
Linda S Mansfield

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5995819/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Th1/Th17-mediated Immunity and Protection from Peripheral Neuropathy in Wildtype and IL10â^'/â^' BALB/c Mice Infected with a Guillain–Barré Syndrome‑associated Campylobacter jejuni Strain. Comparative Medicine, 2022, , .	1.0	0
2	Zoonotic Transmission of Campylobacter jejuni to Caretakers From Sick Pen Calves Carrying a Mixed Population of Strains With and Without Guillain Barré Syndrome-Associated Lipooligosaccharide Loci. Frontiers in Microbiology, 2022, 13, 800269.	3.5	3
3	Comparison of Effects of Trichuris muris and Spontaneous Colitis on the Proximal Colon Microbiota in C3H/HeJ and C3Bir IL10–/– Mice. Comparative Medicine, 2021, 71, 46-65.	1.0	1
4	Experimental Evolution of Campylobacter jejuni Leads to Loss of Motility, rpoN (Ï f 54) Deletion and Genome Reduction. Frontiers in Microbiology, 2020, 11, 579989.	3.5	8
5	An antibiotic depleted microbiome drives severe Campylobacter jejuni-mediated Type 1/17 colitis, Type 2 autoimmunity and neurologic sequelae in a mouse model. Journal of Neuroimmunology, 2019, 337, 577048.	2.3	11
6	A proteome-wide screen of Campylobacter jejuni using protein microarrays identifies novel and conformational antigens. PLoS ONE, 2019, 14, e0210351.	2.5	11
7	Effects of antibiotic resistance (AR) and microbiota shifts onCampylobacter jejuni-mediated diseases. Animal Health Research Reviews, 2017, 18, 99-111.	3.1	7
8	Transplanted human fecal microbiota enhanced Guillain Barré syndrome autoantibody responses after Campylobacter jejuni infection in C57BL/6 mice. Microbiome, 2017, 5, 92.	11.1	31
9	Antimicrobial Susceptibility Profiles of Human Campylobacter jejuni Isolates and Association with Phylogenetic Lineages. Frontiers in Microbiology, 2016, 7, 589.	3.5	48
10	Socioecological predictors of immune defences in wildÂspotted hyenas. Functional Ecology, 2016, 30, 1549-1557.	3.6	33
11	Metronidazole—but not IL-10 or prednisolone—rescues Trichuris muris infected C57BL/6 IL-10 deficient mice from severe disease. Veterinary Parasitology, 2015, 212, 239-252.	1.8	4
12	Markedly Elevated Antibody Responses in Wild versus Captive Spotted Hyenas Show that Environmental and Ecological Factors Are Important Modulators of Immunity. PLoS ONE, 2015, 10, e0137679.	2.5	26
13	Characterization of toll-like receptors 1–10 in spotted hyenas. Veterinary Research Communications, 2014, 38, 165-170.	1.6	6
14	Animal Models of Campylobacter jejuni Infections. , 2014, , 367-379.		3
15	The Campylobacter jejuniCiaD effector protein activates MAP kinase signaling pathways and is required for the development of disease. Cell Communication and Signaling, 2013, 11, 79.	6.5	53
16	Passage of Campylobacter jejuni through the chicken reservoir or mice promotes phase variation in contingency genes Cj0045 and Cj0170 that strongly associates with colonization and disease in a mouse model. Microbiology (United Kingdom), 2012, 158, 1304-1316.	1.8	36
17	Draft Genome Sequences of Two Campylobacter jejuni Clinical Isolates, NW and D2600. Journal of Bacteriology, 2012, 194, 5707-5708.	2.2	1
18	Development of a hyena immunology toolbox. Veterinary Immunology and Immunopathology, 2012, 145, 110-119.	1.2	11

