Kartik Chandran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5997057/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microbial ecology of denitrification in biological wastewater treatment. Water Research, 2014, 64, 237-254.	11.3	517
2	Control of aeration, aerobic SRT and COD input for mainstream nitritation/denitritation. Water Research, 2014, 57, 162-171.	11.3	356
3	N ₂ O Emissions from Activated Sludge Processes, 2008â^'2009: Results of a National Monitoring Survey in the United States. Environmental Science & Technology, 2010, 44, 4505-4511.	10.0	345
4	Mechanisms and Specific Directionality of Autotrophic Nitrous Oxide and Nitric Oxide Generation during Transient Anoxia. Environmental Science & amp; Technology, 2010, 44, 1313-1319.	10.0	280
5	Nitrous Oxide (N ₂ O) Emission from Aquaculture: A Review. Environmental Science & Technology, 2012, 46, 6470-6480.	10.0	227
6	Nitrogen transformations in aquaponic systems: A review. Aquacultural Engineering, 2017, 76, 9-19.	3.1	174
7	Effect of plant species on nitrogen recovery in aquaponics. Bioresource Technology, 2015, 188, 92-98.	9.6	161
8	Nitrous oxide production by lithotrophic ammonia-oxidizing bacteria and implications for engineered nitrogen-removal systems. Biochemical Society Transactions, 2011, 39, 1832-1837.	3.4	160
9	Impact of Metal Sorption and Internalization on Nitrification Inhibition. Environmental Science & Technology, 2003, 37, 728-734.	10.0	142
10	Factors promoting emissions of nitrous oxide and nitric oxide from denitrifying sequencing batch reactors operated with methanol and ethanol as electron donors. Biotechnology and Bioengineering, 2010, 106, 390-398.	3.3	132
11	Effect of Nickel and Cadmium Speciation on Nitrification Inhibition. Environmental Science & Technology, 2002, 36, 3074-3078.	10.0	127
12	Comparison of Partial and Full Nitrification Processes Applied for Treating High-Strength Nitrogen Wastewaters: Microbial Ecology through Nitrous Oxide Production. Environmental Science & Technology, 2011, 45, 2734-2740.	10.0	124
13	Discovery and metagenomic analysis of an anammox bacterial enrichment related to Candidatus "Brocadia caroliniensis―in a full-scale glycerol-fed nitritation-denitritation separate centrate treatment process. Water Research, 2017, 111, 265-273.	11.3	122
14	Linking Community Profiles, Gene Expression and N-Removal in Anammox Bioreactors Treating Municipal Anaerobic Digestion Reject Water. Environmental Science & Technology, 2010, 44, 6110-6116.	10.0	121
15	Strategies of Nitrosomonas europaea 19718 to counter low dissolved oxygen and high nitrite concentrations. BMC Microbiology, 2010, 10, 70.	3.3	120
16	Comammox Functionality Identified in Diverse Engineered Biological Wastewater Treatment Systems. Environmental Science and Technology Letters, 2018, 5, 110-116.	8.7	118
17	Impact of inocula and growth mode on the molecular microbial ecology of anaerobic ammonia oxidation (anammox) bioreactor communities. Water Research, 2010, 44, 5005-5013.	11.3	117
18	Distinctive microbial ecology and biokinetics of autotrophic ammonia and nitrite oxidation in a partial nitrification bioreactor. Biotechnology and Bioengineering, 2008, 100, 1078-1087.	3.3	111

#	Article	IF	CITATIONS
19	Comparison of nitrification inhibition by metals in batch and continuous flow reactors. Water Research, 2004, 38, 3949-3959.	11.3	107
20	Stresses exerted by ZnO, CeO2 and anatase TiO2 nanoparticles on the Nitrosomonas europaea. Journal of Colloid and Interface Science, 2010, 348, 329-334.	9.4	96
21	Impact of Heavy Metals on Transcriptional and Physiological Activity of Nitrifying Bacteria. Environmental Science & Technology, 2015, 49, 13454-13462.	10.0	95
22	Single-step nitrification models erroneously describe batch ammonia oxidation profiles when nitrite oxidation becomes rate limiting. Biotechnology and Bioengineering, 2000, 68, 396-406.	3.3	92
