Viorel Pop, V Pop

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/59968/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electronic and Thermoelectric Properties of Transition-Metal Dichalcogenides. Journal of Physical Chemistry C, 2021, 125, 27084-27097.	3.1	21
2	Soft Magnetic Naṇocrystalline Ni-Fe-X-Y and MeFe2O4 Powders Obtained by Mechanosynthesis. Studia Universitatis BabeÈ™-Bolyai Physica, 2021, 66, 19-30.	0.0	0
3	Combined Mössbauer Spectrometry and Atom Probe Tomography Investigation of Mechanically Milled Rare Earth / Transition Metal Powders. Studia Universitatis BabeE™-Bolyai Physica, 2021, 66, 55-68.	0.0	0
4	The Nature of Mn-Mn Coupling in Mn-Ni-Al Alloys. Studia Universitatis BabeÈ™-Bolyai Physica, 2021, 66, 111-120.	0.0	0
5	Investigations on the magnetic properties of the Fe5-xCoxSiB2 alloys by experimental and band structure calculation methods. Journal of Magnetism and Magnetic Materials, 2020, 505, 166748.	2.3	3
6	Magnetic Properties of SmCo5 + 10 wt% Fe Exchange-Coupled Nanocomposites Produced from Recycled SmCo5. Nanomaterials, 2020, 10, 1308.	4.1	12
7	Investigations on compensated ferrimagnetism in the Mn2Co0.5V0.5Al Heusler alloy. Solid State Communications, 2020, 309, 113812.	1.9	4
8	Half-metallic compensated ferrimagnetism in the Mn-Co-V-Al Heusler alloys. Journal of Magnetism and Magnetic Materials, 2019, 475, 229-233.	2.3	15
9	Effects of Co for Mn substitution on the electronic properties of Mn2-xCoxVAl as probed by XPS. Intermetallics, 2018, 93, 155-161.	3.9	15
10	Investigation by Mössbauer spectroscopy and atom probe tomography of the phase transformation of Nd-Fe-B alloys after high-energy ball milling. Journal of Applied Physics, 2018, 124, 223905.	2.5	2
11	Influence of high anisotropy phase on the properties of hard–soft magnetic nanocomposite powders obtained by mechanical milling. Powder Metallurgy, 2018, 61, 369-373.	1.7	5
12	Structural, electronic and magnetic properties of the Mn 54â^'x Al 46 Ti x (xÂ=Â2; 4) alloys. Intermetallics, 2017, 82, 101-106.	3.9	18
13	Influence of microstructure on the interphase exchange coupling of Nd2Fe14BÂ+Â10Âwt%α-Fe nanocomposites obtained at different milling energies. Journal of Alloys and Compounds, 2017, 697, 19-24.	5.5	10
14	Influence of Cu Doping on the Electronic Structure and Magnetic Properties of the Mn ₂ VAl Heusler Compound. Physica Status Solidi (B): Basic Research, 2017, 254, 1700160.	1.5	4
15	Structural, electronic and magnetic properties of the Mn50Al46Ni4 alloy. Journal of Magnetism and Magnetic Materials, 2016, 401, 841-847.	2.3	25
16	The influence of milling and annealing conditions on the structural and magnetic behavior of Nd2Fe14B/α-Fe hard/soft magnetic nanocomposites. Journal of Alloys and Compounds, 2015, 646, 859-865.	5.5	12
17	Negative Colossal Magnetoresistance Driven by Carrier Type in the Ferromagnetic Mott Insulator GaV ₄ S ₈ . Chemistry of Materials, 2015, 27, 4398-4404.	6.7	13
18	Effect of Milling Conditions on the Microstructure and Interphase Exchange Coupling of Nd2Fe14B/α-Fe Nanocomposites. Physics Procedia, 2015, 75, 1314-1323.	1.2	6

#	Article	IF	CITATIONS
19	Influence of Al on the magnetic properties of TmCo4Al compound, a magnetic and neutron diffraction study. Journal of Alloys and Compounds, 2015, 626, 70-75.	5.5	2