LINDA S MANSFIELD

#	Article	IF	CITATIONS
19	Standing Genetic Variation in Contingency Loci Drives the Rapid Adaptation of Campylobacter jejuni to a Novel Host. PLoS ONE, 2011, 6, e16399.	2.5	97
20	Development of improved methods for delivery of Trichuris muris to the laboratory mouse. Parasitology Research, 2010, 107, 1103-1113.	1.6	5
21	Genetic diversity in Campylobacter jejuni is associated with differential colonization of broiler chickens and C57BL/6J IL10-deficient mice. Microbiology (United Kingdom), 2010, 156, 2046-2057.	1.8	56
22	Use of tick surveys and serosurveys to evaluate pet dogs as a sentinel species for emerging Lyme disease. American Journal of Veterinary Research, 2009, 70, 49-56.	0.6	52
23	<i>Campylobacter jejuni</i> -Induced Activation of Dendritic Cells Involves Cooperative Signaling through Toll-Like Receptor 4 (TLR4)-MyD88 and TLR4-TRIF Axes. Infection and Immunity, 2009, 77, 2499-2507.	2.2	55
24	Multiple factors interact to produce responses resembling spectrum of human disease in Campylobacter jejuni infected C57BL/6 IL-10-/- mice. BMC Microbiology, 2009, 9, 57.	3.3	30
25	Dendritic cells from C57BL/6 mice undergo activation and induce Th1-effector cell responses against Campylobacter jejuni. Microbes and Infection, 2008, 10, 1316-1324.	1.9	35
26	Massive Microbiological Groundwater Contamination Associated with a Waterborne Outbreak in Lake Erie, South Bass Island, Ohio. Environmental Health Perspectives, 2007, 115, 856-864.	6.0	162
27	Molecular typing of Sarcocystis neurona: Current status and future trends. Veterinary Parasitology, 2007, 149, 43-55.	1.8	12
28	Evaluation of antimicrobial susceptibility patterns inCampylobacterspp isolated from dairy cattle and farms managed organically and conventionally in the midwestern and northeastern United States. Journal of the American Veterinary Medical Association, 2006, 228, 1074-1081.	0.5	47
29	Effect of daily administration of pyrantel tartrate in preventing infection in horses experimentally challenged with Sarcocystis neurona. American Journal of Veterinary Research, 2005, 66, 846-852.	0.6	10
30	Evidence to support horses as natural intermediate hosts for Sarcocystis neurona. Veterinary Parasitology, 2005, 133, 27-36.	1.8	38
31	Dexamethasone treatment induces susceptibility of outbred Webster mice to experimental infection with Besnoitia darlingi isolated from opossums (Didelphis virginiana). Parasitology Research, 2005, 95, 413-419.	1.6	4
32	Phylogenetic relationships of Sarcocystis neurona of horses and opossums to other cyst-forming coccidia deduced from SSU rRNA gene sequences. Parasitology Research, 2005, 97, 345-357.	1.6	22
33	Phylogenetic congruence of Sarcocystis neurona Dubey et al., 1991 (Apicomplexa: Sarcocystidae) in the United States based on sequence analysis and restriction fragment length polymorphism (RFLP). Systematic Parasitology, 2005, 61, 191-202.	1.1	9
34	AN OUTBREAK OF BESNOITIOSIS IN MINIATURE DONKEYS. Journal of Parasitology, 2005, 91, 877-881.	0.7	27
35	Comparison of automated microbroth dilution and agar dilution for antimicrobial susceptibility of Campylobacter jejuni isolated from dairy sources. Journal of Antimicrobial Chemotherapy, 2005, 56, 686-691.	3.0	13
36	In Vitro and In Vivo Characterization of Helicobacter hepaticus Cytolethal Distending Toxin Mutants. Infection and Immunity, 2004, 72, 2521-2527.	2.2	125

