M Matilde Marques

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5997112/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Carcinogenicity of acrolein, crotonaldehyde, and arecoline. Lancet Oncology, The, 2021, 22, 19-20.	10.7	60
2	Antimicrobial and antitumor activity of S-methyl dithiocarbazate Schiff base zinc(II) complexes. Journal of Inorganic Biochemistry, 2021, 216, 111331.	3.5	30
3	Pharmacometabolomics in Drug Discovery and Development. , 2021, , 480-500.		1
4	The 2-hydroxy-nevirapine metabolite as a candidate for boosting apolipoprotein A1 and for modulating anti-HDL antibodies. Pharmacological Research, 2021, 165, 105446.	7.1	1
5	Covalent Histone Modification by an Electrophilic Derivative of the Anti-HIV Drug Nevirapine. Molecules, 2021, 26, 1349.	3.8	4
6	Antioxidative response of lettuce (Lactuca sativa) to carbamazepine-induced stress. Environmental Science and Pollution Research, 2021, 28, 45920-45932.	5.3	5
7	Acetaminophen Induces an Antioxidative Response in Lettuce Plants. Plants, 2021, 10, 1152.	3.5	6
8	1st Spring Virtual Meeting on Medicinal Chemistry. Chemistry Proceedings, 2021, 4, 1.	0.1	0
9	NKp30 ―A prospective target for new cancer immunotherapy strategies. British Journal of Pharmacology, 2020, 177, 4563-4580.	5.4	22
10	Nevirapine Biotransformation Insights: An Integrated In Vitro Approach Unveils the Biocompetence and Clutathiolomic Profile of a Human Hepatocyte-Like Cell 3D Model. International Journal of Molecular Sciences, 2020, 21, 3998.	4.1	10
11	Unlocking the Potential of HK2 in Cancer Metabolism and Therapeutics. Current Medicinal Chemistry, 2020, 26, 7285-7322.	2.4	122
12	Effects of Metformin on Antioxidative Response of Lactuca sativa Plants. Biology and Life Sciences Forum, 2020, 4, .	0.6	0
13	Synthesis, Crystal Structure, and Biological Evaluation of Fused Thiazolo[3,2-a]Pyrimidines as New Acetylcholinesterase Inhibitors. Molecules, 2019, 24, 2306.	3.8	14
14	Advisory Group recommendations on priorities for the IARC Monographs. Lancet Oncology, The, 2019, 20, 763-764.	10.7	70
15	Targeting gliomas with triazene-based hybrids: Structure-activity relationship, mechanistic study and stability. European Journal of Medicinal Chemistry, 2019, 172, 16-25.	5.5	6
16	Singularities of nevirapine metabolism: from sex-dependent differences to idiosyncratic toxicity. Drug Metabolism Reviews, 2019, 51, 76-90.	3.6	10
17	High resolution mass spectrometry-based methodologies for identification of Etravirine bioactivation to reactive metabolites: In vitro and in vivo approaches. European Journal of Pharmaceutical Sciences, 2018, 119, 70-82.	4.0	12
18	The first-line antiepileptic drug carbamazepine: Reaction with biologically relevant free radicals. Free Radical Biology and Medicine, 2018, 129, 559-568.	2.9	9

#	Article	IF	CITATIONS
19	Carcinogenicity of isobutyl nitrite, β-picoline, and some acrylates. Lancet Oncology, The, 2018, 19, 1020-1022.	10.7	4
20	Hepatocyte spheroids as a competent in vitro system for drug biotransformation studies: nevirapine as a bioactivation case study. Archives of Toxicology, 2017, 91, 1199-1211.	4.2	25
21	Low dose assessment of the carcinogenicity of furan in male F344/N Nctr rats in a 2-year gavage study. Food and Chemical Toxicology, 2017, 99, 170-181.	3.6	44