20	Synthesis, Structural, and Magnetic Properties of Nanocrystalline/Nanosized Manganese-Nickel Ferrite–\${m Mn}_{0.5}{m Ni}_{0.5}{m Fe}_{2}{m O}_{4}\$. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	7
21	Effects of M=Si, Ga and Al for Co substitution on the electronic properties of RCo4M as probed by XPS. Solid State Communications, 2014, 199, 43-46.	1.9	8
22	Thermal evolution of the Ni3Fe compound obtained by mechanical alloying as probed by differential scanning calorimetry. Journal of Alloys and Compounds, 2013, 554, 39-44.	5.5	10
23	The influence of milling and annealing on the structural and magnetic behavior of Nd2Fe14B/α-Fe magnetic nanocomposite. Journal of Alloys and Compounds, 2013, 581, 821-827.	5.5	12
24	Synthesis and characterization of Fe–Pt based multishell magnetic nanoparticles. Journal of Alloys and Compounds, 2013, 574, 477-485.	5.5	18
25	A Mössbauer investigation of the formation of the Ni3Fe phase by high energy ball milling and subsequent annealing. Intermetallics, 2013, 35, 128-134.	3.9	2
26	Magnetic and structural properties of Fe65Co35 alloys obtained by melting, high-energy milling and heat treatment. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2013, 178, 1352-1355.	3.5	1
27	Influence of mechanical milling on the physical properties of SmCo5/Fe65Co35 type hard/soft magnetic nanocomposite. Journal of Alloys and Compounds, 2013, 560, 189-194.	5.5	10
28	Atomic-Scale Investigation of SmCo ₅ /α-Fe Nanocomposites: Influence of Fe/Co Interdiffusion on the Magnetic Properties. Journal of Physical Chemistry C, 2013, 117, 7801-7810.	3.1	14
29	Heat-treatment influence on Ni–Fe–Cu–Mo nanocrystalline alloy obtained by mechanical alloying. Journal of Thermal Analysis and Calorimetry, 2012, 110, 295-299.	3.6	5
30	Structural and magnetic properties of nanocrystalline NiFeCuMo powders produced by wet mechanical alloying. Journal of Alloys and Compounds, 2011, 509, 3632-3637.	5.5	22
31	Effect of hydrogen as interstitial element on the magnetic properties of some iron rich intermetallic compounds. Journal of Alloys and Compounds, 2011, 509, S549-S554.	5.5	9
32	Synthesis, structural and magnetic characterization of nanocrystalline nickel ferrite—NiFe2O4 obtained by reactive milling. Journal of Alloys and Compounds, 2011, 509, 7931-7936.	5.5	59
33	The influence of short time heat treatment on the structural and magnetic behaviour of Nd2Fe14B/α-Fe nanocomposite obtained by mechanical milling. Journal of Alloys and Compounds, 2011, 509, 9964-9969.	5.5	23
34	Influence of wet milling conditions on the structural and magnetic properties of Ni3Fe nanocrystalline intermetallic compound. Intermetallics, 2011, 19, 19-25.	3.9	26
35	Influence of Wet-Milling Process on Magnetic Properties of Supermalloy Magnetic Nanocrystalline Powders. IEEE Transactions on Magnetics, 2010, 46, 424-427.	2.1	7
36	Synthesis of nanocrystalline Supermalloy powders by mechanical alloying: A thermomagnetic analysis. Journal of Magnetism and Magnetic Materials, 2010, 322, 1548-1551.	2.3	27

#	Article	IF	CITATIONS
37	Electronic structure and magnetic properties of RCo5â^'xMx (R=Y, Pr and M=Al, Si) system. Journal of Magnetism and Magnetic Materials, 2010, 322, 1052-1055.	2.3	6
38	Electronic structure and magnetic properties of the ThxY1â^'xCo4B solid solution. Computational Materials Science, 2010, 50, 295-300.	3.0	0
39	Magnetic properties of the iron sublattice in the YFe _{12â°'<i>x</i>} M _{<i>x</i>} compounds (M = Ti, Mo or V; <i>x</i> = 1–3.5). Journal of Physics Condensed Matter, 2009, 21, 406003.	1.8	4
