Joel C Bornstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5993372/publications.pdf Version: 2024-02-01

LOFI C RODNSTEIN

#	Article	IF	CITATIONS
1	Alzheimer's disease and Al ² toxicity: from top to bottom. Nature Reviews Neuroscience, 2001, 2, 595-598.	10.2	382
2	Intrinsic primary afferent neuronsof the intestine. Progress in Neurobiology, 1998, 54, 1-18.	5.7	373
3	Projections and chemical coding of neurons with immunoreactivity for nitric oxide synthase in the guinea-pig small intestine. Neuroscience Letters, 1992, 148, 121-125.	2.1	304
4	Colorectal Cancer Chemotherapy: The Evolution of Treatment and New Approaches. Current Medicinal Chemistry, 2017, 24, 1537-1557.	2.4	228
5	Identification of sensory nerve cells in a peripheral organ (the intestine) of a mammal. Neuroscience, 1995, 66, 1-4.	2.3	185
6	Enteric motor and interneuronal circuits controlling motility. Neurogastroenterology and Motility, 2004, 16, 34-38.	3.0	181
7	Plurichemical transmission and chemical coding of neurons in the digestive tract. Gastroenterology, 1995, 108, 554-563.	1.3	179
8	The terminals of myenteric intrinsic primary afferent neurons of the guinea-pig ileum are excited by 5-hydroxytryptamine acting at 5-hydroxytryptamine-3 receptors. Neuroscience, 2000, 101, 459-469.	2.3	176
9	Intracellular recording from myenteric neurons of the guinea-pig ileum that respond to stretch. Journal of Physiology, 1998, 506, 827-842.	2.9	175
10	Roles of peptides in transmission in the enteric nervous system. Trends in Neurosciences, 1992, 15, 66-71.	8.6	166
11	Correlated electrophysiological and histochemical studies of submucous neurons and their contribution to understanding enteric neural circuits. Journal of the Autonomic Nervous System, 1988, 25, 1-13.	1.9	164
12	Calbindin neurons of the guinea-pig small intestine: quantitative analysis of their numbers and projections. Cell and Tissue Research, 1990, 260, 261-272.	2.9	164
13	Chemotherapy-Induced Constipation and Diarrhea: Pathophysiology, Current and Emerging Treatments. Frontiers in Pharmacology, 2016, 7, 414.	3.5	150
14	Electrophysiology of guinea-pig myenteric neurons correlated with immunoreactivity for calcium binding proteins. Journal of the Autonomic Nervous System, 1988, 22, 141-150.	1.9	144
15	Substance P enteric neurons mediate non-colinergic transmission to the circular muscle of the guinea-pig intestine. Naunyn-Schmiedeberg's Archives of Pharmacology, 1985, 328, 446-453.	3.0	131
16	Simultaneous intracellular recordings from enteric neurons reveal that myenteric ah neurons transmit via slow excitatory postsynaptic potentials. Neuroscience, 1993, 55, 685-694.	2.3	124
17	Distension-evoked ascending and descending reflexes in the circular muscle of guinea-pig ileum: an intracellular study. Journal of the Autonomic Nervous System, 1990, 29, 203-217.	1.9	123
18	White paper on guidelines concerning enteric nervous system stem cell therapy for enteric neuropathies. Developmental Biology, 2016, 417, 229-251.	2.0	112

#	Article	IF	CITATIONS
19	Electrophysiology and enkephalin immunoreactivity of identified myenteric plexus neurones of guinea-pig small intestine Journal of Physiology, 1984, 351, 313-325.	2.9	111
20	Segmentation induced by intraluminal fatty acid in isolated guinea-pig duodenum and jejunum. Journal of Physiology, 2004, 556, 557-569.	2.9	111
21	Development of colonic motility in the neonatal mouse-studies using spatiotemporal maps. American Journal of Physiology - Renal Physiology, 2007, 292, C930-C938.	3.4	109
22	Strainâ€specific genetics, anatomy and function of enteric neural serotonergic pathways in inbred mice. Journal of Physiology, 2009, 587, 567-586.	2.9	109
23	The Role of the Gastrointestinal Mucus System in Intestinal Homeostasis: Implications for Neurological Disorders. Frontiers in Cellular and Infection Microbiology, 2020, 10, 248.	3.9	109
24	Ramifications of the axons of AH-neurons injected with the intracellular marker biocytin in the myenteric plexus of the guinea pig small intestine. Journal of Comparative Neurology, 1991, 314, 437-451.	1.6	105