22	Toxic events induced by the antiepileptic drug carbamazepine: Is bioactivation really involved?. Toxicology Letters, 2017, 280, S241.	0.8	0
23	Unmasking efavirenz neurotoxicity: Time matters to the underlying mechanisms. European Journal of Pharmaceutical Sciences, 2017, 105, 47-54.	4.0	21
24	Efavirenz biotransformation as an up-stream event of mood changes in HIV-infected patients. Toxicology Letters, 2016, 260, 28-35.	0.8	7
25	New insights into the molecular mechanisms of chemical carcinogenesis: In vivo adduction of histone H2B by a reactive metabolite of the chemical carcinogen furan. Toxicology Letters, 2016, 264, 106-113.	0.8	26
26	Nevirapine modulation of paraoxonase-1 in the liver: An in vitro three-model approach. European Journal of Pharmaceutical Sciences, 2016, 82, 147-153.	4.0	7
27	Carcinogenicity of some industrial chemicals. Lancet Oncology, The, 2016, 17, 419-420.	10.7	46
28	Anti-histone antibodies in HIV-infected patients on Nevirapine-containing ANTIRETROVIRAL THERAPY. Clinical Therapeutics, 2015, 37, e142.	2.5	1
29	First in vitro evidence for a catechol metabolite from the anti-HIV drug efavirenz – A plausible role in toxicity. Toxicology Letters, 2015, 238, S360.	0.8	0
30	Effect of substituents in the molecular and supramolecular architectures of 1-ferrocenyl-2-(aryl)thioethanones. CrystEngComm, 2015, 17, 3089-3102.	2.6	3
31	Sex differences in hepatic and intestinal contributions to nevirapine biotransformation in rats. Chemico-Biological Interactions, 2015, 233, 115-121.	4.0	5
32	Quinoid derivatives of the nevirapine metabolites 2-hydroxy- and 3-hydroxy-nevirapine: activation pathway to amino acid adducts. Toxicology Research, 2015, 4, 1565-1577.	2.1	4
33	Carcinogenicity of glycidamide in B6C3F1 mice and F344/N rats from a two-year drinking water exposure. Food and Chemical Toxicology, 2015, 86, 104-115.	3.6	41
34	Bioactivation to an aldehyde metabolite—Possible role in the onset of toxicity induced by the anti-HIV drug abacavir. Toxicology Letters, 2014, 224, 416-423.	0.8	23
35	Differences in nevirapine biotransformation as a factor for its sex-dependent dimorphic profile of adverse drug reactions. Journal of Antimicrobial Chemotherapy, 2014, 69, 476-482.	3.0	21
36	Thiol status in HIV-infected patients: The effect of nevirapine metabolism. Toxicology Letters, 2014, 229, S95.	0.8	0

#	Article	IF	CITATIONS
37	An animal model to explore efavirenz toxicokinetics and its relation to neurological phenotype. Toxicology Letters, 2014, 229, S244.	0.8	0
38	Sex differences in hepatic and intestinal contributions for nevirapine biotransformation. Toxicology Letters, 2014, 229, S240-S241.	0.8	0
39	The phenolic metabolites of the anti-HIV drug efavirenz: Evidence forÂdistinct reactivities upon oxidation with Frémy's salt. European Journal of Medicinal Chemistry, 2014, 74, 7-11.	5.5	13
40	Development and validation of an HPLC-UV method for quantifying nevirapine and its main phase I metabolites in human blood. Analytical Methods, 2014, 6, 1575.	2.7	9
41	Sex differences in apolipoprotein A1 and nevirapine-induced toxicity. Journal of the International AIDS Society, 2014, 17, 19575.	3.0	2