23	Transfer of antibiotic resistance plasmids in pure and activated sludge cultures in the presence of environmentally representative micro-contaminant concentrations. Science of the Total Environment, 2014, 468-469, 813-820.	8.0	92
24	Comparison of Antibiotic Resistance Removal Efficiencies Using Ozone Disinfection under Different pH and Suspended Solids and Humic Substance Concentrations. Environmental Science & Technology, 2016, 50, 7590-7600.	10.0	91
25	Biodegradation and Cometabolic Modeling of Selected Beta Blockers during Ammonia Oxidation. Environmental Science & Technology, 2013, 47, 12835-12843.	10.0	88
26	Evaluating four mathematical models for nitrous oxide production by autotrophic ammoniaâ€oxidizing bacteria. Biotechnology and Bioengineering, 2013, 110, 153-163.	3.3	85
27	Impact of varying electron donors on the molecular microbial ecology and biokinetics of methylotrophic denitrifying bacteria. Biotechnology and Bioengineering, 2009, 102, 1527-1536.	3.3	79
28	Impact of carbon source and <scp>COD</scp> /N on the concurrent operation of partial denitrification and anammox. Water Environment Research, 2019, 91, 185-197.	2.7	78
29	Effect of oxic and anoxic conditions on nitrous oxide emissions from nitrification and denitrification processes. Biotechnology and Bioengineering, 2011, 108, 2036-2045.	3.3	77
30	Influence of carbohydrate addition on nitrogen transformations and greenhouse gas emissions of intensive aquaculture system. Science of the Total Environment, 2014, 470-471, 193-200.	8.0	75
31	Differentiation in the microbial ecology and activity of suspended and attached bacteria in a nitritationâ€anammox process. Biotechnology and Bioengineering, 2015, 112, 272-279.	3.3	74
32	Filovirus entry into cells – new insights. Current Opinion in Virology, 2012, 2, 206-214.	5.4	73
33	Evaluating two concepts for the modelling of intermediates accumulation during biological denitrification in wastewater treatment. Water Research, 2015, 71, 21-31.	11.3	69
34	Critical Analysis of Biomass Retention Strategies in Mainstream and Sidestream ANAMMOX-Mediated Nitrogen Removal Systems. Environmental Science & amp; Technology, 2021, 55, 9-24.	10.0	68
35	Supernatant organics from anaerobic digestion after thermal hydrolysis cause direct and/or diffusional activity loss for nitritation and anammox. Water Research, 2018, 143, 270-281.	11.3	67
36	Microbial conversion of synthetic and food waste-derived volatile fatty acids to lipids. Bioresource Technology, 2015, 188, 49-55.	9.6	66

#	Article	IF	CITATIONS
37	Evaluation of a rapid physical–chemical method for the determination of extant soluble COD. Water Research, 2002, 36, 617-624.	11.3	65
38	Factors influencing the density of aerobic granular sludge. Applied Microbiology and Biotechnology, 2013, 97, 7459-7468.	3.6	65
39	Physiological State, Growth Mode, and Oxidative Stress Play a Role in Cd(II)-Mediated Inhibition of <i>Nitrosomonas europaea</i> 19718. Applied and Environmental Microbiology, 2008, 74, 2447-2453.	3.1	64
40	The effect of inorganic carbon on microbial interactions in a biofilm nitritation–anammox process. Water Research, 2015, 70, 246-254.	11.3	64
41	Nitrogen transformations in intensive aquaculture system and its implication to climate change through nitrous oxide emission. Bioresource Technology, 2013, 130, 314-320.	9.6	60
42	Propensity of activated sludge to amplify or attenuate tetracycline resistance genes and tetracycline resistant bacteria: A mathematical modeling approach. Chemosphere, 2010, 78, 1071-1077.	8.2	59
43	Molecular and Kinetic Characterization of Planktonic <i>Nitrospira</i> spp. Selectively Enriched from Activated Sludge. Environmental Science & amp; Technology, 2017, 51, 2720-2728.	10.0	59
44	Short-term effects of TiO2, CeO2, and ZnO nanoparticles on metabolic activities and gene expression of Nitrosomonas europaea. Chemosphere, 2015, 128, 207-215.	8.2	58
45	High-Rate, High-Yield Production of Methanol by Ammonia-Oxidizing Bacteria. Environmental Science & Technology, 2013, 47, 3167-3173.	10.0	57
