authors

#	Article	IF	CITATIONS
1	Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity. Nature Genetics, 2012, 44, 1341-1348.	21.4	848
2	Dense genotyping identifies and localizes multiple common and rare variant association signals in celiac disease. Nature Genetics, 2011, 43, 1193-1201.	21.4	682
3	Dense genotyping of immune-related disease regions identifies nine new risk loci for primary sclerosing cholangitis. Nature Genetics, 2013, 45, 670-675.	21.4	339
4	A Functional Genomics Approach to Understand Variation in Cytokine Production in Humans. Cell, 2016, 167, 1099-1110.e14.	28.9	275
5	Innate Immune Activity Is Detected Prior to Seroconversion in Children With HLA-Conferred Type 1 Diabetes Susceptibility. Diabetes, 2014, 63, 2402-2414.	0.6	158
6	Inter-individual variability and genetic influences on cytokine responses to bacteria and fungi. Nature Medicine, 2016, 22, 952-960.	30.7	148
7	Mapping of Immune-Mediated Disease Genes. Annual Review of Genomics and Human Genetics, 2013, 14, 325-353.	6.2	113
8	Genome-wide Analysis of STAT3-Mediated Transcription during Early Human Th17 Cell Differentiation. Cell Reports, 2017, 19, 1888-1901.	6.4	92
9	Convergent evolution in European and Rroma populations reveals pressure exerted by plague on Toll-like receptors. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2668-2673.	7.1	88
10	Cerebral tryptophan metabolism and outcome of tuberculous meningitis: an observational cohort study. Lancet Infectious Diseases, The, 2018, 18, 526-535.	9.1	77
11	Refined mapping of autoimmune disease associated genetic variants with gene expression suggests an important role for non-coding RNAs. Journal of Autoimmunity, 2016, 68, 62-74.	6.5	64
12	Systematic annotation of celiac disease loci refines pathological pathways and suggests a genetic explanation for increased interferon-gamma levels. Human Molecular Genetics, 2015, 24, 397-409.	2.9	54
13	Genetics of celiac disease. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2015, 29, 399-412.	2.4	39
14	Contrasting the Genetic Background of Type 1 Diabetes and Celiac Disease Autoimmunity. Diabetes Care, 2015, 38, S37-S44.	8.6	39
15	A systems genomics approach identifies $\langle i \rangle$ SIGLEC15 $\langle i \rangle$ as a susceptibility factor in recurrent vulvovaginal candidiasis. Science Translational Medicine, 2019, 11, .	12.4	38
16	Deconvolution of bulk blood eQTL effects into immune cell subpopulations. BMC Bioinformatics, 2020, 21, 243.	2.6	38
17	Fine mapping of the celiac disease-associated LPP locus reveals a potential functional variant. Human Molecular Genetics, 2014, 23, 2481-2489.	2.9	32
18	Functional implications of disease-specific variants in loci jointly associated with coeliac disease and rheumatoid arthritis. Human Molecular Genetics, 2016, 25, 180-190.	2.9	29

#	Article	IF	CITATIONS
19	The genetics of East African populations: a Nilo-Saharan component in the African genetic landscape. Scientific Reports, 2015, 5, 9996.	3.3	25
20	An integrative genomics approach identifies novel pathways that influence candidaemia susceptibility. PLoS ONE, 2017, 12, e0180824.	2.5	24
21	A locus at 7p14.3 predisposes to refractory celiac disease progression from celiac disease. European Journal of Gastroenterology and Hepatology, 2018, 30, 828-837.	1.6	22
22	Immunochip meta-analysis in European and Argentinian populations identifies two novel genetic loci associated with celiac disease. European Journal of Human Genetics, 2020, 28, 313-323.	2.8	21
23	Systematic Prioritization of Candidate Genes in Disease Loci Identifies TRAFD1 as a Master Regulator of IFN \hat{I}^3 Signaling in Celiac Disease. Frontiers in Genetics, 2020, 11, 562434.	2.3	20
24	Exome sequencing in a family segregating for celiac disease. Clinical Genetics, 2011, 80, 138-147.	2.0	16
25	Immunochip analysis identifies novel susceptibility loci in the human leukocyte antigen region for acquired thrombotic thrombocytopenic purpura. Journal of Thrombosis and Haemostasis, 2016, 14, 2356-2367.	3.8	10
26	The role of the X chromosome in infectious diseases. Briefings in Functional Genomics, 2022, 21, 143-158.	2.7	6
27	No association between gluten sensitivity and amyotrophic lateral sclerosis. Journal of Neurology, 2017, 264, 694-700.	3.6	4
28	Impact of Human Genetic Variation on C-Reactive Protein Concentrations and Acute Appendicitis. Frontiers in Immunology, 2022, 13, .	4.8	3
29	snpEnrichR: analyzing co-localization of SNPs and their proxies in genomic regions. Bioinformatics, 2018, 34, 4112-4114.	4.1	2