T Alex Perkins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5993198/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Timing is everything when it comes to pertussis vaccination. Lancet Infectious Diseases, The, 2022, 22, 158-159.	9.1	3
2	Inferring SARS-CoV-2 RNA shedding into wastewater relative to the time of infection. Epidemiology and Infection, 2022, 150, e21.	2.1	17
3	Performance of Three Tests for SARS-CoV-2 on a University Campus Estimated Jointly with Bayesian Latent Class Modeling. Microbiology Spectrum, 2022, 10, e0122021.	3.0	5
4	Inferring person-to-person networks of Plasmodium falciparum transmission: are analyses of routine surveillance data up to the task?. Malaria Journal, 2022, 21, 58.	2.3	1
5	Bluetongue Research at a Crossroads: Modern Genomics Tools Can Pave the Way to New Insights. Annual Review of Animal Biosciences, 2022, 10, 303-324.	7.4	4
6	Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2113561119.	7.1	136
7	Projecting vaccine demand and impact for emerging zoonotic pathogens. BMC Medicine, 2022, 20, .	5.5	3
8	Air Passenger Travel and International Surveillance Data Predict Spatiotemporal Variation in Measles Importations to the United States. Pathogens, 2021, 10, 155.	2.8	2
9	Co-circulation and misdiagnosis led to underestimation of the 2015–2017 Zika epidemic in the Americas. PLoS Neglected Tropical Diseases, 2021, 15, e0009208.	3.0	20
10	Lying in wait: the resurgence of dengue virus after the Zika epidemic in Brazil. Nature Communications, 2021, 12, 2619.	12.8	43
11	Over 100 Years of Rift Valley Fever: A Patchwork of Data on Pathogen Spread and Spillover. Pathogens, 2021, 10, 708.	2.8	26
12	Impact of COVID-19-related disruptions to measles, meningococcal A, and yellow fever vaccination in 10 countries. ELife, 2021, 10, .	6.0	54
13	Cost-effectiveness of dengue vaccination in Puerto Rico. PLoS Neglected Tropical Diseases, 2021, 15, e0009606.	3.0	8
14	The impact of dengue illness on social distancing and caregiving behavior. PLoS Neglected Tropical Diseases, 2021, 15, e0009614.	3.0	0
15	Lives saved with vaccination for 10 pathogens across 112 countries in a pre-COVID-19 world. ELife, 2021, 10, .	6.0	50
16	Pandemic-associated mobility restrictions could cause increases in dengue virus transmission. PLoS Neglected Tropical Diseases, 2021, 15, e0009603.	3.0	17
17	Trade-offs between individual and ensemble forecasts of an emerging infectious disease. Nature Communications, 2021, 12, 5379.	12.8	16
18	Impacts of K-12 school reopening on the COVID-19 epidemic in Indiana, USA. Epidemics, 2021, 37, 100487.	3.0	19

#	Article	IF	CITATIONS
19	Disease-driven reduction in human mobility influences human-mosquito contacts and dengue transmission dynamics. PLoS Computational Biology, 2021, 17, e1008627.	3.2	19
20	Burden is in the eye of the beholder: Sensitivity of yellow fever disease burden estimates to modeling assumptions. Science Advances, 2021, 7, eabg5033.	10.3	4
21	How radical is radical cure? Site-specific biases in clinical trials underestimate the effect of radical cure on Plasmodium vivax hypnozoites. Malaria Journal, 2021, 20, 479.	2.3	6
22	The basic reproductive number for disease systems with multiple coupled heterogeneities. Mathematical Biosciences, 2020, 321, 108294.	1.9	3
23	Community-level impacts of spatial repellents for control of diseases vectored by Aedes aegypti mosquitoes. PLoS Computational Biology, 2020, 16, e1008190.	3.2	5
24	Malaria Elimination in Costa Rica: Changes in Treatment and Mass Drug Administration. Microorganisms, 2020, 8, 984.	3.6	15
25	Optimal Control of the COVID-19 Pandemic with Non-pharmaceutical Interventions. Bulletin of Mathematical Biology, 2020, 82, 118.	1.9	130
26	Estimating unobserved SARS-CoV-2 infections in the United States. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22597-22602.	7.1	71
27	Hidden heterogeneity and its influence on dengue vaccination impact. Infectious Disease Modelling, 2020, 5, 783-797.	1.9	2
28	Modeling human migration across spatial scales in Colombia. PLoS ONE, 2020, 15, e0232702.	2.5	3
29	Aggregated mobility data could help fight COVID-19. Science, 2020, 368, 145-146.	12.6	303
30	Ecological Dynamics Impacting Bluetongue Virus Transmission in North America. Frontiers in Veterinary Science, 2020, 7, 186.	2.2	27
31	Optimizing the deployment of ultra-low volume and targeted indoor residual spraying for dengue outbreak response. PLoS Computational Biology, 2020, 16, e1007743.	3.2	27
32	Leveraging multiple data types to estimate the size of the Zika epidemic in the Americas. PLoS Neglected Tropical Diseases, 2020, 14, e0008640.	3.0	22
33	Title is missing!. , 2020, 16, e1008190.		ο
34	Title is missing!. , 2020, 16, e1008190.		0
35	Title is missing!. , 2020, 16, e1008190.		0
36	Title is missing!. , 2020, 16, e1008190.		0