46	Cell entry by a novel European filovirus requires host endosomal cysteine proteases and Niemann–Pick C1. Virology, 2014, 468-470, 637-646.	2.4	55
47	Aquaponic Systems for Sustainable Resource Recovery: Linking Nitrogen Transformations to Microbial Communities. Environmental Science & Technology, 2018, 52, 12728-12739.	10.0	51
48	Molecular and biokinetic characterization of methylotrophic denitrification using nitrate and nitrite as terminal electron acceptors. Water Science and Technology, 2008, 58, 359-365.	2.5	50
49	Factors impacting biotransformation kinetics of trace organic compounds in lab-scale activated sludge systems performing nitrification and denitrification. Journal of Hazardous Materials, 2015, 282, 116-124.	12.4	49
50	Clarifying the regulation of NO/N2O production in Nitrosomonas europaea during anoxic–oxic transition via flux balance analysis of a metabolic network model. Water Research, 2014, 60, 267-277.	11.3	47
51	Effects of temperature on nitrous oxide (N2O) emission from intensive aquaculture system. Science of the Total Environment, 2015, 518-519, 16-23.	8.0	46
52	The role of extracellular polymeric substances on carbon capture in a high rate activated sludge A-stage system. Chemical Engineering Journal, 2017, 322, 428-434.	12.7	46
53	Nitrate residual as a key parameter to efficiently control partial denitrification coupling with anammox. Water Environment Research, 2019, 91, 1455-1465.	2.7	46
54	Nitrosomonas europaea adaptation to anoxic-oxic cycling: Insights from transcription analysis, proteomics and metabolic network modeling. Science of the Total Environment, 2018, 615, 1566-1573.	8.0	44

#	Article	IF	CITATIONS
55	Biomass Production from Electricity Using Ammonia as an Electron Carrier in a Reverse Microbial Fuel Cell. PLoS ONE, 2012, 7, e44846.	2.5	42
56	Spatial and Temporal Variability in Atmospheric Nitrous Oxide Generation and Emission from Full‧cale Biological Nitrogen Removal and Nonâ€BNR Processes. Water Environment Research, 2010, 82, 2362-2372.	2.7	39
57	Development of efficient electroactive biofilm in urine-fed microbial fuel cell cascades for bioelectricity generation. Journal of Environmental Management, 2020, 258, 109992.	7.8	39
58	Applicability of two-step models in estimating nitrification kinetics from batch respirograms under different relative dynamics of ammonia and nitrite oxidation. Biotechnology and Bioengineering, 2000, 70, 54-64.	3.3	38
59	Comparative proteomic analysis reveals insights into anoxic growth of <i><scp>M</scp>ethyloversatilis universalis</i> â€ <scp>FAM</scp> 5 on methanol and ethanol. Environmental Microbiology, 2012, 14, 2935-2945.	3.8	38
60	Optimizing experimental design to estimate ammonia and nitrite oxidation biokinetic parameters from batch respirograms. Water Research, 2005, 39, 4969-4978.	11.3	36
61	Diagnosis and Quantification of Glycerol Assimilating Denitrifying Bacteria in an Integrated Fixed-Film Activated Sludge Reactor via ¹³ C DNA Stable-Isotope Probing. Environmental Science & Technology, 2010, 44, 8943-8949.	10.0	35
62	Ammoniaâ€based intermittent aeration control optimized for efficient nitrogen removal. Biotechnology and Bioengineering, 2015, 112, 2060-2067.	3.3	34
63	Estimating biomass yield coefficients for autotrophic ammonia and nitrite oxidation from batch respirograms. Water Research, 2001, 35, 3153-3156.	11.3	32
64	Effectiveness of switching disinfectants for nitrification control. Journal - American Water Works Association, 2008, 100, 104-115.	0.3	32
65	Sustainability metrics for assessing water resource recovery facilities of the future. Water Environment Research, 2019, 91, 45-53.	2.7	29
66	Nitrification inhibition by hexavalent chromium Cr(VI) – Microbial ecology, gene expression and off-gas emissions. Water Research, 2016, 92, 254-261.	11.3	26
67	Structural Characterization of the Glycoprotein GP2 Core Domain from the CAS Virus, a Novel Arenavirus-Like Species. Journal of Molecular Biology, 2014, 426, 1452-1468.	4.2	25