40	Effects of substitution of Ni by Sb in MnNi. Physica Status Solidi (B): Basic Research, 2009, 246, 50-55.	1.5	4
41	X-ray photoelectron spectroscopy and magnetism of Mn1â^'xAlxNi alloys. Journal of Magnetism and Magnetic Materials, 2009, 321, 3415-3421.	2.3	13
42	Electronic structure and magnetic properties of the compound. Journal of Magnetism and Magnetic Materials, 2008, 320, 36-42.	2.3	5
43	X-ray photoelectron spectroscopy and magnetism of Mn1â^'x Alx alloys. Open Physics, 2008, 6, .	1.7	3
44	Magnetic Properties in ThCo4B System. AIP Conference Proceedings, 2007, , .	0.4	0
45	Magnetic properties of Th2Fe17Cx compounds (x=0,0.6,0.9,1.1). Journal of Applied Physics, 2007, 101, 103908.	2.5	5
46	AC magnetic properties of the soft magnetic composites based on nanocrystalline Ni–Fe powders obtained by mechanical alloying. Journal of Magnetism and Magnetic Materials, 2007, 310, 2474-2476.	2.3	27
47	Magnetic and structural properties of SmCo5/α-Fe nanocomposites. Journal of Magnetism and Magnetic Materials, 2007, 310, 2489-2490.	2.3	15
48	X-ray photoelectron spectroscopy and magnetism of MnPd1–xSbx alloys. Physica Status Solidi (B): Basic Research, 2007, 244, 3190-3197.	1.5	5
49	Magnetic behavior of Co and Ni in pseudoternary boron compounds. Journal of Magnetism and Magnetic Materials, 2007, 316, e379-e382.	2.3	6
50	Magnetic behavior of iron in Tb1â^'xZrxFe2 compounds. Journal of Magnetism and Magnetic Materials, 2007, 316, e387-e389.	2.3	2
51	Magnetic behavior of SmCo3Cu2/α-Fe nanocomposite obtained by mechanical milling. Journal of Magnetism and Magnetic Materials, 2007, 316, e503-e506.	2.3	5
52	NiFeCuMo magnetic powders obtained by controlled mechanical alloying and annealing. Journal of Magnetism and Magnetic Materials, 2007, 316, e900-e903.	2.3	11
53	MAGNETIC BEHAVIOR OF Al2GdNi COMPOUND. Modern Physics Letters B, 2006, 20, 401-408.	1.9	4
54	X-ray photoelectron spectroscopy and magnetism of Mn–Pd alloys. Journal of Alloys and Compounds, 2006, 417, 7-12.	5.5	10

#	Article	IF	CITATIONS
55	Effects of substitution of Sb for Pd in MnPd3 compound. Physica Status Solidi (B): Basic Research, 2006, 243, 1914-1921.	1.5	3
56	Magnetic properties of iron-modified amorphous carbon. Semiconductors, 2005, 39, 840-844.	0.5	4
57	Magnetic properties of Al–Gd–Ni orthorhombic compounds. Journal of Alloys and Compounds, 2005, 390, 16-20.	5.5	9
58	A magnetic and Mössbauer spectral study of the spin reorientation in NdFe11Ti and NdFe11TiH. Journal of Applied Physics, 2004, 95, 6308-6316.	2.5	22
59	A Magnetic and Moessbauer Spectral Study of PrFe11Ti and PrFe11TiH ChemInform, 2004, 35, no.	0.0	Ο
60	A magnetic and Mössbauer spectral study of PrFe11Ti and PrFe11TiH. Journal of Alloys and Compounds, 2004, 377, 1-7.	5.5	20
61	Magnetic properties of ThFe11Cx compounds (x=1.5, 1.8). Journal of Magnetism and Magnetic Materials, 2003, 256, 133-138.	2.3	9
62	Magnetic characteristics and band structure calculations of Y2Co7–xNixB3 compounds. Physica Status Solidi (B): Basic Research, 2003, 237, 540-548.	1.5	6
63	Synthesis and magnetic properties of Ni3Fe intermetallic compound obtained by mechanical alloying. Journal of Alloys and Compounds, 2003, 352, 34-40.	5.5	70
64	Crystallographic and magnetic study of the nanocrystalline Ni3Fe intermetallic compound formation by mechanical alloying and annealing. Journal of Alloys and Compounds, 2003, 361, 144-152.	5.5	40