LINDA S MANSFIELD

#	Article	IF	CITATIONS
37	Determination of the activity of sulfadiazine against Besnoitia darlingi tachyzoites in cultured cells. Parasitology Research, 2004, 93, 423-6.	1.6	9
38	Sarcocystis neurona major surface antigen gene 1 (SAG1) shows evidence of having evolved under positive selection pressure. Parasitology Research, 2004, 94, 452-459.	1.6	18
39	Viability of Sarcocystis neurona sporocysts after long-term storage. Veterinary Parasitology, 2004, 123, 257-264.	1.8	6
40	Prevalence of and risk factors associated with the presence of Sarcocystis neurona sporocysts in opossum (Didelphis virginiana) from Michigan: a retrospective study. Veterinary Parasitology, 2004, 125, 277-286.	1.8	11
41	Cyclospora cayetanensis, a food- and waterborne coccidian parasite. Veterinary Parasitology, 2004, 126, 73-90.	1.8	103
42	Assessment of Sarcocystis neurona Sporocyst Viability and Differentiation Between Viable and Nonviable Sporocysts Using Propidium Iodide Stain. Journal of Parasitology, 2004, 90, 872-875.	0.7	8
43	Evaluation of two rapid assays for detecting Cryptosporidium parvum in calf feces. Journal of the American Veterinary Medical Association, 2004, 225, 1090-1092.	0.5	7
44	Lymphoglandular complexes are important colonic sites for immunoglobulin A induction against Campylobacter jejuni in a swine disease model. Comparative Medicine, 2004, 54, 514-23.	1.0	6
45	Sarcocystis inghami n. sp. (Sporozoa: Sarcocystidae) from the skeletal muscles of the Virginia opossum Didelphis virginiana in Michigan. Systematic Parasitology, 2003, 56, 77-84.	1.1	4
46	Purification of Sarcocystis neurona sporocysts from opossum (Didelphis virginiana) using potassium bromide discontinuous density gradient centrifugation. Parasitology Research, 2003, 90, 104-109.	1.6	11
47	Effects of temperature and host cell type on the in vitro growth and development of Sarcocystis falcatula. Parasitology Research, 2003, 91, 22-26.	1.6	5
48	Prevalence and tissue distribution of Besnoitia darlingi cysts in the Virginia opossum (Didelphis) Tj ETQq0 0 0 rgB	T /Overloc 1.8	k 10 Tf 50 30 14
49	Variation of the natural transformation frequency of Campylobacter jejuni in liquid shake culture. Microbiology (United Kingdom), 2003, 149, 3603-3615.	1.8	56
50	Seroprevalence of antibodies against Leishmania spp among dogs in the United States. Journal of the American Veterinary Medical Association, 2003, 222, 603-606.	0.5	25
51	ENHANCEMENT OF DISEASE AND PATHOLOGY BY SYNERGY OF TRICHURIS SUIS AND CAMPYLOBACTER JEJUNI IN THE COLON OF IMMUNOLOGICALLY NAIVE SWINE. American Journal of Tropical Medicine and Hygiene, 2003, 68, 70-80.	1.4	57
52	Enhancement of disease and pathology by synergy of Trichuris suis and Campylobacter jejuni in the colon of immunologically naive swine. American Journal of Tropical Medicine and Hygiene, 2003, 68, 70-80.	1.4	22
53	Enhancement of disease and pathology by synergy of Trichuris suis and Campylobacter jejuni in the colon of immunologically naive swine. American Journal of Tropical Medicine and Hygiene, 2003, 68, 70-80.	1.4	15
54	Identification of Ciprofloxacin-Resistant <i>Campylobacter jejuni</i> by Use of a Fluorogenic PCR Assay. Journal of Clinical Microbiology, 2000, 38, 3971-3978.	3.9	67

#	Article	IF	CITATIONS
55	Western Immunoblot Analysis for Distinguishing Vaccination and Infection Status with <i>Borrelia Burgdorferi</i> (Lyme Disease) in Dogs. Journal of Veterinary Diagnostic Investigation, 1999, 11, 259-265.	1.1	20
56	Characterization of excretory-secretory products from larval stages of Haemonchus contortus cultured in vitro. Veterinary Parasitology, 1996, 62, 291-305.	1.8	40