68	Nitrogen polishing in a fully anoxic anammox MBBR treating mainstream nitritation–denitritation effluent. Biotechnology and Bioengineering, 2016, 113, 635-642.	3.3	25
69	Measuring nitrification inhibition by metals in wastewater treatment systems: Current state of science and fundamental research needs. Critical Reviews in Environmental Science and Technology, 2016, 46, 249-289.	12.8	25
70	Interactions between substrate characteristics and microbial communities on biogas production yield and rate. Bioresource Technology, 2020, 303, 122934.	9.6	25
71	Nitric oxide preferentially inhibits nitrite oxidizing communities with high affinity for nitrite. Journal of Biotechnology, 2015, 193, 120-122.	3.8	24
72	Emissions Credits: Opportunity To Promote Integrated Nitrogen Management in the Wastewater Sector. Environmental Science & amp; Technology, 2011, 45, 6239-6246.	10.0	23

#	Article	IF	CITATIONS
73	Polyhydroxyalkanoates, triacylglycerides and glycogen in a high rate activated sludge A-stage system. Chemical Engineering Journal, 2017, 316, 350-360.	12.7	23
74	Importance of hydroxylamine in abiotic N2O production during transient anoxia in planktonic axenic Nitrosomonas cultures. Chemical Engineering Journal, 2018, 335, 756-762.	12.7	23
75	Bioaugmented methanol production using ammonia oxidizing bacteria in a continuous flow process. Bioresource Technology, 2019, 279, 101-107.	9.6	23
76	Resilience and limitations of MFC anodic community when exposed to antibacterial agents. Bioelectrochemistry, 2020, 134, 107500.	4.6	23
77	Combination of ¹⁵ N Tracer and Microbial Analyses Discloses N ₂ O Sink Potential of the Anammox Community. Environmental Science & Technology, 2021, 55, 9231-9242.	10.0	23
78	Modulation of Nitrous Oxide (N2O) Accumulation by Primary Metabolites in Denitrifying Cultures Adapting to Changes in Environmental C and N. Environmental Science & Technology, 2017, 51, 13678-13688.	10.0	22
79	Alcohol dehydrogenase expression as a biomarker of denitrification activity in activated sludge using methanol and glycerol as electron donors. Environmental Microbiology, 2011, 13, 2930-2938.	3.8	20
80	Observation and mathematical description of the acceleration phenomenon in batch respirograms associated with ammonium oxidation. Water Science and Technology, 2006, 54, 181-188.	2.5	19
81	A critical comparison of extant batch respirometric and substrate depletion assays for estimation of nitrification biokinetics. Biotechnology and Bioengineering, 2008, 101, 62-72.	3.3	19
82	Nitrogen Recovery via Aquaponics–Bioponics: Engineering Considerations and Perspectives. ACS ES&T Engineering, 2021, 1, 326-339.	7.6	19
83	Use of functional gene expression and respirometry to study wastewater nitrification activity after exposure to low doses of copper. Environmental Science and Pollution Research, 2016, 23, 6443-6450.	5.3	18
84	Impact of Inoculum Type on the Microbial Community and Power Performance of Urine-Fed Microbial Fuel Cells. Microorganisms, 2020, 8, 1921.	3.6	18
85	Nitrification Inhibition by Ethylenediamine-Based Chelating Agents. Environmental Engineering Science, 2003, 20, 219-228.	1.6	17
86	ldentification of Bisphenol A-Assimilating Microorganisms in Mixed Microbial Communities Using ¹³ C-DNA Stable Isotope Probing. Environmental Science & Technology, 2018, 52, 9128-9135.	10.0	17
87	Factors controlling nitrous oxide emissions from a full-scale activated sludge system in the tropics. Environmental Science and Pollution Research, 2015, 22, 11840-11849.	5.3	16
88	Endocytic Pathways Involved in Filovirus Entry: Advances, Implications and Future Directions. Viruses, 2012, 4, 3647-3664.	3.3	15
89	The role of influent organic carbon-to-nitrogen (COD/N) ratio in removal rates and shaping microbial ecology in soil aquifer treatment (SAT). Water Research, 2018, 146, 197-205.	11.3	15
90	Biokinetic Characterization of the Acceleration Phase in Autotrophic Ammonia Oxidation. Water Environment Research, 2008, 80, 732-739.	2.7	14