25	Immunohistochemical evidence for the presence of calcium-binding proteins in enteric neurons. Cell and Tissue Research, 1988, 252, 79-87.	2.9	99
26	Development of the enteric nervous system and its role in intestinal motility during fetal and early postnatal stages. Seminars in Pediatric Surgery, 2009, 18, 196-205.	1.1	94
27	Distinct chemical classes of medium-sized transient receptor potential channel vanilloid 1-immunoreactive dorsal root ganglion neurons innervate the adult mouse jejunum and colon. Neuroscience, 2008, 156, 334-343.	2.3	93
28	Disturbances of colonic motility in mouse models of Hirschsprung's disease. American Journal of Physiology - Renal Physiology, 2008, 294, G996-G1008.	3.4	92
29	Roles of neuronal NK1 and NK3 receptors in synaptic transmission during motility reflexes in the guinea-pig ileum. British Journal of Pharmacology, 1998, 124, 1375-1384.	5.4	87
30	Excitatory synaptic potentials due to activation of neurons with short projections in the myenteric plexus. Neuroscience, 1984, 11, 723-731.	2.3	86
31	ATP as a Putative Sensory Mediator: Activation of Intrinsic Sensory Neurons of the Myenteric Plexus via P2X Receptors. Journal of Neuroscience, 2002, 22, 4767-4775.	3.6	84
32	The first intestinal motility patterns in fetal mice are not mediated by neurons or interstitial cells of Cajal. Journal of Physiology, 2010, 588, 1153-1169.	2.9	81
33	Synaptic inputs to immunohistochemically identified neurones in the submucous plexus of the guineaâ€pig small intestine Journal of Physiology, 1986, 381, 465-482.	2.9	77
34	The relation between cesarean birth and child cognitive development. Scientific Reports, 2017, 7, 11483.	3.3	76
35	Myenteric neurons of the mouse small intestine undergo significant electrophysiological and morphological changes during postnatal development. Journal of Physiology, 2012, 590, 2375-2390.	2.9	74
36	Role of oxidative stress in oxaliplatinâ€induced enteric neuropathy and colonic dysmotility in mice. British Journal of Pharmacology, 2016, 173, 3502-3521.	5.4	74

#	Article	IF	CITATIONS
37	Electrophysiological analysis of projections of enteric inhibitory motoneurones in the guineaâ€pig small intestine Journal of Physiology, 1986, 370, 61-74.	2.9	73
38	Correlation of morphology, electrophysiology and chemistry of neurons in the myenteric plexus of the guinea-pig distal colon. Journal of the Autonomic Nervous System, 1999, 76, 45-61.	1.9	73
39	Intrinsic and extrinsic inhibitory synaptic inputs to submucous neurones of the guineaâ€pig small intestine Journal of Physiology, 1988, 398, 371-390.	2.9	69
40	ATP participates in three excitatory postsynaptic potentials in the submucous plexus of the guinea pig ileum. Journal of Physiology, 2004, 556, 571-584.	2.9	69
41	Descending inhibitory reflexes involve P2X receptorâ€mediated transmission from interneurons to motor neurons in guineaâ€pig ileum. Journal of Physiology, 2000, 528, 551-560.	2.9	68
42	A neuroligin-3 mutation implicated in autism causes abnormal aggression and increases repetitive behavior in mice. Molecular Autism, 2015, 6, 62.	4.9	66
43	Gastrointestinal dysfunction and enteric neurotoxicity following treatment with anticancer chemotherapeutic agent 5â€fluorouracil. Neurogastroenterology and Motility, 2016, 28, 1861-1875.	3.0	65
44	Interactions between reflexes evoked by distension and mucosal stimulation: Electrophysiological studies of guinea-pig ileum. Journal of the Autonomic Nervous System, 1991, 34, 69-75.	1.9	64
45	Sources of excitatory synaptic inputs to neurochemically identified submucous neurons of guinea-pig small intestine. Journal of the Autonomic Nervous System, 1987, 18, 83-91.	1.9	63
46	Enteric nervous system assembly: Functional integration within the developing gut. Developmental Biology, 2016, 417, 168-181.	2.0	63
47	Gastrointestinal dysfunction in patients and mice expressing the autismâ€associated R451C mutation in neuroliginâ€3. Autism Research, 2019, 12, 1043-1056.	3.8	63
