
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5994340/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phase I Study of DNX-2401 (Delta-24-RGD) Oncolytic Adenovirus: Replication and Immunotherapeutic Effects in Recurrent Malignant Glioma. Journal of Clinical Oncology, 2018, 36, 1419-1427.	1.6	477
2	Functionally defined therapeutic targets in diffuse intrinsic pontine glioma. Nature Medicine, 2015, 21, 555-559.	30.7	473
3	A small noncoding RNA signature found in exosomes of GBM patient serum as a diagnostic tool. Neuro-Oncology, 2014, 16, 520-527.	1.2	298
4	Examination of the Therapeutic Potential of Delta-24-RGD in Brain Tumor Stem Cells: Role of Autophagic Cell Death. Journal of the National Cancer Institute, 2007, 99, 1410-1414.	6.3	268
5	MicroRNA-451 Is Involved in the Self-renewal, Tumorigenicity, and Chemoresistance of Colorectal Cancer Stem Cells. Stem Cells, 2011, 29, 1661-1671.	3.2	248
6	DNA sequences within glioma-derived extracellular vesicles can cross the intact blood-brain barrier and be detected in peripheral blood of patients. Oncotarget, 2017, 8, 1416-1428.	1.8	193
7	Genetic and Epigenetic Modifications of Sox2 Contribute to the Invasive Phenotype of Malignant Gliomas. PLoS ONE, 2011, 6, e26740.	2.5	187
8	Therapeutic Impact of Cytoreductive Surgery and Irradiation of Posterior Fossa Ependymoma in the Molecular Era: A Retrospective Multicohort Analysis. Journal of Clinical Oncology, 2016, 34, 2468-2477.	1.6	160
9	Sarcoma treatment in the era of molecular medicine. EMBO Molecular Medicine, 2020, 12, e11131.	6.9	154
10	Adenovirus-Based Strategies Overcome Temozolomide Resistance by Silencing the O6-Methylguanine-DNA Methyltransferase Promoter. Cancer Research, 2007, 67, 11499-11504.	0.9	130
11	PP2A impaired activity is a common event in acute myeloid leukemia and its activation by forskolin has a potent anti-leukemic effect. Leukemia, 2011, 25, 606-614.	7.2	124
12	Anti-vascular endothelial growth factor therapy-induced glioma invasion is associated with accumulation of Tie2-expressing monocytes. Oncotarget, 2014, 5, 2208-2220.	1.8	108
13	The RB-E2F1 Pathway Regulates Autophagy. Cancer Research, 2010, 70, 7882-7893.	0.9	107
14	Delta-24-RGD in Combination With RAD001 Induces Enhanced Anti-glioma Effect via Autophagic Cell Death. Molecular Therapy, 2008, 16, 487-493.	8.2	105
15	Oncolytic DNX-2401 Virus for Pediatric Diffuse Intrinsic Pontine Glioma. New England Journal of Medicine, 2022, 386, 2471-2481.	27.0	102
16	A phase II trial of autologous dendritic cell vaccination and radiochemotherapy following fluorescence-guided surgery in newly diagnosed glioblastoma patients. Journal of Translational Medicine, 2017, 15, 104.	4.4	100
17	The oncolytic virus Delta-24-RGD elicits an antitumor effect in pediatric glioma and DIPG mouse models. Nature Communications, 2019, 10, 2235.	12.8	96
18	Heterogeneity within the PF-EPN-B ependymoma subgroup. Acta Neuropathologica, 2018, 136, 227-237.	7.7	86