#	Article	IF	CITATIONS
91	Protocol for the Measurement of Nitrous Oxide Fluxes from Biological Wastewater Treatment Plants. Methods in Enzymology, 2011, 486, 369-385.	1.0	14
92	Size dependent impacts of a model microplastic on nitrification induced by interaction with nitrifying bacteria. Journal of Hazardous Materials, 2022, 424, 127363.	12.4	14
93	Chemical characterization of faecal sludge in the Kumasi metropolis, Ghana. Gates Open Research, 0, 1, 12.	1.1	12
94	Microbial response on the first full-scale DEMONÂ $^{\odot}$ biomass transfer for mainstream deammonification. Water Research, 2022, 218, 118517.	11.3	12
95	Assessment of nitric oxide (NO) redox reactions contribution to nitrous oxide (N ₂ O) formation during nitrification using a multispecies metabolic network model. Biotechnology and Bioengineering, 2016, 113, 1124-1136.	3.3	11
96	Elemental Profiling of Single Bacterial Cells As a Function of Copper Exposure and Growth Phase. PLoS ONE, 2011, 6, e21255.	2.5	10
97	Metatranscriptomic Investigation of Adaptation in NO and N2O Production From a Lab-Scale Nitrification Process Upon Repeated Exposure to Anoxic–Aerobic Cycling. Frontiers in Microbiology, 2018, 9, 3012.	3.5	10
98	Studying the effect of bioswales on nutrient pollution in urban combined sewer systems. Science of the Total Environment, 2019, 665, 944-958.	8.0	9
99	Startup strategies for mainstream anammox polishing in moving bed biofilm reactors. Water Environment Research, 2022, 94, .	2.7	9
100	Electrochemical Reduction of Nitrite to Ammonia for Use in a Bioreactor. Journal of the Electrochemical Society, 2013, 160, G19-G26.	2.9	8
101	Model based predictive control for energy efficient biological nitrification process with minimal nitrous oxide production. Chemical Engineering Journal, 2015, 268, 300-310.	12.7	8
102	Time to act–assessing variations in qPCR analyses in biological nitrogen removal with examples from partial nitritation/anammox systems. Water Research, 2021, 190, 116604.	11.3	8
103	Characterization and mitigation of nitrous oxide (N ₂ O) emissions from partial and fullâ€nitrification BNR processes based on postâ€anoxic aeration control. Biotechnology and Bioengineering, 2015, 112, 2241-2247.	3.3	7
104	Greenhouse gas emissions from membrane bioreactors: analysis of a two-year survey on different MBR configurations. Water Science and Technology, 2018, 78, 896-903.	2.5	7
105	Structural and Functional Interrogation of Selected Biological Nitrogen Removal Systems in the United States, Denmark, and Singapore Using Shotgun Metagenomics. Frontiers in Microbiology, 2018, 9, 2544.	3.5	7
106	Nitrogen removal from water resource recovery facilities using partial nitrification, denitratation-anaerobic ammonia oxidation (PANDA). Science of the Total Environment, 2020, 724, 138283.	8.0	7
107	Nitric Oxide Production Interferes with Aqueous Dissolved Oxygen Sensors. Environmental Engineering Science, 2017, 34, 687-691.	1.6	6
108	Enhanced lipid accumulation in Metschnikowia pulcherrima using volatile fatty acids under non-sterile repeated batch cultivation. International Biodeterioration and Biodegradation, 2021, 163, 105256.	3.9	6

Kartik Chandran

#	Article	IF	CITATIONS
109	Temporal triggers of N2O emissions during cyclical and seasonal variations of a full-scale sequencing batch reactor treating municipal wastewater. Science of the Total Environment, 2021, 797, 149093.	8.0	6
110	Draft Genome Sequence of the Oleaginous Yeast Cryptococcus albidus var. albidus. Genome Announcements, 2016, 4, .	0.8	5
111	Effect of influent carbon fractionation and reactor configuration on mainstream nitrogen removal and NOB out-selection. Environmental Science: Water Research and Technology, 2020, 6, 691-701.	2.4	5
112	Mainstream partial denitrificationâ€anammox in sand and expanded clay deepâ€bed polishing filters under practical loading rates and backwashing conditions. Water Environment Research, 2022, 94, .	2.7	5