48	Influence of the mucosa on the excitability of myenteric neurons. Neuroscience, 1997, 76, 619-634.	2.3	62
49	Correlation of electrophysiological and morphological characteristics of myenteric neurons of the duodenum in the guinea-pig. Neuroscience, 1997, 82, 899-914.	2.3	62
50	Slow excitatory post-synaptic potentials in myenteric AH neurons of the guinea-pig ileum are reduced by the 5-hydroxytrytamine7 receptor antagonist SB 269970. Neuroscience, 2005, 134, 975-986.	2.3	62
51	Morphological and immunohistochemical identification of neurons and their targets in the guinea-pig duodenum. Neuroscience, 1998, 86, 679-694.	2.3	61
52	Synaptic Transmission at Functionally Identified Synapses in the Enteric Nervous System: Roles for Both Ionotropic and Metabotropic Receptors. Current Neuropharmacology, 2007, 5, 1-17.	2.9	61
53	ATP and 5-HT are the principal neurotransmitters in the descending excitatory reflex pathway of the guinea-pig ileum. Neurogastroenterology and Motility, 2002, 14, 255-264.	3.0	60
54	Potentiation of L-Glutamate and L-Aspartate Excitation of Cat Spinal Neurones by the Stereoisomers of threo-3-Hydroxyaspartate. Journal of Neurochemistry, 1980, 34, 241-243.	3.9	59

#	Article	IF	CITATIONS
55	Endogenous peptide YY and neuropeptide Y inhibit colonic ion transport, contractility and transit differentially via Y ₁ and Y ₂ receptors. British Journal of Pharmacology, 2011, 164, 471-484.	5.4	59
56	In vivo inactivation of quisqualate: studies in the cat spinal cord. Brain Research, 1980, 182, 491-495.	2.2	57
57	Mechanisms underlying nutrient-induced segmentation in isolated guinea pig small intestine. American Journal of Physiology - Renal Physiology, 2007, 292, G1162-G1172.	3.4	57
58	An electrophysiological study of the projections of putative sensory neurons within the myenteric plexus of the guinea pig ileum. Neuroscience Letters, 1990, 110, 286-290.	2.1	56
59	Electrical mapping of the projections of intrinsic primary afferent neurones to the mucosa of the guineaâ€pig small intestine. Neurogastroenterology and Motility, 1998, 10, 533-542.	3.0	56
60	Effects of oxaliplatin on mouse myenteric neurons and colonic motility. Frontiers in Neuroscience, 2013, 7, 30.	2.8	55
61	scRNA-Seq Reveals New Enteric Nervous System Roles for GDNF, NRTN, and TBX3. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 1548-1592.e1.	4.5	55
62	Properties of cholinergic and nonâ€cholinergic submucosal neurons along the mouse colon. Journal of Physiology, 2014, 592, 777-793.	2.9	54
63	Electrophysiological and morphological classification of myenteric neurons in the proximal colon of the guinea-pig. Neuroscience, 1994, 60, 227-244.	2.3	51
64	Investigation of the role of 5â€HT ₃ and 5â€HT ₄ receptors in ascending and descending reflexes to the circular muscle of guineaâ€pig small intestine. British Journal of Pharmacology, 1994, 112, 1095-1100.	5.4	50
65	Inhibitory cotransmission or after-hyperpolarizing potentials can regulate firing in recurrent networks with excitatory metabotropic transmission. Neuroscience, 2003, 120, 333-351.	2.3	50
66	Anti-Colorectal Cancer Chemotherapy-Induced Diarrhoea: Current Treatments and Side-Effects. International Journal of Clinical Medicine, 2014, 05, 393-406.	0.2	50
67	An electrophysiological comparison of substance P-immunoreactive neurons with other neurons in the guinea-pig submucous plexus. Journal of the Autonomic Nervous System, 1989, 26, 113-120.	1.9	49
68	Charybdotoxin and iberiotoxin but not apamin abolish the slow after-hyperpolarization in myenteric plexus neurons. Pflugers Archiv European Journal of Physiology, 1994, 428, 300-306.	2.8	49
69	Neurokinin-1 and -3 receptor blockade inhibits slow excitatory synaptic transmission in myenteric neurons and reveals slow inhibitory input. Neuroscience, 2004, 126, 137-147.	2.3	49
70	Optogenetic Demonstration of Functional Innervation of Mouse Colon by Neurons Derived From Transplanted Neural Cells. Gastroenterology, 2017, 152, 1407-1418.	1.3	49