#	Article	IF	CITATIONS
19	Systemic Toxicity–Efficacy Profile of ICOVIR-5, a Potent and Selective Oncolytic Adenovirus Based on the pRB Pathway. Molecular Therapy, 2007, 15, 1607-1615.	8.2	84
20	Expression of the Receptor Tyrosine Kinase Tie2 in Neoplastic Glial Cells Is Associated with Integrin β1-Dependent Adhesion to the Extracellular Matrix. Molecular Cancer Research, 2006, 4, 915-926.	3.4	67
21	Involvement of miRNAs in the Differentiation of Human Glioblastoma Multiforme Stem-Like Cells. PLoS ONE, 2013, 8, e77098.	2.5	64
22	ICOVIR-5 Shows E2F1 Addiction and Potent Antiglioma Effect <i>In vivo</i> . Cancer Research, 2007, 67, 8255-8263.	0.9	63
23	Combination of the oncolytic adenovirus ICOVIR-5 with chemotherapy provides enhanced anti-glioma effect in vivo. Cancer Gene Therapy, 2007, 14, 756-761.	4.6	61
24	A novel E1A–E1B mutant adenovirus induces glioma regression in vivo. Oncogene, 2004, 23, 1821-1828.	5.9	60
25	Expression of Transcription Factor E2F1 and Telomerase in Glioblastomas: Mechanistic Linkage and Prognostic Significance. Journal of the National Cancer Institute, 2005, 97, 1589-1600.	6.3	57
26	GPR56/ADGRG1 Inhibits Mesenchymal Differentiation and Radioresistance in Glioblastoma. Cell Reports, 2017, 21, 2183-2197.	6.4	56
27	Tie2/TEK Modulates the Interaction of Glioma and Brain Tumor Stem Cells with Endothelial Cells and Promotes an Invasive Phenotype. Oncotarget, 2010, 1, 700-709.	1.8	56
28	Salinomycin induced ROS results in abortive autophagy and leads to regulated necrosis in glioblastoma. Oncotarget, 2016, 7, 30626-30641.	1.8	55
29	Delta-24 Increases the Expression and Activity of Topoisomerase I and Enhances the Antiglioma Effect of Irinotecan. Clinical Cancer Research, 2006, 12, 556-562.	7.0	51
30	Tie2-mediated multidrug resistance in malignant gliomas is associated with upregulation of ABC transporters. Oncogene, 2009, 28, 2358-2363.	5.9	48
31	Cell Cycle–Dependent Nuclear Export of Phosphatase and Tensin Homologue Tumor Suppressor Is Regulated by the Phosphoinositide-3-Kinase Signaling Cascade. Cancer Research, 2007, 67, 11054-11063.	0.9	45
32	C-Jun N-terminal kinases are required for oncolytic adenovirus-mediated autophagy. Oncogene, 2015, 34, 5295-5301.	5.9	43
33	E2F1 in gliomas: A paradigm of oncogene addiction. Cancer Letters, 2008, 263, 157-163.	7.2	42
34	Oncolytic adenovirus retargeted to Delta-EGFR induces selective antiglioma activity. Cancer Gene Therapy, 2009, 16, 256-265.	4.6	42
35	Endoplasmic reticulum stress-inducing drugs sensitize glioma cells to temozolomide through downregulation of MGMT, MPG, and Rad51. Neuro-Oncology, 2016, 18, 1109-1119.	1.2	42
36	DNX-2401, an Oncolytic Virus, for the Treatment of Newly Diagnosed Diffuse Intrinsic Pontine Gliomas: A Case Report. Frontiers in Oncology, 2018, 8, 61.	2.8	42

#	Article	IF	CITATIONS
37	Role of SOX family of transcription factors in central nervous system tumors. American Journal of Cancer Research, 2014, 4, 312-24.	1.4	42