42	Synthesis and evaluation of diaryl sulfides and diaryl selenide compounds for antitubulin and cytotoxic activity. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 4669-4673.	2.2	67
43	Monitoring abacavir bioactivation in humans: Screening for an aldehyde metabolite. Toxicology Letters, 2013, 219, 59-64.	0.8	20
44	Carcinogenicity of acrylamide in B6C3F1 mice and F344/N rats from a 2-year drinking water exposure. Food and Chemical Toxicology, 2013, 51, 149-159.	3.6	97
45	Carcinogenicity of some drugs and herbal products. Lancet Oncology, The, 2013, 14, 807-808.	10.7	28
46	The role of competitive binding to human serum albumin on efavirenz–warfarin interaction: a nuclear magnetic resonance study. International Journal of Antimicrobial Agents, 2013, 42, 443-446.	2.5	13
47	Mechanistic insights into the cytotoxicity and genotoxicity induced by glycidamide in human mammary cells. Mutagenesis, 2013, 28, 721-729.	2.6	32
48	2'-Deoxythymidine Adducts from the Anti-HIV Drug Nevirapine. Molecules, 2013, 18, 4955-4971.	3.8	6
49	Insights into the Role of Bioactivation Mechanisms in the Toxic Events Elicited by Non-nucleoside Reverse Transcriptase Inhibitors. Advances in Molecular Toxicology, 2012, 6, 1-39.	0.4	3
50	Oxidation of 2-Hydroxynevirapine, a Phenolic Metabolite of the Anti-HIV Drug Nevirapine: Evidence for an Unusual Pyridine Ring Contraction. Molecules, 2012, 17, 2616-2627.	3.8	7
51	Biomimetic oxidation of aromatic xenobiotics: synthesis of the phenolic metabolites from the anti-HIV drug efavirenz. Organic and Biomolecular Chemistry, 2012, 10, 4554.	2.8	6
52	<i>N</i> â€ŧerminal valine adduct from the antiâ€HIV drug abacavir in rat haemoglobin as evidence for abacavir metabolism to a reactive aldehyde <i>in vivo</i> . British Journal of Pharmacology, 2012, 167, 1353-1361.	5.4	17
53	Evidence for nevirapine bioactivation in man: Searching for the first step in the mechanism of nevirapine toxicity. Toxicology, 2012, 301, 33-39.	4.2	35
54	Synthesis of catecholamine conjugates with nitrogen-centered bionucleophiles. Bioorganic Chemistry, 2012, 44, 19-24.	4.1	7

#	Article	IF	CITATIONS
55	Tumorigenicity of acrylamide and its metabolite glycidamide in the neonatal mouse bioassay. International Journal of Cancer, 2012, 131, 2008-2015.	5.1	44
56	Effect of C–H…X interactions (X = O, S, π) in the supramolecular arrangements of 3-ferrocenyl-methoxybenzo[b]thiophene isomers. CrystEngComm, 2011, 13, 1638-1645.	2.6	3
57	Reactive Aldehyde Metabolites from the Anti-HIV Drug Abacavir: Amino Acid Adducts as Possible Factors in Abacavir Toxicity. Chemical Research in Toxicology, 2011, 24, 2129-2141.	3.3	31
58	Bitumens and bitumen emissions, and some heterocyclic polycyclic aromatic hydrocarbons. Lancet Oncology, The, 2011, 12, 1190-1191.	10.7	21
59	Synthesis and oxidation of 2-hydroxynevirapine, a metabolite of the HIV reverse transcriptase inhibitor nevirapine. Organic and Biomolecular Chemistry, 2011, 9, 7822.	2.8	22
60	An ester derivative of the drug gabapentin: pH dependent crystal stability. Journal of Molecular Structure, 2010, 973, 173-179.	3.6	7
61	Protein Adducts As Prospective Biomarkers of Nevirapine Toxicity. Chemical Research in Toxicology, 2010, 23, 1714-1725.	3.3	42