71	Evidence that inhibitory motor neurons of the guinea-pig small intestine exhibit fast excitatory synaptic potentials mediated via P2X receptors. Neuroscience Letters, 1999, 266, 169-172.	2.1	46
72	An electrophysiological study of the projections of motor neurones that mediate non-cholinergic excitation in the circular muscle of the guinea-pig small intestine. Journal of the Autonomic Nervous System, 1988, 22, 115-128.	1.9	45

#	Article	IF	CITATIONS
73	Mucosal distortion by compression elicits polarized reflexes and enhances responses of the circular muscle to distension in the small intestine. Journal of the Autonomic Nervous System, 1991, 35, 219-226.	1.9	45
74	Projections of 5-hydroxytryptamine-immunoreactive neurons in guinea-pig distal colon. Cell and Tissue Research, 1994, 278, 379-387.	2.9	45
75	The emergence of neural activity and its role in the development of the enteric nervous system. Developmental Biology, 2013, 382, 365-374.	2.0	43
76	Enteric neuroimmune interactions coordinate intestinal responses in health and disease. Mucosal Immunology, 2022, 15, 27-39.	6.0	43
77	Early Emergence of Neural Activity in the Developing Mouse Enteric Nervous System. Journal of Neuroscience, 2011, 31, 15352-15361.	3.6	42
78	Development of myenteric cholinergic neurons in <i>ChATâ€Cre;R26R‥FP</i> mice. Journal of Comparative Neurology, 2013, 521, 3358-3370.	1.6	42
79	Mapping 5-HT inputs to enteric neurons of the guinea-pig small intestine. Neuroscience, 2007, 145, 556-567.	2.3	41
80	Serotonin and cholecystokinin mediate nutrient-induced segmentation in guinea pig small intestine. American Journal of Physiology - Renal Physiology, 2013, 304, G749-G761.	3.4	41
81	The enteric nervous system undergoes significant chemical and synaptic maturation during adolescence in mice. Developmental Biology, 2020, 458, 75-87.	2.0	41
82	Spontaneous multiquantal release at synapses in guineaâ€pig hypogastric ganglia: evidence that release can occur in bursts Journal of Physiology, 1978, 282, 375-398.	2.9	40
83	Changes in Nicotinic Neurotransmission during Enteric Nervous System Development. Journal of Neuroscience, 2015, 35, 7106-7115.	3.6	40
84	Role of α2-adrenoceptors in the sympathetic inhibition of motility reflexes of guinea-pig ileum. Journal of Physiology, 2001, 534, 465-478.	2.9	39
85	5-HT antagonists NAN-190 and SB 269970 block α2-adrenoceptors in the guinea pig. NeuroReport, 2009, 20, 325-330.	1.2	39
86	Mesenchymal stem cells and conditioned medium avert enteric neuropathy and colon dysfunction in guinea pig TNBS-induced colitis. American Journal of Physiology - Renal Physiology, 2014, 307, G1115-G1129.	3.4	38
87	PARP inhibition in platinum-based chemotherapy: Chemopotentiation and neuroprotection. Pharmacological Research, 2018, 137, 104-113.	7.1	38
88	Morphine presynaptically inhibits a ganglionic cholinergic synapase. Neuroscience Letters, 1979, 15, 77-82.	2.1	37
89	Elevated motility-related transmucosal potential difference in the upper small intestine in the irritable bowel syndrome. Neurogastroenterology and Motility, 2007, 19, 812-820.	3.0	37
90	Electrophysiological analysis of the convergence of peripheral inputs onto neurons of the coeliac ganglion in the guinea pig. Journal of the Autonomic Nervous System, 1994, 46, 93-105.	1.9	36

#	Article	IF	CITATIONS
91	Electrophysiological mapping of fast excitatory synaptic inputs to morphologically and chemically characterized myenteric neurons of guinea-pig small intestine. Neuroscience, 1996, 73, 1017-1028.	2.3	36
92	Cholera Toxin Induces Sustained Hyperexcitability in Submucosal Secretomotor Neurons in Guinea Pig Jejunum. Gastroenterology, 2009, 136, 299-308.e4.	1.3	36
93	Cholinergic transmission to colonic circular muscle of children with slow-transit constipation is unimpaired, but transmission via NK2 receptors is lacking. Neurogastroenterology and Motility, 2003, 15, 669-678.	3.0	35
94	Purinergic mechanisms in the control of gastrointestinal motility. Purinergic Signalling, 2008, 4, 197-212.	2.2	35