65	MAGNETIC PROPERTIES OF CaxLa1 - xMnO3 (x > 0.5) PEROVSKITES. Modern Physics Letters B, 2003, 17, 263-266.	1.9	1
66	Neutron diffraction investigation of the crystal and magnetic structure of the new ThCo4B compound. Journal of Physics Condensed Matter, 2003, 15, 791-801.	1.8	8
67	X-ray photoelectron spectroscopy and magnetism of Gd3Ni8Al. Journal of Alloys and Compounds, 2002, 333, 1-3.	5.5	16
68	Magnetic Properties of Y ₃ Co _{11-x} M _x B ₄ with M=Cu and Al. Materials Science Forum, 2001, 373-376, 637-640.	0.3	1
69	THE MAGNETIC BEHAVIOR OF (Y1-xTbx)3Co11B4 INTERMETALLIC COMPOUNDS. Modern Physics Letters B, 1999, 13, 905-910.	1.9	2
70	Magnetic Properties of Biaxially Oriented NI-V Substrate. International Journal of Modern Physics B, 1999, 13, 1169-1175.	2.0	6
71	INTERGRANULAR PROPERTIES OF (Y1-x-yZrxCay)Ba2Cu3O7-δCOMPOUNDS. International Journal of Modern Physics B, 1999, 13, 1645-1654.	2.0	12
72	Structural, Magnetic and Superconducting Properties of the Y1-xZrxBa2-2xCa2xCu3O7-δCompounds. Modern Physics Letters B, 1997, 11, 1175-1180.	1.9	0

#	Article	IF	CITATIONS
73	Magnetic properties of Y(Co1â^'xNix)4Al compounds. Journal of Alloys and Compounds, 1996, 242, L5-L7.	5.5	6
74	EPR and magnetic susceptibility studies of Cu2+ ions in Bi2O3·GeO2 glasses. Solid State Communications, 1996, 100, 609-613.	1.9	30
75	A diffuse phase transition in superconducting YBa2(Cu1 â^' xMnx)3O7 â^' δ (Mî—»Zn, Ni, Cr) compounds. Materials Letters, 1995, 24, 195-197.	2.6	1
76	Magnetic properties of R/sub n+1/Co/sub 3n+5/B/sub 2n/ compounds with R=Y or Gd. IEEE Transactions on Magnetics, 1994, 30, 628-630.	2.1	31
77	On the magnetic behaviour of ACo2 (A = Y, Lu, Zr, Sc and Hf) compounds. Journal of Magnetism and Magnetic Materials, 1993, 123, 159-164.	2.3	62
78	Magnetic properties of (Gd x Y 1â^'x)Co 2 B 2 compounds. Journal of Magnetism and Magnetic Materials, 1993, 118, L285-L289.	2.3	7
79	Magnetic properties of (GdxY1â^'x)2Co7B3compounds. Journal of Applied Physics, 1993, 73, 5695-5697.	2.5	23
80	Magnetic properties of GdCo4-xMxB compounds where M = FeorNi. Journal of Magnetism and Magnetic Materials, 1991, 97, 147-151.	2.3	9
81	Magnetic properties of Y2Fe14â^'xMxB compounds where M=Si OR Cu. Solid State Communications, 1987, 61, 61-64.	1.9	19
82	Magnetic properties of RCo4B compounds where R = Y, Pr, Nd, Gd and Er. Journal of Magnetism and Magnetic Materials, 1987, 66, 69-73.	2.3	84
83	Magnetic properties of R2(Fe, Co, Al)14B compounds where R = Pr and Nd. Journal of Magnetism and Magnetic Materials, 1987, 70, 343-344.	2.3	6
84	Bulk magnetic properties of the Y2TxFe14-xB compounds, where T = Al, Ni or Co. Solid State Communications, 1986, 58, 803-805.	1.9	23
85	Magnetic properties of (GdzY1â^'z)2Co7 compounds. Journal of the Less Common Metals, 1985, 111, 97-100.	0.8	3
86	Synthesis of the Mümetal Magnetic Powders by Mechanical Alloying. Materials Science Forum, 0, 672, 157-160.	0.3	0
87	Formation of the Hipernik Alloy by Mechanical Alloying. Materials Science Forum, 0, 672, 68-71.	0.3	2
88	The Influence of Processing Parameters on the Magnetic Properties of the Nanocrystalline Soft Magnetic Composites Based on Ni ₃ Fe. Materials Science Forum, 0, 672, 187-190.	0.3	0
89	Physical Properties of Bonded Nanocomposite Type Hard-Soft Magnets. Materials Science Forum, 0, 672, 84-87.	0.3	0