Sergey Nejentsev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5998058/publications.pdf

Version: 2024-02-01

218677 395702 7,191 33 26 33 citations g-index h-index papers 35 35 35 13501 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Efficient genome editing in pathogenic mycobacteria using Streptococcus thermophilus CRISPR1-Cas9. Tuberculosis, 2020, 124, 101983.	1.9	22
2	Topoisomerase 2β mutation impairs early B-cell development. Blood, 2020, 135, 1497-1501.	1.4	18
3	Gain-of-function CEBPE mutation causes noncanonical autoinflammatory inflammasomopathy. Journal of Allergy and Clinical Immunology, 2019, 144, 1364-1376.	2.9	37
4	Early progression to active tuberculosis is a highly heritable trait driven by 3q23 in Peruvians. Nature Communications, 2019, 10, 3765.	12.8	43
5	Novel IL2RG Mutation Causes Leaky TLOWB+NK+ SCID With Nodular Regenerative Hyperplasia and Normal IL-15 STAT5 Phosphorylation. Journal of Pediatric Hematology/Oncology, 2019, 41, 328-333.	0.6	6
6	Hypomorphic caspase activation and recruitment domain 11 (CARD11) mutations associated with diverse immunologic phenotypes with or without atopic disease. Journal of Allergy and Clinical Immunology, 2019, 143, 1482-1495.	2.9	116
7	Novel PLCG2 Mutation in a Patient With APLAID and Cutis Laxa. Frontiers in Immunology, 2018, 9, 2863.	4.8	64
8	Genetic correlations among psychiatric and immuneâ€related phenotypes based on genomeâ€wide association data. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2018, 177, 641-657.	1.7	158
9	Activated PI3 Kinase Delta Syndrome: From Genetics to Therapy. Frontiers in Immunology, 2018, 9, 369.	4.8	79
10	Biallelic <i>RIPK1</i> mutations in humans cause severe immunodeficiency, arthritis, and intestinal inflammation. Science, 2018, 361, 810-813.	12.6	181
11	PI3Kδ hyper-activation promotes development of BÂcells that exacerbate Streptococcus pneumoniae infection in an antibody-independent manner. Nature Communications, 2018, 9, 3174.	12.8	56
12	Reevaluation of SNP heritability in complex human traits. Nature Genetics, 2017, 49, 986-992.	21.4	427
13	Clinical spectrum and features of activated phosphoinositide 3-kinase δ syndrome: AÂlarge patient cohort study. Journal of Allergy and Clinical Immunology, 2017, 139, 597-606.e4.	2.9	377
14	Biallelic JAK1 mutations in immunodeficient patient with mycobacterial infection. Nature Communications, 2016, 7, 13992.	12.8	104
15	Common variable immunodeficiency and natural killer cell lymphopenia caused by Ets-binding site mutation in the IL-2 receptor \hat{I}^3 (IL2RG) gene promoter. Journal of Allergy and Clinical Immunology, 2016, 137, 940-942.e4.	2.9	14
16	PI3Kδ and primary immunodeficiencies. Nature Reviews Immunology, 2016, 16, 702-714.	22.7	259
17	Clinical and immunologic phenotype associated with activated phosphoinositide 3-kinase δ syndrome 2: AÂcohort study. Journal of Allergy and Clinical Immunology, 2016, 138, 210-218.e9.	2.9	215
18	HLA class II sequence variants influence tuberculosis risk in populations of European ancestry. Nature Genetics, 2016, 48, 318-322.	21.4	123

#	Article	IF	CITATIONS
19	Immunodeficiency and severe susceptibility to bacterial infection associated with a loss-of-function homozygous mutation of MKL1. Blood, 2015, 126, 1527-1535.	1.4	66
20	Susceptibility to tuberculosis is associated with variants in the ASAP1 gene encoding a regulator of dendritic cell migration. Nature Genetics, 2015, 47, 523-527.	21.4	156
21	Beijing clades of Mycobacterium tuberculosis are associated with differential survival in HIV-negative Russian patients. Infection, Genetics and Evolution, 2015, 36, 517-523.	2.3	7
22	Evolution and transmission of drug-resistant tuberculosis in a Russian population. Nature Genetics, 2014, 46, 279-286.	21.4	451
23	Occurrence of B-cell lymphomas in patients with activated phosphoinositide 3-kinase \hat{l}' syndrome. Journal of Allergy and Clinical Immunology, 2014, 134, 233-236.e3.	2.9	101
24	Immunodeficiency and disseminated mycobacterial infection associated with homozygous nonsense mutation of IKKβ. Journal of Allergy and Clinical Immunology, 2014, 134, 215-218.e3.	2.9	37
25	Phosphoinositide 3-Kinase $\hat{\Gamma}$ Gene Mutation Predisposes to Respiratory Infection and Airway Damage. Science, 2013, 342, 866-871.	12.6	541
26	A robust model for read count data in exome sequencing experiments and implications for copy number variant calling. Bioinformatics, 2012, 28, 2747-2754.	4.1	534
27	Rare Variants of <i>IFIH1</i> , a Gene Implicated in Antiviral Responses, Protect Against Type 1 Diabetes. Science, 2009, 324, 387-389.	12.6	876
28	Sequencing and association analysis of the type 1 diabetes $\hat{a} \in \text{``linked region on chromosome 10p12-q11.}$ BMC Genetics, 2007, 8, 24.	2.7	10
29	Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nature Genetics, 2007, 39, 857-864.	21.4	1,324
30	Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A. Nature, 2007, 450, 887-892.	27.8	493
31	Analysis of the Vitamin D Receptor Gene Sequence Variants in Type 1 Diabetes. Diabetes, 2004, 53, 2709-2712.	0.6	76
32	Comparative high-resolution analysis of linkage disequilibrium and tag single nucleotide polymorphisms between populations in the vitamin D receptor gene. Human Molecular Genetics, 2004, 13, 1633-1639.	2.9	175
33	Association of intercellular adhesion molecule-1 gene with type 1 diabetes. Lancet, The, 2003, 362, $1723-1724$.	13.7	38