95	Video Imaging and Spatiotemporal Maps to Analyze Gastrointestinal Motility in Mice. Journal of Visualized Experiments, 2016, , 53828.	0.3	35
96	A computer simulation of recurrent, excitatory networks of sensory neurons of the gut in guinea-pig. Neuroscience Letters, 2000, 287, 137-140.	2.1	34
97	Alterations of colonic function in the <i>Winnie</i> mouse model of spontaneous chronic colitis. American Journal of Physiology - Renal Physiology, 2017, 312, G85-G102.	3.4	34
98	Oxaliplatinâ€induced enteric neuronal loss and intestinal dysfunction is prevented by coâ€treatment with BGPâ€15. British Journal of Pharmacology, 2018, 175, 656-677.	5.4	34
99	Colonic dilation and altered <i>ex vivo</i> gastrointestinal motility in the neuroliginâ€3 knockout mouse. Autism Research, 2020, 13, 691-701.	3.8	34
100	Early life interaction between the microbiota and the enteric nervous system. American Journal of Physiology - Renal Physiology, 2020, 319, G541-G548.	3.4	34
101	Neuroinflammation as an etiological trigger for depression comorbid with inflammatory bowel disease. Journal of Neuroinflammation, 2022, 19, 4.	7.2	34
102	Kainate neurotoxicity and glutamate inactivation. Neuroscience Letters, 1979, 14, 343-348.	2.1	33
103	Local inhibitory reflexes excited by mucosal application of nutrient amino acids in guinea pig jejunum. American Journal of Physiology - Renal Physiology, 2007, 292, G1660-G1670.	3.4	33
104	Structure of the tertiary component of the myenteric plexus in the guinea-pig small intestine. Cell and Tissue Research, 1993, 272, 509-516.	2.9	32
105	Characterization of 5-HT receptors mediating contraction and relaxation of the longitudinal muscle of guinea-pig distal colon in vitro. Naunyn-Schmiedeberg's Archives of Pharmacology, 1994, 349, 455-462.	3.0	32
106	Genesis and role of coordinated firing in a feedforward network: a model study of the enteric nervous system. Neuroscience, 1999, 93, 1525-1537.	2.3	31
107	Neonatal Antibiotics DisruptÂMotility and Enteric Neural Circuits in Mouse Colon. Cellular and Molecular Gastroenterology and Hepatology, 2019, 8, 298-300.e6.	4.5	31
108	The neurochemistry and innervation patterns of extrinsic sensory and sympathetic nerves in the myenteric plexus of the C57Bl6 mouse jejunum. Neuroscience, 2010, 166, 564-579.	2.3	30

#	Article	IF	CITATIONS
109	LOCAL NEURAL CONTROL OF INTESTINAL MOTILITY: NERVE CIRCUITS DEDUCED FOR THE GUINEA-PIG SMALL INTESTINE. Clinical and Experimental Pharmacology and Physiology, 1994, 21, 441-452.	1.9	29
110	ERYTHROMYCIN DERIVATIVES ABT 229 AND GM 611 ACT ON MOTILIN RECEPTORS IN THE RABBIT DUODENUM. Clinical and Experimental Pharmacology and Physiology, 1999, 26, 242-245.	1.9	29
111	Neurochemical and morphological phenotypes of vagal afferent neurons innervating the adult mouse jejunum. Neurogastroenterology and Motility, 2009, 21, 994-1001.	3.0	29
112	Early Development of Electrical Excitability in the Mouse Enteric Nervous System. Journal of Neuroscience, 2012, 32, 10949-10960.	3.6	29
113	Serotonin in the Gut: What Does It Do?. Frontiers in Neuroscience, 2012, 6, 16.	2.8	29
114	VPAC ₁ receptors regulate intestinal secretion and muscle contractility by activating cholinergic neurons in guinea pig jejunum. American Journal of Physiology - Renal Physiology, 2014, 306, G748-G758.	3.4	29
115	A sexually dimorphic effect of cholera toxin: rapid changes in colonic motility mediated via a 5â€HT ₃ receptorâ€dependent pathway in female C57Bl/6 mice. Journal of Physiology, 2016, 594, 4325-4338.	2.9	29
116	The effects of anaesthetic and convulsant barbiturates on the efflux of [3H]d-aspartate from brain minislices. Neuroscience Letters, 1980, 18, 185-190.	2.1	27
117	Nicotinic transmission at functionally distinct synapses in descending reflex pathways of the rat colon. Neurogastroenterology and Motility, 2003, 15, 161-171.	3.0	27
118	Serotonergic receptors in therapeutic approaches to gastrointestinal disorders. Current Opinion in Pharmacology, 2006, 6, 547-552.	3.5	27