3

#	Article	IF	CITATIONS
37	Title is missing!. , 2020, 16, e1008190.		0
38	Title is missing!. , 2020, 16, e1008190.		0
39	Title is missing!. , 2020, 16, e1007743.		0
40	Title is missing!. , 2020, 16, e1007743.		0
41	Title is missing!. , 2020, 16, e1007743.		0
42	Title is missing!. , 2020, 16, e1007743.		0
43	Downgrading disease transmission risk estimates using terminal importations. PLoS Neglected Tropical Diseases, 2019, 13, e0007395.	3.0	6
44	Model-based assessment of public health impact and cost-effectiveness of dengue vaccination following screening for prior exposure. PLoS Neglected Tropical Diseases, 2019, 13, e0007482.	3.0	23
45	Travel Surveillance and Genomics Uncover a Hidden Zika Outbreak during the Waning Epidemic. Cell, 2019, 178, 1057-1071.e11.	28.9	68
46	Letter to the editor in response to †Reconstruction and prediction of viral disease epidemics'. Epidemiology and Infection, 2019, 147, e98.	2.1	0
47	Heterogeneous local dynamics revealed by classification analysis of spatially disaggregated time series data. Epidemics, 2019, 29, 100357.	3.0	9
48	Dengue illness impacts daily human mobility patterns in Iquitos, Peru. PLoS Neglected Tropical Diseases, 2019, 13, e0007756.	3.0	17
49	Biased efficacy estimates in phase-III dengue vaccine trials due to heterogeneous exposure and differential detectability of primary infections across trial arms. PLoS ONE, 2019, 14, e0210041.	2.5	606
50	Arbovirus coinfection and co-transmission: A neglected public health concern?. PLoS Biology, 2019, 17, e3000130.	5.6	106
51	Estimating the impact of city-wide Aedes aegypti population control: An observational study in Iquitos, Peru. PLoS Neglected Tropical Diseases, 2019, 13, e0007255.	3.0	22
52	Spatial sorting as the spatial analogue of natural selection. Theoretical Ecology, 2019, 12, 155-163.	1.0	56
53	Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nature Microbiology, 2019, 4, 854-863.	13.3	699
54	Inter-annual variation in seasonal dengue epidemics driven by multiple interacting factors in Guangzhou, China. Nature Communications, 2019, 10, 1148.	12.8	36