38	Phase I Trial of DNX-2401 for Diffuse Intrinsic Pontine Glioma Newly Diagnosed in Pediatric Patients. Neurosurgery, 2018, 83, 1050-1056.	1.1	40
39	Sustained Angiopoietin-2 Expression Disrupts Vessel Formation and Inhibits Glioma Growth. Neoplasia, 2006, 8, 419-428.	5.3	38
40	The Oncolytic Adenovirus VCN-01 as Therapeutic Approach Against Pediatric Osteosarcoma. Clinical Cancer Research, 2016, 22, 2217-2225.	7.0	38
41	Tie2/TEK modulates the interaction of glioma and brain tumor stem cells with endothelial cells and promotes an invasive phenotype. Oncotarget, 2010, 1, 700-9.	1.8	37
42	Comparative Effect of Oncolytic Adenoviruses with E1 A or E113-55 kDa Deletions in Malignant Gliomas. Neoplasia, 2005, 7, 48-56.	5.3	35
43	EVI1 controls proliferation in acute myeloid leukaemia through modulation of miR-1-2. British Journal of Cancer, 2010, 103, 1292-1296.	6.4	33
44	Delta-24-RGD combined with radiotherapy exerts a potent antitumor effect in diffuse intrinsic pontine glioma and pediatric high grade glioma models. Acta Neuropathologica Communications, 2019, 7, 64.	5.2	31
45	Characterization of the Antiglioma Effect of the Oncolytic Adenovirus VCN-01. PLoS ONE, 2016, 11, e0147211.	2.5	31
46	Transgenic E2F1 Expression in the Mouse Brain Induces a Human-Like Bimodal Pattern of Tumors. Cancer Research, 2007, 67, 4005-4009.	0.9	29
47	The aberrant splicing of BAF45d links splicing regulation and transcription in glioblastoma. Neuro-Oncology, 2018, 20, 930-941.	1.2	29
48	Soluble Tie2 overrides the heightened invasion induced by anti-angiogenesis therapies in gliomas. Oncotarget, 2016, 7, 16146-16157.	1.8	29
49	The nuclear receptor NR2E1/TLX controls senescence. Oncogene, 2015, 34, 4069-4077.	5.9	28
50	Splicing regulator SLU7 preserves survival of hepatocellular carcinoma cells and other solid tumors via oncogenic miR-17-92 cluster expression. Oncogene, 2016, 35, 4719-4729.	5.9	27
51	Localized Treatment with Oncolytic Adenovirus Delta-24-RGDOX Induces Systemic Immunity against Disseminated Subcutaneous and Intracranial Melanomas. Clinical Cancer Research, 2019, 25, 6801-6814.	7.0	27
52	The intrinsic and microenvironmental features of diffuse midline glioma: Implications for the development of effective immunotherapeutic treatment strategies. Neuro-Oncology, 2022, 24, 1408-1422.	1.2	27
53	New benzo(b)thiophenesulphonamide 1,1-dioxide derivatives induce a reactive oxygen species-mediated process of apoptosis in tumour cells. Oncogene, 2003, 22, 3759-3769.	5.9	26
54	Oncolytic viruses and DNA-repair machinery: overcoming chemoresistance of gliomas. Expert Review of Anticancer Therapy, 2006, 6, 1585-1592.	2.4	26

#	Article	IF	CITATIONS
55	The Oncolytic Adenovirus Δ24-RGD in Combination With Cisplatin Exerts a Potent Anti-Osteosarcoma Activity. Journal of Bone and Mineral Research, 2014, 29, 2287-2296.	2.8	26
56	CD137 and PD-L1 targeting with immunovirotherapy induces a potent and durable antitumor immune response in glioblastoma models. , 2021, 9, e002644.		25