113	Optimization of partial denitrification to maximize nitrite production using glycerol as an external carbon source – impact of influent COD:N ratio. Proceedings of the Water Environment Federation, 2017, 2017, 1356-1360.	0.0	4
114	Stimulating Nitrogen Biokinetics with the Addition of Hydrogen Peroxide to Secondary Effluent Biofiltration. Clean Technologies, 2020, 2, 53-73.	4.2	4
115	Glycerol-driven denitratation: process kinetics, microbial ecology, and operational controls. Environmental Science: Water Research and Technology, 2022, 8, 729-741.	2.4	4
116	Technologies and Framework forÂResource Recovery andÂBeneficiation from HumanÂWaste. , 2014, , 415-430.		3
117	Innovative Global Solutions for Bioenergy Production. Environmental Engineering Science, 2016, 33, 841-842.	1.6	2
118	Single-step nitrification models erroneously describe batch ammonia oxidation profiles when nitrite oxidation becomes rate limiting. Biotechnology and Bioengineering, 2000, 68, 396.	3.3	2
119	Implementation and process analysis of pilot scale multi-phase anaerobic fermentation and digestion of faecal sludge in Ghana. Gates Open Research, 2017, 1, 10.	1.1	2
120	Optimal Experimental Design for Estimating Ammonia and Nitrite Oxidation Biokinetics from Batch Respirograms. Proceedings of the Water Environment Federation, 2001, 2001, 545-560.	0.0	1
121	Cd(II) Mediated Inhibition of <i>Nitrosomonas europaea</i> is Linked to Oxidative Stress and is Impacted by Physiological State and Growth Mode. Proceedings of the Water Environment Federation, 2006, 2006, 6533-6547.	0.0	1
122	Gene Expression Analysis of Aerobic Autotrophic Denitrification by <i>Nitrosomonas europaea</i> . Proceedings of the Water Environment Federation, 2008, 2008, 3168-3179.	0.0	1
123	Nitrous Oxide Emissions from Activated Sludge at Full-scale Wastewater Treatment Facilities in the United States. Proceedings of the Water Environment Federation, 2010, 2010, 686-696.	0.0	1
124	NOB Repression for Mainstream Nitrite-Shunt and Deammonification: A Pilot Study. Proceedings of the Water Environment Federation, 2013, 2013, 1959-1981.	0.0	1
125	Impact of Cr(VI) on nitrification– Physiology, microbial ecology and gene expression. Proceedings of the Water Environment Federation, 2013, 2013, 245-249.	0.0	1
126	Biofilm population diversity and distribution in Anammox MBBR Pilot at 26th Ward WWTP in Brooklyn, New York: Molecular analysis and mathematical modelling Proceedings of the Water Environment Federation, 2014, 2014, 4605-4620.	0.0	1

#	Article	IF	CITATIONS
127	Process Performance and Microbial Community Structures in Three Anammox-Mediated Systems with Different Mixing Conditions. Journal of Environmental Chemical Engineering, 2021, , 106466.	6.7	1
128	Applicability of twoâ€step models in estimating nitrification kinetics from batch respirograms under different relative dynamics of ammonia and nitrite oxidation. Biotechnology and Bioengineering, 2000, 70, 54-64.	3.3	1
129	Achieving low TN effluent by operating AvN control coupled with partial denitrification-anammox control. Proceedings of the Water Environment Federation, 2018, 2018, 153-156.	0.0	1
130	Accelerating Microbial Activity of Soil Aquifer Treatment by Hydrogen Peroxide. Energies, 2022, 15, 3852.	3.1	1
131	EVALUATION OF NITRIFICATION INHIBITION BY HEAVY METALS NICKEL AND ZINC. Proceedings of the Water Environment Federation, 2001, 2001, 581-595.	0.0	0
132	POPULATION DYNAMICS, BIOKINETICS AND GASEOUS NITROGEN PRODUCTION FROM PARTIAL NITRIFICATION REACTORS OPERATED UNDER OXYGEN LIMITED CONDITIONS. Proceedings of the Water Environment Federation, 2007, 2007, 3079-3090.	0.0	0
133	MICROBIAL ECOLOGY, BIOKINETICS AND THERMODYNAMICS OF METHYLOTROPHIC DENITRIFICATION. Proceedings of the Water Environment Federation, 2007, 2007, 5056-5063.	0.0	0
134	PARTIAL NITRIFICATION UNDER OXYGEN LIMITED CONDITIONS RESULTS IN SIGNIFICANT GREENHOUSE GAS PRODUCTION. Proceedings of the Water Environment Federation, 2007, 2007, 861-871.	0.0	0
