Aurora M Nedelcu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5992650/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The <i>Chlamydomonas</i> Genome Reveals the Evolution of Key Animal and Plant Functions. Science, 2007, 318, 245-250.	12.6	2,354
2	The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): Illuminating the Functional Diversity of Eukaryotic Life in the Oceans through Transcriptome Sequencing. PLoS Biology, 2014, 12, e1001889.	5.6	885
3	Genomic Analysis of Organismal Complexity in the Multicellular Green Alga <i>Volvox carteri</i> . Science, 2010, 329, 223-226.	12.6	536
4	On the Reorganization of Fitness During Evolutionary Transitions in Individuality. Integrative and Comparative Biology, 2003, 43, 64-73.	2.0	144
5	ON THE PARADIGM OF ALTRUISTIC SUICIDE IN THE UNICELLULAR WORLD. Evolution; International Journal of Organic Evolution, 2011, 65, 3-20.	2.3	118
6	Life-history evolution and the origin of multicellularity. Journal of Theoretical Biology, 2006, 239, 257-272.	1.7	116
7	Adaptive value of sex in microbial pathogens. Infection, Genetics and Evolution, 2008, 8, 267-285.	2.3	106
8	Sex as a response to oxidative stress: a twofold increase in cellular reactive oxygen species activates sex genes. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 1591-1596.	2.6	80
9	The Evolutionary Origin of an Altruistic Gene. Molecular Biology and Evolution, 2006, 23, 1460-1464.	8.9	74
10	When the lights go out: the evolutionary fate of freeâ€living colorless green algae. New Phytologist, 2015, 206, 972-982.	7.3	60
11	Identifying key questions in the ecology and evolution of cancer. Evolutionary Applications, 2021, 14, 877-892.	3.1	58
12	Sex as a response to oxidative stress: the effect of antioxidants on sexual induction in a facultatively sexual lineage. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, S136-9.	2.6	57
13	Early diversification and complex evolutionary history of the p53 tumor suppressor gene family. Development Genes and Evolution, 2007, 217, 801-806.	0.9	56
14	Comparative Genomics of Phylogenetically Diverse Unicellular Eukaryotes Provide New Insights into the Genetic Basis for the Evolution of the Programmed Cell Death Machinery. Journal of Molecular Evolution, 2009, 68, 256-268.	1.8	56
15	Cooperation and conflict in the evolution of individuality. BioSystems, 2003, 69, 95-114.	2.0	48
16	Environmentally induced responses co-opted for reproductive altruism. Biology Letters, 2009, 5, 805-808.	2.3	39
17	Complex Patterns of Plastid 16S rRNA Gene Evolution in Nonphotosynthetic Green Algae. Journal of Molecular Evolution, 2001, 53, 670-679.	1.8	33
18	Co-option during the evolution of multicellular and developmental complexity in the volvocine green algae. Current Opinion in Genetics and Development, 2016, 39, 107-115	3.3	33

#	Article	IF	CITATIONS
19	The Plastid Genome of <i>Polytoma uvella</i> Is the Largest Known among Colorless Algae and Plants and Reflects Contrasting Evolutionary Paths to Nonphotosynthetic Lifestyles. Plant Physiology, 2017, 173, 932-943.	4.8	33
20	Evidence for p53-like-mediated stress responses in green algae. FEBS Letters, 2006, 580, 3013-3017.	2.8	32
21	A Land Plant–Specific Multigene Family in the Unicellular Mesostigma Argues for Its Close Relationship to Streptophyta. Molecular Biology and Evolution, 2006, 23, 1011-1015.	8.9	31
22	Volvocine Algae: From Simple to Complex Multicellularity. Advances in Marine Genomics, 2015, , 129-152.	1.2	27
23	An evolutionary explanation for the presence of cancer nonstem cells in neoplasms. Evolutionary Applications, 2013, 6, 92-101.	3.1	25
24	Sex as a response to oxidative stress: stress genes co-opted for sex. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 1935-1940.	2.6	24
25	In Vitro Model-Systems to Understand the Biology and Clinical Significance of Circulating Tumor Cell Clusters. Frontiers in Oncology, 2018, 8, 63.	2.8	23
26	The evolution and ecology of benign tumors. Biochimica Et Biophysica Acta: Reviews on Cancer, 2022, 1877, 188643.	7.4	23
27	The evolution of multicellularity and cancer: views and paradigms. Biochemical Society Transactions, 2020, 48, 1505-1518.	3.4	22
28	Group phenotypic composition in cancer. ELife, 2021, 10, .	6.0	18
29	The genetic basis for the evolution of soma: mechanistic evidence for the co-option of a stress-induced gene into a developmental master regulator. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201414.	2.6	11
30	Stress Responses Coâ€Opted for Specialized Cell Types During the Early Evolution of Multicellularity. BioEssays, 2020, 42, e2000029.	2.5	11
31	Independent evolution of complex development in animals and plants: deep homology and lateral gene transfer. Development Genes and Evolution, 2019, 229, 25-34.	0.9	9
32	Agentâ€based modelling reveals strategies to reduce the fitness and metastatic potential of circulating tumour cell clusters. Evolutionary Applications, 2020, 13, 1635-1650.	3.1	7
33	Does Cancer Biology Rely on Parrondo's Principles?. Cancers, 2021, 13, 2197.	3.7	7
34	Co-opting disorder into order: Intrinsically disordered proteins and the early evolution of complex multicellularity. International Journal of Biological Macromolecules, 2022, 201, 29-36.	7.5	7
35	A personal cost of cheating can stabilize reproductive altruism during the early evolution of clonal multicellularity. Biology Letters, 2022, 18, .	2.3	7
36	A Model-System to Address the Impact of Phenotypic Heterogeneity and Plasticity on the Development of Cancer Therapies. Frontiers in Oncology, 2019, 9, 842.	2.8	6

#	ARTICLE	IF	CITATIONS
37	The plastid genomes of nonphotosynthetic algae are not so small after all. Communicative and Integrative Biology, 2017, 10, e1283080.	1.4	5
38	A life-history trade-off gene with antagonistic pleiotropic effects on reproduction and survival in limiting environments. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20212669.	2.6	5
39	The Evolution of Self During the Transition to Multicellularity. Advances in Experimental Medicine and Biology, 2012, 738, 14-30.	1.6	4
40	Understanding Ancient Legacies to Expose and Exploit Cancer's Evolutionary Vulnerabilities. , 2017, , 203-209.		1
41	Genomic Evidence for Elements of a Programmed Cell Death Pathway In Plasmodium: Exploiting Programmed Parasite Death for Malaria Control?. Blood, 2010, 116, 4226-4226.	1.4	1