57	Oncolytic Viruses as Therapeutic Tools for Pediatric Brain Tumors. Cancers, 2018, 10, 226.	3.7	23
58	Current strategies to circumvent the antiviral immunity to optimize cancer virotherapy. , 2021, 9, e002086.		23
59	E2F1 and Telomerase: Alliance in the Dark Side. Cell Cycle, 2006, 5, 930-935.	2.6	22
60	Targeting Brain Tumor Stem Cells with Oncolytic Adenoviruses. Methods in Molecular Biology, 2012, 797, 111-125.	0.9	22
61	Oncolytic adenoviruses as a therapeutic approach for osteosarcoma: A new hope. Journal of Bone Oncology, 2017, 9, 41-47.	2.4	21
62	GITRL-armed Delta-24-RGD oncolytic adenovirus prolongs survival and induces anti-glioma immune memory. Neuro-Oncology Advances, 2019, 1, vdz009.	0.7	21
63	Estradiol induces type 8 17β-hydroxysteroid dehydrogenase expression: crosstalk between estrogen receptor α and C/EBPβ. Journal of Endocrinology, 2009, 200, 85-92.	2.6	20
64	Transcriptional regulation of the human type 8 17β-hydroxysteroid dehydrogenase gene by C/EBPβ. Journal of Steroid Biochemistry and Molecular Biology, 2007, 105, 131-139.	2.5	19
65	Critical Role of Autophagy in the Processing of Adenovirus Capsid-Incorporated Cancer-Specific Antigens. PLoS ONE, 2016, 11, e0153814.	2.5	19
66	Angiopoietin-2 decreases vascular endothelial growth factor expression by modulating HIF-1α levels in gliomas. Oncogene, 2008, 27, 1310-1314.	5.9	17
67	Abstract CT027: Oncolytic virus DNX-2401 with a short course of temozolomide for glioblastoma at first recurrence: Clinical data and prognostic biomarkers. Cancer Research, 2017, 77, CT027-CT027.	0.9	17
68	Exploiting 4-1BB immune checkpoint to enhance the efficacy of oncolytic virotherapy for diffuse intrinsic pontine gliomas. JCI Insight, 2022, 7, .	5.0	14
69	Downmodulation of El A Protein Expression as a Novel Strategy to Design Cancer-Selective Adenoviruses. Neoplasia, 2005, 7, 723-729.	5.3	13
70	RB-E2F1. Autophagy, 2010, 6, 1216-1217.	9.1	13
71	Linking inflammation and cancer: the unexpected SYK world. Neuro-Oncology, 2018, 20, 582-583.	1.2	13
72	SEOM clinical guidelines for anaplastic gliomas (2017). Clinical and Translational Oncology, 2018, 20, 16-21.	2.4	12

#	Article	IF	CITATIONS
73	Delta-24-RGD, an Oncolytic Adenovirus, Increases Survival and Promotes Proinflammatory Immune Landscape Remodeling in Models of AT/RT and CNS-PNET. Clinical Cancer Research, 2021, 27, 1807-1820.	7.0	12
74	Analysis of SOX2-Regulated Transcriptome in Clioma Stem Cells. PLoS ONE, 2016, 11, e0163155.	2.5	12
75	Assessment of metabolic patterns and new antitumoral treatment in osteosarcoma xenograft models by [18F]FDG and sodium [18F]fluoride PET. BMC Cancer, 2018, 18, 1193.	2.6	11
76	RNU6-1 in circulating exosomes differentiates GBM from non-neoplastic brain lesions and PCNSL but not from brain metastases. Neuro-Oncology Advances, 2020, 2, vdaa010.	0.7	11
77	Development of a DIPG Orthotopic Model in Mice Using an Implantable Guide-Screw System. PLoS ONE, 2017, 12, e0170501.	2.5	11