119	5-HT _{1A} , SST ₁ , and SST ₂ receptors mediate inhibitory postsynaptic potentials in the submucous plexus of the guinea pig ileum. American Journal of Physiology - Renal Physiology, 2010, 298, G384-G394.	3.4	27
120	Antibiotic exposure postweaning disrupts the neurochemistry and function of enteric neurons mediating colonic motor activity. American Journal of Physiology - Renal Physiology, 2020, 318, G1042-G1053.	3.4	27
121	Synaptic transmission in simple motility reflex pathways excited by distension in guinea pig distal colon. American Journal of Physiology - Renal Physiology, 2004, 287, G1017-G1027.	3.4	26
122	Inhibition of APE1/Ref-1 Redox Signaling Alleviates Intestinal Dysfunction and Damage to Myenteric Neurons in a Mouse Model of Spontaneous Chronic Colitis. Inflammatory Bowel Diseases, 2021, 27, 388-406.	1.9	26
123	Evidence for functional NK1-tachykinin receptors on motor neurones supplying the circular muscle of guinea-pig small and large intestine. Neurogastroenterology and Motility, 2000, 12, 307-315.	3.0	25
124	Neurally Released GABA Acts via GABAC Receptors to Modulate Ca2+ Transients Evoked by Trains of Synaptic Inputs, but Not Responses Evoked by Single Stimuli, in Myenteric Neurons of Mouse Ileum. Frontiers in Physiology, 2018, 9, 97.	2.8	25
125	Multiple Neural Oscillators and Muscle Feedback Are Required for the Intestinal Fed State Motor Program. PLoS ONE, 2011, 6, e19597.	2.5	25
126	Characterization of 5â€hydroxytryptamine receptors mediating mucosal secretion in guineaâ€pig ileum. British Journal of Pharmacology, 1994, 111, 1240-1244.	5.4	24

#	Article	IF	CITATIONS
127	VPAC Receptor Subtypes Tune Purinergic Neuron-to-Glia Communication in the Murine Submucosal Plexus. Frontiers in Cellular Neuroscience, 2017, 11, 118.	3.7	24
128	Endogenous Glutamate Excites Myenteric Calbindin Neurons by Activating Group I Metabotropic Glutamate Receptors in the Mouse Colon. Frontiers in Neuroscience, 2019, 13, 426.	2.8	24
129	Targets of myenteric interneurons in the guineaâ€pig small intestine. Neurogastroenterology and Motility, 2008, 20, 566-575.	3.0	23
130	Insights into mechanisms of intestinal segmentation in guinea pigs: a combined computational modeling and in vitro study. American Journal of Physiology - Renal Physiology, 2008, 295, G534-G541.	3.4	23
131	mGluR1 Receptors Contribute to Non-Purinergic Slow Excitatory Transmission to Submucosal VIP Neurons of Guinea-Pig lleum. Frontiers in Neuroscience, 2009, 3, 46.	2.8	23
132	Luminal Cholera Toxin Alters Motility in Isolated Guinea-Pig Jejunum via a Pathway Independent of 5-HT3 Receptors. Frontiers in Neuroscience, 2010, 4, 162.	2.8	22
133	Inhibition of the evoked release of acetylcholine by the porphyrin precursor ?-aminolevulinic acid. Annals of Neurology, 1979, 5, 94-96.	5.3	21
134	Localization of substance P binding sites in submucous plexus of guinea pig ileum, using whole-mount autoradiography. Synapse, 1988, 2, 232-239.	1.2	21
135	Irinotecan-Induced Gastrointestinal Dysfunction Is Associated with Enteric Neuropathy, but Increased Numbers of Cholinergic Myenteric Neurons. Frontiers in Physiology, 2017, 8, 391.	2.8	21
136	Recurrent networks of submucous neurons controlling intestinal secretion: a modeling study. American Journal of Physiology - Renal Physiology, 2005, 288, G887-G896.	3.4	20
137	Electrical stimulation of the mucosa evokes slow EPSPs mediated by NK1 tachykinin receptors and by P2Y1 purinoceptors in different myenteric neurons. American Journal of Physiology - Renal Physiology, 2009, 297, G179-G186.	3.4	20
138	A simple mathematical model of second-messenger mediated slow excitatory postsynaptic potentials. Journal of Computational Neuroscience, 2000, 8, 127-142.	1.0	19
139	In vivo analysis of GABA receptors on primary afferent terminations in the cat. Brain Research, 1980, 194, 255-258.	2.2	17