#	Article	IF	CITATIONS
55	An agent-based model of dengue virus transmission shows how uncertainty about breakthrough infections influences vaccination impact projections. PLoS Computational Biology, 2019, 15, e1006710.	3.2	31
56	Spatiotemporal incidence of Zika and associated environmental drivers for the 2015-2016 epidemic in Colombia. Scientific Data, 2018, 5, 180073.	5.3	29
57	Inferences about spatiotemporal variation in dengue virus transmission are sensitive to assumptions about human mobility: a case study using geolocated tweets from Lahore, Pakistan. EPJ Data Science, 2018, 7, 16.	2.8	33
58	Implementation and applications of EMOD, an individual-based multi-disease modeling platform. Pathogens and Disease, 2018, 76, .	2.0	60
59	Mapping malaria by combining parasite genomic and epidemiologic data. BMC Medicine, 2018, 16, 190.	5.5	68
60	Local and regional dynamics of chikungunya virus transmission in Colombia: the role of mismatched spatial heterogeneity. BMC Medicine, 2018, 16, 152.	5.5	12
61	Exploring scenarios of chikungunya mitigation with a data-driven agent-based model of the 2014–2016 outbreak in Colombia. Scientific Reports, 2018, 8, 12201.	3.3	10
62	Model-based analysis of experimental data from interconnected, row-configured huts elucidates multifaceted effects of a volatile chemical on Aedes aegypti mosquitoes. Parasites and Vectors, 2018, 11, 365.	2.5	8
63	Contributions from the silent majority dominate dengue virus transmission. PLoS Pathogens, 2018, 14, e1006965.	4.7	118
64	Retracing Zika's footsteps across the Americas with computational modeling. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5558-5560.	7.1	12
65	Assessing the population at risk of Zika virus in Asia – is the emergency really over?. BMJ Global Health, 2017, 2, e000309.	4.7	22
66	Temperature modulates dengue virus epidemic growth rates through its effects on reproduction numbers and generation intervals. PLoS Neglected Tropical Diseases, 2017, 11, e0005797.	3.0	73
67	Quantitative, model-based estimates of variability in the generation and serial intervals of Plasmodium falciparum malaria. Malaria Journal, 2016, 15, 490.	2.3	29
68	The Long-Term Safety, Public Health Impact, and Cost-Effectiveness of Routine Vaccination with a Recombinant, Live-Attenuated Dengue Vaccine (Dengvaxia): A Model Comparison Study. PLoS Medicine, 2016, 13, e1002181.	8.4	178
69	After the games are over: lifeâ€history tradeâ€offs drive dispersal attenuation following range expansion. Ecology and Evolution, 2016, 6, 6425-6434.	1.9	21
70	Calling in sick: impacts of fever on intra-urban human mobility. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160390.	2.6	31
71	Model-based projections of Zika virus infections in childbearing women in the Americas. Nature Microbiology, 2016, 1, 16126.	13.3	126
72	Coupled Heterogeneities and Their Impact on Parasite Transmission and Control. Trends in Parasitology, 2016, 32, 356-367.	3.3	41

#	Article	IF	CITATIONS
73	Vectorial capacity and vector control: reconsidering sensitivity to parameters for malaria elimination. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2016, 110, 107-117.	1.8	149
74	Pokémon Go and Exposure to Mosquito-Borne Diseases: How Not to Catch â€~Em All. PLOS Currents, 2016, 8, .	1.4	8
75	Quantifying the Epidemiological Impact of Vector Control on Dengue. PLoS Neglected Tropical Diseases, 2016, 10, e0004588.	3.0	70
76	The changing epidemiology of dengue in China, 1990-2014: a descriptive analysis of 25 years of nationwide surveillance data. BMC Medicine, 2015, 13, 100.	5.5	189
77	A Critical Assessment of Vector Control for Dengue Prevention. PLoS Neglected Tropical Diseases, 2015, 9, e0003655.	3.0	328
78	Adult vector control, mosquito ecology and malaria transmission. International Health, 2015, 7, 121-129.	2.0	34
79	Estimating Drivers of Autochthonous Transmission of Chikungunya Virus in its Invasion of the Americas. PLOS Currents, 2015, 7, .	1.4	62
80	Mapping residual transmission for malaria elimination. ELife, 2015, 4, .	6.0	55
81	Determinants of Heterogeneous Blood Feeding Patterns by Aedes aegypti in Iquitos, Peru. PLoS Neglected Tropical Diseases, 2014, 8, e2702.	3.0	63
82	Recasting the theory of mosquito-borne pathogen transmission dynamics and control. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2014, 108, 185-197.	1.8	142
83	Theory and data for simulating fine-scale human movement in an urban environment. Journal of the Royal Society Interface, 2014, 11, 20140642.	3.4	53
84	A global assembly of adult female mosquito mark-release-recapture data to inform the control of mosquito-borne pathogens. Parasites and Vectors, 2014, 7, 276.	2.5	116
85	Evolutionary dynamics of West Nile virus in Georgia, 2001–2011. Virus Genes, 2014, 49, 132-136.	1.6	4
86	Evolution of dispersal and life history interact to drive accelerating spread of an invasive species. Ecology Letters, 2013, 16, 1079-1087.	6.4	172
87	A systematic review of mathematical models of mosquito-borne pathogen transmission: 1970–2010. Journal of the Royal Society Interface, 2013, 10, 20120921.	3.4	306
88	Heterogeneity, Mixing, and the Spatial Scales of Mosquito-Borne Pathogen Transmission. PLoS Computational Biology, 2013, 9, e1003327.	3.2	124
89	Mosquito Population Regulation and Larval Source Management in Heterogeneous Environments. PLoS ONE, 2013, 8, e71247.	2.5	39
90	Evolutionarily Labile Species Interactions and Spatial Spread of Invasive Species. American Naturalist, 2012, 179, F37-F54.	2.1	26

#	Article	IF	CITATIONS
91	Multiâ€species interactions in competitive hierarchies: New methods and empirical test. Journal of Vegetation Science, 2007, 18, 685-692.	2.2	12