78	New cytotoxic benzo(b)thiophenilsulfonamide 1,1-dioxide derivatives inhibit a NADH oxidase located in plasma membranes of tumour cells. British Journal of Cancer, 2001, 85, 1400-1402.	6.4	10
79	A novel CRM1â€dependent nuclear export signal in adenoviral E1A protein regulated by phosphorylation. FASEB Journal, 2006, 20, 2603-2605.	0.5	10
80	The oncolytic adenovirus VCN-01 promotes anti-tumor effect in primitive neuroectodermal tumor models. Scientific Reports, 2019, 9, 14368.	3.3	10
81	Destress and do not suppress: targeting adrenergic signaling in tumor immunosuppression. Journal of Clinical Investigation, 2019, 129, 5086-5088.	8.2	10
82	The Importance of Gender-Related Anticancer Research on Mitochondrial Regulator Sodium Dichloroacetate in Preclinical Studies In Vivo. Cancers, 2019, 11, 1210.	3.7	9
83	A new species of Chionoloma (Pottiaceae) from Central and South America with a key to Neotropical species of the genus. Bryologist, 2017, 120, 340-346.	0.6	8
84	Oncolytic adenovirus Delta-24-RGD induces a widespread glioma proteotype remodeling during autophagy. Journal of Proteomics, 2019, 194, 168-178.	2.4	8
85	Identification of a Dexamethasone Mediated Radioprotection Mechanism Reveals New Therapeutic Vulnerabilities in Glioblastoma. Cancers, 2021, 13, 361.	3.7	8
86	Spatial and temporal proteome dynamics of glioma cells during oncolytic adenovirus Delta-24-RGD infection. Oncotarget, 2018, 9, 31045-31065.	1.8	8
87	Basic and Translational Advances in Glioblastoma. BioMed Research International, 2018, 2018, 1-2.	1.9	7
88	Hitchhiking to brain tumours: stem cell delivery of oncolytic viruses. Lancet Oncology, The, 2021, 22, 1049-1051.	10.7	6
89	miR-425-5p, a SOX2 target, regulates the expression of FOXJ3 and RAB31 and promotes the survival of GSCs. Archives of Clinical and Biomedical Research, 2020, 04, 221-238.	0.2	6
90	Local Treatment of a Pediatric Osteosarcoma Model with a 4-1BBL Armed Oncolytic Adenovirus Results in an Antitumor Effect and Leads to Immune Memory. Molecular Cancer Therapeutics, 2022, 21, 471-480.	4.1	6

#	Article	IF	CITATIONS
91	Immunovirotherapy for Pediatric Solid Tumors: A Promising Treatment That is Becoming a Reality. Frontiers in Immunology, 2022, 13, 866892.	4.8	5
92	Oncolytic Virotherapy for Cliomas. , 2018, , 357-384.		4
93	Clinical Value of NGS Genomic Studies for Clinical Management of Pediatric and Young Adult Bone Sarcomas. Cancers, 2021, 13, 5436.	3.7	4
94	The Different Temozolomide Effects on Tumorigenesis Mechanisms of Pediatric Glioblastoma PBT24 and SF8628 Cell Tumor in CAM Model and on Cells In Vitro. International Journal of Molecular Sciences, 2022, 23, 2001.	4.1	4
95	ACTR-15. AÂPHASE IÂSTUDY OF THE ONCOLYTIC VIRUS DNX-2401 AND AÂSHORT COURSE TEMOZOLOMIDE FO GLIOBLASTOMA AT FIRST RECURRENCE. Neuro-Oncology, 2016, 18, vi4-vi4.	R _{1.2}	3
96	ATIM-08. IMMUNOMARKERS IN THE DNX-2401 (DELTA-24-RGD) ONCOLYTIC VIRUS PHASE IÂCLINICAL TRIAL. Neuro-Oncology, 2017, 19, vi27-vi27.	1.2	3