62	Amino Acid Adduct Formation by the Nevirapine Metabolite, 12-Hydroxynevirapine—A Possible Factor in Nevirapine Toxicity. Chemical Research in Toxicology, 2010, 23, 888-899.	3.3	34
63	Protein adduct formation: A possible factor in hypersensitivity reactions induced by the anti HIV drug abacavir. Toxicology Letters, 2010, 196, S110.	0.8	0
64	High-Performance Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometry for the Detection and Quantitation of Pyrrolizidine Alkaloid-Derived DNA Adducts <i>in Vitro</i> and <i>in Vivo</i> . Chemical Research in Toxicology, 2010, 23, 637-652.	3.3	65
65	DNA adduct formation and induction of micronuclei and mutations in B6C3F ₁ / <i>Tk</i> mice treated neonatally with acrylamide or glycidamide. International Journal of Cancer, 2009, 124, 2006-2015.	5.1	36
66	Synthesis and Characterization of New Organometallic Benzo[<i>b</i>]thiophene Derivatives with Potential Antitumor Properties. Organometallics, 2009, 28, 5412-5423.	2.3	59
67	A review of human carcinogens—Part A: pharmaceuticals. Lancet Oncology, The, 2009, 10, 13-14.	10.7	137
68	Interactions of d-ribose with polyatomic anions, and alkaline and alkaline-earth cations: possible clues to environmental synthesis conditions in the pre-RNA world. New Journal of Chemistry, 2008, 32, 2043.	2.8	36
69	Synthesis and Characterization of DNA Adducts from the HIV Reverse Transcriptase Inhibitor Nevirapine. Chemical Research in Toxicology, 2008, 21, 1443-1456.	3.3	27
70	Carcinogenicity of alcoholic beverages. Lancet Oncology, The, 2007, 8, 292-293.	10.7	733
71	Effect of N,N-didesmethyltamoxifen upon DNA adduct formation by tamoxifen and α-hydroxytamoxifen. Cancer Letters, 2007, 257, 191-198.	7.2	7
72	DNA Adduct Formation in the Livers of Female Spragueâ^Dawley Rats Treated with Toremifene or α-Hydroxytoremifene. Chemical Research in Toxicology, 2007, 20, 300-310.	3.3	10

#	Article	IF	CITATIONS
73	Cytogenetic Damage Induced by Acrylamide and Glycidamide in Mammalian Cells: Correlation with Specific Glycidamide-DNA Adducts. Toxicological Sciences, 2006, 95, 383-390.	3.1	66
74	Studies on the Use of Ionic Liquids as Potential Extractants of Phenolic Compounds and Metal Ions. Separation Science and Technology, 2005, 39, 2155-2169.	2.5	81
75	Carcinogenicity of polycyclic aromatic hydrocarbons. Lancet Oncology, The, 2005, 6, 931-932.	10.7	270
76	Tamoxifenâ^'DNA Adduct Formation in Human Endometrium. Chemical Research in Toxicology, 2005, 18, 1507-1509.	3.3	7
77	Electrospray Ionization-Tandem Mass Spectrometry and 32P-Postlabeling Analyses of Tamoxifen-DNA Adducts in Humans. Journal of the National Cancer Institute, 2004, 96, 1099-1104.	6.3	39
78	Synthesis and antiviral evaluation of benzimidazoles, quinoxalines and indoles from dehydroabietic acid. Bioorganic and Medicinal Chemistry, 2004, 12, 103-112.	3.0	133
79	Inhibition of Extrahepatic Human Cytochromes P450 1A1 and 1B1 by Metabolism of Isoflavones Found inTrifolium pratense(Red Clover). Journal of Agricultural and Food Chemistry, 2004, 52, 6623-6632.	5.2	63
80	Analysis of tamoxifen–DNA adducts in endometrial explants by MS and 32P-postlabeling. Biochemical and Biophysical Research Communications, 2004, 320, 297-302.	2.1	17