135	Differences in GHG and Nitric Oxide Emissions for Activated Sludge and Biofilm ENR processes based on Aeration, MCRT, Mixing and Media, and Control of Emissions and Nutrients by Enhancing Process Models in an ENR Operations Simulator (Aquifas). Proceedings of the Water Environment Federation, 2010, 2010, 3539-3562	0.0	0
136	Improving our Understanding of the Differences between Fixed and Moving Bed Media IFAS Systems for Design, Operations and for Real Time Control of Plants (in Aquifas+) to Simultaneously Enhance Nutrient Removal and Minimize GHG Emissions. Proceedings of the Water Environment Federation, 2010, 2010, 4179-4199.	0.0	0
137	Anaerobic Acidogenesis of Food Waste and Application as a Supplemental Carbon Source for Denitrification. Proceedings of the Water Environment Federation, 2011, 2011, 1615-1623.	0.0	0
138	Determination of Denitrification Kinetics on Methanol and Glycerol Using Gene Expression Biomarkers. Proceedings of the Water Environment Federation, 2011, 2011, 1624-1632.	0.0	0
139	Respirometric Microbioreactors for Biokinetic Estimation of Nitrification Activity. Proceedings of the Water Environment Federation, 2011, 2011, 3173-3178.	0.0	0
140	Proteomics unravels metabolic strategies employed by nitrate reducing bacteria during growth on different carbon sources. Proceedings of the Water Environment Federation, 2012, 2012, 3683-3698.	0.0	0
141	Segregation of Microbial Populations and Activities in the Biofilm and Suspended Phases of a Completely Autotrophic Nitrogen-Removal over Nitrite (CANON) Bioreactor. Proceedings of the Water Environment Federation, 2013, 2013, 18-25.	0.0	0
142	Recovery and Utilization of Volatile Fatty Acids from Faecal Sludge for <i>in-situ</i> Pathogen Reduction and Biodiesel Production through Microbial Lipid Synthesis. Proceedings of the Water Environment Federation, 2015, 2015, 5928-5929.	0.0	0
143	Operation and Process Analysis of Faecal Sludge Anaerobic Fermentation and Digestion in Ghana. Proceedings of the Water Environment Federation, 2015, 2015, 936-939.	0.0	0
144	Concurrent Nitrification and Methanol Production Using Nitrifying Activated Sludge in a Continuous Flow Process. Proceedings of the Water Environment Federation, 2015, 2015, 5666-5667.	0.0	0

#	Article	IF	CITATIONS
145	Who Eats Microconstituents? Application of DNA Stable Isotope Probing to Identify Bacteria Assimilating Bisphenol A. Proceedings of the Water Environment Federation, 2015, 2015, 4960-4968.	0.0	0
146	Presence and functional potential of comammox in full-scale wastewater treatment systems across the globe. Proceedings of the Water Environment Federation, 2017, 2017, 4060-4068.	0.0	0
147	Recovery of bioplastics from municipal solids and food waste through an anaerobic fermentation platform. Proceedings of the Water Environment Federation, 2017, 2017, 4310-4314.	0.0	0
148	Functional Gene Expression as an Indicator of Nitrification Inhibition by Cu(II). Proceedings of the Water Environment Federation, 2017, 2017, 4048-4053.	0.0	0
149	Physiological and molecular characterization of continuous cometabolic methanol production by a nitrifying enrichment consortium. Proceedings of the Water Environment Federation, 2017, 2017, 4035-4038.	0.0	0
150	Full-scale evaluation of carbon and energy efficient combined nitrogen and phosphorus removal with advanced aeration and settleability control Proceedings of the Water Environment Federation, 2017, 2017, 110-115.	0.0	0
151	Metagenomics of Anaerobic Food Waste Fermentation. Proceedings of the Water Environment Federation, 2017, 2017, 4041-4047.	0.0	0
152	Assessing Biodegradation and Exposure Effects of Bisphenol-A with Microbial Communities Involved in Biological Nutrient Removal. Proceedings of the Water Environment Federation, 2018, 2018, 51-55.	0.0	0
153	Enrichment of a Glycerol-Driven Denitratation Process: System Performance and Microbial Ecology. Proceedings of the Water Environment Federation, 2018, 2018, 4673-4677.	0.0	0
154	Enrichment of a denitratating microbial community through kinetic limitation. Environment International, 2022, 161, 107113.	10.0	0