97	Intratumoral injection of activated B lymphoblast in combination with PD-1 blockade induces systemic antitumor immunity with reduction of local and distal tumors. Oncolmmunology, 2018, 7, e1450711.	4.6	3
98	Somatic and germline analysis of a familial Rothmund–Thomson syndrome in two siblings with osteosarcoma. Npj Genomic Medicine, 2020, 5, 51.	3.8	3
99	The Effectiveness of Dichloroacetate on Human Glioblastoma Xenograft Growth Depends on Na+ and Mg2+ Cations. Dose-Response, 2021, 19, 155932582199016.	1.6	3
100	Different Effects of Valproic Acid on SLC12A2, SLC12A5 and SLC5A8 Gene Expression in Pediatric Glioblastoma Cells as an Approach to Personalised Therapy. Biomedicines, 2022, 10, 968.	3.2	3
101	Local administration of IL-12 with an HC vector results in local and metastatic tumor control in pediatric osteosarcoma. Molecular Therapy - Oncolytics, 2021, 20, 23-33.	4.4	2
102	Malignant Gliomas: Role of E2F1 Transcription Factor. , 2011, , 89-97.		2
103	HG-51DELTA-24-RDG IN COMBINATION WITH RADIOTHERAPY FOR DIPG: OPENING NEW THERAPEUTIC AVENUES. Neuro-Oncology, 2016, 18, iii58.4-iii59.	1.2	1
104	Conditionally Replicative Adenoviruses—Clinical Trials. , 2016, , 335-348.		1
105	EXTH-09. LOOKING FOR AÂCURE: DELTA-24-RDG AND RADIOTHERAPY FOR DIPG TREATMENT. Neuro-Oncology, 2016, 18, vi61-vi61.	1.2	1
106	OS5.1 Phase I clinical trial with oncolytic virus DNX-2401 for DIPGs. Neuro-Oncology, 2019, 21, iii11-iii11.	1.2	1
107	EPCT-04. RESULTS OF A PHASE 1 STUDY OF THE ONCOLYTIC ADENOVIRUS DNX-2401 WITH RADIOTHERAPY FOR NEWLY DIAGNOSED DIFFUSE INTRINSIC PONTINE GLIOMA (DIPG). Neuro-Oncology, 2021, 23, i47-i47.	1.2	1
108	Abstract 5402: Enhancing autophagy as a novel approach to target osteosarcoma: combination of Oncolytic adenovirus and chemotherapy. , 2011, , .		1

#	Article	IF	CITATIONS
109	DIPG-22. Modifying the tumor microenvironment with a TIM-3 monoclonal antibody as a therapeutic strategy for DIPGs. Neuro-Oncology, 2022, 24, i22-i23.	1.2	1
110	320. Modeling Human Brain Cancer in Transgenic E2F1 Mice. Molecular Therapy, 2006, 13, S122.	8.2	0
111	Interspecies adenovirus fiber shows "evolutionary" advantage for oncolytic therapy of gliomas. Cancer Biology and Therapy, 2008, 7, 794-796.	3.4	0
112	ME-05 * COUNTERATTACKING THE FORCE BEHIND GLIOMA INVASION. Neuro-Oncology, 2014, 16, v120-v120.	1.2	0
113	PCM-14DEVELOPMENT OF A NEW DIPG ORTHOTOPIC MODEL IN MICE USING AN IMPLANTABLE GUIDED-SCREW SYSTEM. Neuro-Oncology, 2016, 18, iii142.1-iii142.	1.2	0
114	IMMU-03. COMBINATION OF RADIOTHERAPY WITH AÂ4-1BB AGONIST ANTIBODY AND AÂTIM-3 APTAMER RESUL IN ENHANCED SURVIVAL IN AÂDIPG MODEL. Neuro-Oncology, 2017, 19, iv28-iv28.	т <u></u> 1.2	0
115	CBIO-06. POTENTIAL ROLE OF RNU6 ISOLATED FROM CIRCULATING EXOSOMES AS AÂDIAGNOSTIC BIOMARKER FOR GLIOBLASTOMA. Neuro-Oncology, 2017, 19, vi33-vi34.	1.2	0
116	PDTM-12. THE ONCOLYTIC ADENOVIRUS DELTA-24-RGD MEDIATES AN EFFICIENT ANTITUMOR RESPONSE IN VIVO IN SUPRATENTORIAL PRIMITIVE NEUROECTODERMAL TUMORS. Neuro-Oncology, 2017, 19, vi192-vi192.	1.2	0