81	Differentiation of isomeric C8-substituted alkylaniline adducts of guanine by electrospray ionization and tandem quadrupole ion trap mass spectrometry. Journal of the American Society for Mass Spectrometry, 2003, 14, 1488-1492.	2.8	11
82	Synthesis and Investigation of α-Hydroxy-N,N-didesmethyltamoxifen as a Proximate Carcinogen in the Metabolic Activation of Tamoxifen. Chemical Research in Toxicology, 2003, 16, 1090-1098.	3.3	8
83	Quantification of Tamoxifen DNA Adducts Using On-Line Sample Preparation and HPLC-Electrospray Ionization Tandem Mass Spectrometry. Chemical Research in Toxicology, 2003, 16, 357-366.	3.3	34
84	DNA Adduct Formation from Acrylamide via Conversion To Glycidamide in Adult and Neonatal Mice. Chemical Research in Toxicology, 2003, 16, 1328-1337.	3.3	245
85	Formation of tamoxifen-DNA adducts in multiple organs of adult female cynomolgus monkeys dosed with tamoxifen for 30 days. Cancer Research, 2003, 63, 5999-6003.	0.9	21
86	Mutations induced by alpha-hydroxytamoxifen in the lacI and cII genes of Big Blue transgenic rats. Carcinogenesis, 2002, 23, 1751-1758.	2.8	18
87	DNA Adducts from Nitroreduction of 2,7-Dinitrofluorene, a Mammary Gland Carcinogen, Catalyzed by Rat Liver or Mammary Gland Cytosol. Chemical Research in Toxicology, 2002, 15, 536-544.	3.3	22
88	Metabolism of Biochanin A and Formononetin by Human Liver Microsomes in Vitro. Journal of Agricultural and Food Chemistry, 2002, 50, 4783-4790.	5.2	128
89	Induction of lacI mutations in Big Blue rats treated with tamoxifen and α-hydroxytamoxifen. Cancer Letters, 2002, 176, 37-45.	7.2	20
90	The effect of deuterium and fluorine substitution upon the mutagenicity of N-hydroxy-2,6-dimethylaniline. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2002, 506-507, 41-48.	1.0	7

#	Article	IF	CITATIONS
91	Comparison of the Toxicity of Several Fumonisin Derivatives in a 28-Day Feeding Study with Female B6C3F1 Mice. Toxicology and Applied Pharmacology, 2002, 185, 153-165.	2.8	85
92	Synthesis, Characterization, and Comparative 32P-Postlabeling Efficiencies of 2,6-Dimethylanilineâ d'DNA Adducts. Chemical Research in Toxicology, 2001, 14, 165-174.	3.3	34
93	DNA adduct formation and mutant induction in Sprague-Dawley rats treated with tamoxifen and its derivatives. Carcinogenesis, 2001, 22, 1307-1315.	2.8	36
94	Characterization of the Major DNA Adduct Formed by α-Hydroxy-N-desmethyltamoxifen in Vitro and in Vivo. Chemical Research in Toxicology, 2000, 13, 200-207.	3.3	28
95	Molecular Recognition of Acetylaminofluorene-and Aminofluorene-modified Guanosine. Supramolecular Chemistry, 2000, 11, 201-215.	1.2	1
96	Comparison of the DNA adducts formed by tamoxifen and 4-hydroxytamoxifen in vivo. Carcinogenesis, 1999, 20, 471-477.	2.8	51
97	Quantitative analysis of 4-aminobiphenyl-C8-deoxyguanosyl DNA adducts produced in vitro and in vivo using HPLCES-MS. Carcinogenesis, 1999, 20, 1055-1061.	2.8	42
98	New Syntheses of DNA Adducts from Methylated Anilines Present in Tobacco Smoke. Chemical Research in Toxicology, 1999, 12, 1223-1233.	3.3	11
99	32P-Postlabeling of N-(Deoxyguanosin-8-yl)arylamine Adducts:  A Comparative Study of Labeling Efficiencies. Chemical Research in Toxicology, 1999, 12, 661-669.	3.3	16