140	Effects of cholera toxin on the potential difference and motor responses induced by distension in the rat proximal small intestine in vivo. American Journal of Physiology - Renal Physiology, 2006, 290, G948-G958.	3.4	17
141	Spontaneous calcium waves in the developing enteric nervous system. Developmental Biology, 2017, 428, 74-87.	2.0	17
142	Intrinsic Sensory Neurons of Mouse Gut—Toward a Detailed Knowledge of Enteric Neural Circuitry Across Species. Focus on "Characterization of Myenteric Sensory Neurons in the Mouse Small Intestine― Journal of Neurophysiology, 2006, 96, 973-974.	1.8	16
143	Multiquantal release of acetylcholine in mammalian ganglia. Nature, 1974, 248, 529-531.	27.8	15
144	Cholinergic Submucosal Neurons Display Increased Excitability Following in Vivo Cholera Toxin Exposure in Mouse Ileum. Frontiers in Physiology, 2018, 9, 260.	2.8	15

#	ARTICLE	IF	CITATIONS
145	Computer simulation of the enteric neural circuits mediating an ascending reflex: Roles of fast and slow excitatory outputs of sensory neurons. Journal of the Autonomic Nervous System, 1997, 64, 143-157.	1.9	14
146	Synaptic transmission from the submucosal plexus to the myenteric plexus in Guineaâ€pig ileum. Neurogastroenterology and Motility, 2008, 20, 1165-1173.	3.0	14
147	Luminal 5â€HT ₄ receptors—A successful target for prokinetic actions. Neurogastroenterology and Motility, 2019, 31, e13708.	3.0	14
148	Ion Channel Expression in the Developing Enteric Nervous System. PLoS ONE, 2015, 10, e0123436.	2.5	14
149	Enteric Neural Regulation of Mucosal Secretion. , 2012, , 769-790.		13
150	A detailed, conductance-based computer model of intrinsic sensory neurons of the gastrointestinal tract. American Journal of Physiology - Renal Physiology, 2014, 307, G517-G532.	3.4	13
151	Transmission to Interneurons Is via Slow Excitatory Synaptic Potentials Mediated by P2Y1 Receptors during Descending Inhibition in Guinea-Pig Ileum. PLoS ONE, 2013, 8, e40840.	2.5	13
152	The effects of physostigmine on synaptic transmission in the inferior mesenteric ganglion of guineaâ€pigs. Journal of Physiology, 1974, 241, 309-325.	2.9	12
153	Post-stimulus depression of reflex changes in circular muscle activity in the guinea pig small intestine. Journal of the Autonomic Nervous System, 1992, 40, 171-180.	1.9	12
154	Indirect evidence for increased mechanosensitivity of jejunal secretomotor neurones in patients with idiopathic bile acid malabsorption. Acta Physiologica, 2009, 197, 129-137.	3.8	12
155	Pharmacological analysis of components of the change in transmural potential difference evoked by distension of rat proximal small intestine in vivo. American Journal of Physiology - Renal Physiology, 2008, 294, G165-G173.	3.4	11
156	Nuciferine and central glutamate receptors. Journal of Pharmacy and Pharmacology, 2011, 31, 795-797.	2.4	11
157	Nitric Oxide Regulates Estrus Cycle Dependent Colonic Motility in Mice. Frontiers in Neuroscience, 2021, 15, 647555.	2.8	11
158	Both exogenous 5-HT and endogenous 5-HT, released by fluoxetine, enhance distension evoked propulsion in guinea-pig ileum in vitro. Frontiers in Neuroscience, 2014, 8, 301.	2.8	10
159	Mathematical modelling of enteric neural motor patterns. Clinical and Experimental Pharmacology and Physiology, 2014, 41, 155-164.	1.9	10
160	Cholera Toxin Induces Sustained Hyperexcitability in Myenteric, but Not Submucosal, AH Neurons in Guinea Pig Jejunum. Frontiers in Physiology, 2017, 8, 254.	2.8	10
161	Correlated functional and structural analysis of enteric neural circuits Archives of Histology and Cytology, 1989, 52, 161-166.	0.2	9
162	Combined intracellular injection of Neurobiotin and pre-embedding immunocytochemistry using silver-intensified gold probes in myenteric neurons. Journal of Neuroscience Methods, 1994, 51, 39-45.	2.5	9

#	Article	IF	CITATIONS
163	Nitric oxide enhances inhibitory synaptic transmission and neuronal excitability in guinea-pig submucous plexus. Frontiers in Neuroscience, 2010, 4, 30.	2.8	9
164	Selective antagonist activity of 5-aminohex-2-enedioic acid on amino acid excitation of cat spinal neurones. Neuroscience Letters, 1980, 16, 17-20.	2.1	8