117	IMMU-39. COMBINATION OF RADIOTHERAPY WITH AÂ4-1BB AGONIST ANTIBODY AND AÂTIM-3 APTAMER RESUL IN ENHANCED SURVIVAL IN AÂDIPG MODEL. Neuro-Oncology, 2017, 19, vi121-vi121.	TS 1.2	0
118	MEDU-21. TREATMENT OF PNETS WITH THE ONCOLYTIC ADENOVIRUS DELTA-24-RGD RESULTS IN ANTITUMOR EFFECT. Neuro-Oncology, 2017, 19, iv42-iv42.	1.2	0
119	CBMT-19. RNU6-1 ANALYSED IN EXOSOMES FROM SERA AS A NOVEL DIFFERENTIAL BIOMARKER FOR GBM VS NON-NEOPLASTIC BRAIN LESIONS AND NSCPL. Neuro-Oncology, 2018, 20, vi36-vi36.	1.2	0
120	THER-25. IMMUNE ONCOLYTIC ADENOVIRUS FOR DIPG TREATMENT. Neuro-Oncology, 2019, 21, ii119-ii119.	1.2	0
121	P06.01 Delta24-ACT oncolytic adenovirus as a therapeutic approach for DIPG. Neuro-Oncology, 2019, 21, iii36-iii36.	1.2	0
122	DIPG-04. TRANSLATION OF DNX-2401 FROM THE BENCH TO THE CLINIC FOR PEDIATRIC HIGH GRADE GLIOMAS INCLUDING DIFFUSE INTRINSIC PONTINE GLIOMAS. Neuro-Oncology, 2019, 21, ii68-ii69.	1.2	0
123	ATRT-03. EFFICACY OF THE ONCOLYTIC ADENOVIRUS DELTA-24-RGD AS A THERAPEUTIC AGENT FOR THE TREATMENT OF PEDIATRIC EMBRYONAL BRAIN TUMORS. Neuro-Oncology, 2019, 21, ii63-ii63.	1.2	0
124	PDTM-23. DELTA-24-RGD ONCOLYTIC ADENOVIRUS MEDIATES ANTI-TUMOR EFFECT IN LOCALIZED AND DISSEMINATED AT/RT MURINE MODELS. Neuro-Oncology, 2019, 21, vi192-vi192.	1.2	0
125	EXTH-27. ACTIVATING THE IMMUNITY WITHIN THE TUMOR USING VIROIMMUNOTHERAPY: DELTA-24-RGD ONCOLYTIC ADENOVIRUS ARMED WITH THE IMMUNOPOSITIVE REGULATOR GITRL. Neuro-Oncology, 2019, 21, vi87-vi87.	1.2	0
126	EXTH-11. TREATMENT WITH DELTA-24-RGDOX OF SUBCUTANEOUS TUMORS RESULTS IN ABSCOPAL EFFECT ERADICATING INTRACRANIAL MELANOMAS. Neuro-Oncology, 2019, 21, vi84-vi84.	1.2	0

#	Article	IF	CITATIONS
127	IMMU-14. ONCOLYTIC VIRUS EXPRESSING A POSITIVE IMMUNE CHECKPOINT MODULATOR AS A THERAPEUTIC APPROACH FOR DIPG. Neuro-Oncology, 2019, 21, vi122-vi122.	1.2	0
128	PDCT-18 (LTBK-03). PHASE I CLINICAL TRIAL WITH ONCOLYTIC VIRUS DNX-2401 FOR DIPGS. Neuro-Oncology, 2019, 21, vi283-vi284.	1.2	0
129	P11.23 Oncolytic adenovirus Delta-24-RGD exerts a potent anti-tumor effect in preclinical models of atypical teratoid/rhabdoid tumors. Neuro-Oncology, 2019, 21, iii47-iii47.	1.2	0
130	Immunotherapy with CAR-T cells in paediatric haematology-oncology. Anales De PediatrÃa (English) Tj ETQq0 0 0 r	gBT /Over 0.2	lock 10 Tf 5
131	IMMU-06. DELTA-24-RGD EXPRESSING POSITIVE IMMUNE MODULATORS SHOW ANTI-DIPG EFFECT AND INCREASE TUMOR IMMUNE INFILTRATION. Neuro-Oncology, 2021, 23, i28-i28.	1.2	0
132	IMMU-01. THE ONCOLYTIC VIRUS DELTA-24-RGD IN COMBINATION WITH AN AGONISTIC CD40 MAB INDUCES A DURABLE AND SYNERGISTIC ANTI-TUMOR IMMUNE EFFECT IN DIPG PRECLINICAL MODELS. Neuro-Oncology, 2021, 23, i26-i27.	1.2	0
133	HGG-15. THE IMIPRIDONE ONC201 IN COMBINATION WITH THE ONCOLYTIC ADENOVIRUS DELTA-24-RGD HAS A SYNERGISTIC EFFECT IN PRECLINICAL MODELS OF PHGGS AND DMGS. Neuro-Oncology, 2021, 23, i20-i20.	1.2	0