100	Synthesis, Characterization, and Quantitation of a 4-Aminobiphenylâ^'DNA Adduct Standard. Chemical Research in Toxicology, 1999, 12, 68-77.	3.3	73
101	Formation ofN-(Carboxymethyl)fumonisin B1, Following the Reaction of Fumonisin B1with Reducing Sugars. Journal of Agricultural and Food Chemistry, 1998, 46, 3546-3557.	5.2	86
102	A New Bi-Functional Receptor for Acetylamino- Fluorene Modified Guanosine. , 1998, , 487-490.		1
103	Identification of tamoxifen-DNA adducts formed by 4-hydroxytamoxifen quinone methide. Carcinogenesis, 1997, 18, 1949-1954.	2.8	62
104	Effect of Substitution Site upon the Oxidation Potentials of Alkylanilines, the Mutagenicities ofN-Hydroxyalkylanilines, and the Conformations of Alkylanilineâ^'DNA Adducts. Chemical Research in Toxicology, 1997, 10, 1266-1274.	3.3	51
105	Arylamine–DNA adduct conformation in relation to mutagenesis. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1997, 376, 13-19.	1.0	27
106	Synthesis, Characterization, and Conformational Analysis of DNA Adducts from Methylated Anilines Present in Tobacco Smoke. Chemical Research in Toxicology, 1996, 9, 99-108.	3.3	43
107	Uracil and thiouracil complexes of dicyclopentadienyl molybdenum and tungsten: Preparation and electrochemistry. The structures of [M(η5-C5H5)2(2-SN2OC4H3)][PF6], [M(η5-C5H5)2{2-S(CH3)N2OC4H2}][PF6], [Mo(η5-C5H5)2 (4-SN2OC4H3)][PF6] and [Mo(η5-C5H5)2{4-S(CH3)N2OC4H2}][PF6] (M  Mo and W). Polyhedron, 1995, 14, 675-685.	2.2	10
108	Molecular recognition of guanosine and 2-acetylaminofluorene-modified guanosine. A comparative study. Supramolecular Chemistry, 1995, 5, 243-253.	1.2	3

#	Article	IF	CITATIONS
109	Mutations induced by aromatic amine DNA adducts in pBR322. Carcinogenesis, 1994, 15, 889-899.	2.8	70
110	NMR structural studies of a 15-mer DNA duplex from a ras protooncogene modified with the carcinogen 2-aminofluorene: conformational heterogeneity. Biochemistry, 1994, 33, 1373-1384.	2.5	96
111	One-dimensional multiple quantum filtration1H NMR spectra of a 15-mer DNA Duplex modified by the carcinogen 4-aminobiphenyl. Magnetic Resonance in Chemistry, 1993, 31, 1008-1010.	1.9	1
112	NMR structural studies of a 15-mer DNA sequence from a ras protooncogene, modified at the first base of codon 61 with the carcinogen 4-aminobiphenyl. Biochemistry, 1992, 31, 9587-9602.	2.5	69
113	Synthesis, characterization and solution properties of ras sequences modified by arylamine carcinogens at the first base of codon 61. Chemical Research in Toxicology, 1990, 3, 559-565.	3.3	14
114	Tetrahedral intermediates formed by nitrogen and oxygen attack of aromatic hydroxylamines on acetyl cyanide. Journal of Organic Chemistry, 1987, 52, 2925-2927.	3.2	33
115	Characterizing a tetrahedral intermediate in an acyl transfer reaction: An undergraduate 1H NMR demonstration. Journal of Chemical Education, 1987, 64, 725.	2.3	2
116	Tetrahedral intermediates formed during acyl transfer. Reactions of acetyl cyanide. Journal of the Chemical Society Chemical Communications, 1985, , 1113.	2.0	16
117	Reactions between hydroxylamines and aroyl cyanides. Tetrahedron Letters, 1982, 23, 1391-1394.	1.4	30
118	Synthesis and characterization of 2-arylidene derivatives of thiazolopyrimidines with potential biological activity . , 0, , .		0