165	Divergent Adaptations in Autonomic Nerve Activity and Neuroimmune Signaling Associated With the Severity of Inflammation in Chronic Colitis. Inflammatory Bowel Diseases, 2022, 28, 1229-1243.	1.9	8
166	Effects of stimulation on the multiquantal spontaneous synaptic potentials in guinea pig hypogastric ganglia. Neuroscience Letters, 1981, 22, 57-61.	2.1	7
167	EXPERIMENTAL BASIS FOR REALISTIC LARGE-SCALE COMPUTER SIMULATION OF THE ENTERIC NERVOUS SYSTEM. Clinical and Experimental Pharmacology and Physiology, 1996, 23, 786-792.	1.9	7
168	Calcium Sensing Receptors Mediate Local Inhibitory Reflexes Evoked by L-Phenylalanine in Guinea Pig Jejunum. Frontiers in Physiology, 2017, 8, 991.	2.8	7
169	Spatiotemporal Mapping Reveals Regional Gastrointestinal Dysfunction in mdx Dystrophic Mice Ameliorated by Oral L-arginine Supplementation. Journal of Neurogastroenterology and Motility, 2020, 26, 133-146.	2.4	7
170	Potent CCR3 Receptor Antagonist, SB328437, Suppresses Colonic Eosinophil Chemotaxis and Inflammation in the Winnie Murine Model of Spontaneous Chronic Colitis. International Journal of Molecular Sciences, 2022, 23, 7780.	4.1	7
171	Enteric Neural Regulation of Mucosal Secretion. , 2018, , 429-451.		6
172	Some effects of hypertonic solution on the properties of spontaneous transmitter release in the hypogastric ganglia of guineaâ€pigs Journal of Physiology, 1979, 290, 11-22.	2.9	5
173	Differential effects of ω-conotoxin GVIA on cholinergic and non-cholinergic secretomotor neurones in the guinea-pig small intestine. British Journal of Pharmacology, 1997, 121, 232-236.	5.4	5
174	Different types of potassium channels underlie the long afterhyperpolarization in guinea-pig sympathetic and enteric neurons. Autonomic Neuroscience: Basic and Clinical, 2006, 124, 26-30.	2.8	5
175	Co-treatment With BGP-15 Exacerbates 5-Fluorouracil-Induced Gastrointestinal Dysfunction. Frontiers in Neuroscience, 2019, 13, 449.	2.8	5
176	Dopamine and acetylcholinesterase released in the substantia nigra: Cooperative or coincindental?. Neurochemistry International, 1985, 7, 905-912.	3.8	4
177	Development of Gut Motility. , 2017, , 21-37.		4
178	76 Clostridium difficile Toxin and Microbial-Derived GABA Signals Converge to Hyperexcite Myenteric Intrinsic Sensory Neurons. Gastroenterology, 2015, 148, S-21.	1.3	2
179	Identification of neurones involved in intestinal reflexes. Journal of the Autonomic Nervous System, 1991, 33, 199-200.	1.9	1
180	Enteric micro-circuits activated upon stimulation of the mucosa. Gastroenterology, 2000, 118, A667.	1.3	1

#	Article	IF	CITATIONS
181	Strain differences in Tph2 genotype in murine myenteric neurons. Autonomic Neuroscience: Basic and Clinical, 2007, 135, 98-99.	2.8	1
182	W1347 Strain-Specific Expression of Tph2 Polymorphism in Murine Enteric Neurons. Gastroenterology, 2008, 134, A-685.	1.3	1
183	Diet and gastric neurons. Journal of Physiology, 2012, 590, 1015-1015.	2.9	1
184	Development of Gut Motility. , 2013, , 23-35.		1
185	Motility changes induced by intraluminal <scp><scp>FeSO₄</scp></scp> in guinea pig jejunum. Neurogastroenterology and Motility, 2014, 26, 385-396.	3.0	1
186	Computational simulations and Ca2+ imaging reveal that slow synaptic depolarizations (slow EPSPs) inhibit fast EPSP evoked action potentials for most of their time course in enteric neurons. PLoS Computational Biology, 2022, 18, e1009717.	3.2	1
187	The role of nicotinic, P2X and 5-HT3 receptors in descending excitation in the guinea pig lleum. Gastroenterology, 2001, 120, A333.	1.3	0
188	Group 1 metabotropic glutamate receptor antagonism inhibits propulsion in guinea pig colon. Gastroenterology, 2003, 124, A138.	1.3	0
189	859 Cholera Toxin Increases Excitability of Myenteric, but Not Submucosal, AH Neurons in Guinea-Pig Jejunum. Gastroenterology, 2012, 142, S-147-S-148.	1.3	0
190	Autonomic Neuroscience: articles of interest appearing in other Frontiers journals. Frontiers in Neuroscience, 2012, 6, 184.	2.8	0