134	IMMU-09. MODULATING THE MYELOID POPULATION IN DIPG MODELS WITH ONCOLYTIC VIRUS AND COMPLEMENT INHIBITORS SHOWS THERAPEUTIC EFFICACY. Neuro-Oncology, 2021, 23, i28-i29.	1.2	0
135	IMMU-08. MICROENVIRONMENT MODULATION BY TIM-3 BLOCKADE IMPROVES THE OUTCOME OF PRECLINICAL DIPG MODELS. Neuro-Oncology, 2021, 23, i28-i28.	1.2	0
136	Abstract 3053: Armed oncolytic virus for treatment of pediatric diffuse intrinsic pontine glioma. , 2021, , .		0
137	Abstract 3307: The multitasking of Sox2: Maintaining the stemness and inducing the malignant phenotype of gliomas. , 2011, , .		0
138	Abstract LB-235: Delta-24-RGD oncolytic adenovirus treatment downmodulates the key regulator of T-cell exhaustion TIM3 in malignant gliomas. , 2017, , .		0
139	Abstract 704: Therapeutic potential of Delta24-ACT, a novel immunostimulatory oncolytic adenovirus, for the treatment of pediatric solid tumors: Initial study in pHGG, DIPG and osteosarcoma. , 2017, , .		0
140	Abstract 3192: Aptamers, antibodies and radiotherapy for the treatment of DIPG. , 2018, , .		0
141	Abstract 3117: Delta-24-RGD/DNX-2401: Oncolytic virotherapy for pediatric high grade glioma and DIPG. , 2019, , .		0
142	Abstract 3115: High-capacity adenoviral vectors with controlled expression of interleukin 12 as a new strategy against pediatric osteosarcoma. , 2019, , .		0
143	THER-09. ONCOLYTIC ADENOVIRUS, DNX-2401, FOR NAIVE DIFFUSE INTRINSIC PONTINE GLIOMAS: A PHASE I CLINICAL TRIAL. Neuro-Oncology, 2020, 22, iii473-iii473.	1.2	ο
144	THER-01. AWAKING THE IMMUNE SYSTEM WITH AN IMMUNO-ONCOLYTIC VIRUS AS A THERAPEUTIC STRATEGY FOR DIPGs. Neuro-Oncology, 2020, 22, iii471-iii471.	1.2	0

#	Article	IF	CITATIONS
145	THER-02. EVALUATION OF THE ONCOLYTIC VIRUS DELTA24-RGD AS AN ANTI-TUMOR AGENT IN PRECLINICAL MODELS OF LOCALIZED AND DISSEMINATED AT/RT. Neuro-Oncology, 2020, 22, iii471-iii471.	1.2	0
146	IMMU-14. ONCOLYTIC ADENOVIRUS DELTA-24-RGD ENGINEERED TO EXPRESS 4-1BBL AS A THERAPEUTIC APPROACH FOR DIPG. Neuro-Oncology, 2020, 22, ii107-ii107.	1.2	0
147	EXTH-39. HEXON SWAPPING MITIGATES ANTI-VIRAL IMMUNE RESPONSE DURING BRAIN TUMOR VIROTHERAPY. Neuro-Oncology, 2020, 22, ii95-ii95.	1.2	0
148	IMMU-39. TIM-3 APTAMER IN COMBINATION WITH RADIOTHERAPY RESULTS IN ENHANCED SURVIVAL IN DIPG MODELS. Neuro-Oncology, 2020, 22, ii113-ii113.	1.2	0
149	CTIM-25. ONCOLYTIC VIRUS FOR DIPG: THE CLINICAL EXPERIENCE WITH DNX-2401. Neuro-Oncology, 2020, 22, ii38-ii38.	1.2	0
150	IMMU-21. THE COMBINATION OF DELTA-24-ACT WITH AN IMMUNE CHECKPOINT INHIBITOR RESULTS IN ANTI-GLIOMA EFFECT AND IMMUNE MEMORY. Neuro-Oncology, 2020, 22, ii109-ii109.	1.2	0
151	EXTH-60. CHARACTERIZATION OF THE ONCOLYTIC ADENOVIRUS DELTA-24-RGD AS THERAPEUTIC AGENT FOR THE TREATMENT OF THE PEDIATRIC EMBRYONAL BRAIN TUMORS AT/RT AND CNS-PNET. Neuro-Oncology, 2020, 22, ii100-ii100.	1.2	0
152	IMMU-18. Targeting Antigen Presenting Cells to improve virotherapy efficacy in Diffuse Midline Gliomas. Neuro-Oncology, 2022, 24, i85-i85.	1.2	0