Julio S Rufas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5992437/publications.pdf

Version: 2024-02-01

82	2,551	29	46
papers	citations	h-index	g-index
85	85	85	1773 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Sex differences in the meiotic behavior of an XX sex chromosome pair in males and females of the mole vole Ellobius tancrei: turning an X into a Y chromosome?. Chromosoma, 2021, 130, 113-131.	2.2	8
2	Meiosis reveals the early steps in the evolution of a neo-XY sex chromosome pair in the African pygmy mouse Mus minutoides. PLoS Genetics, 2020, 16, e1008959.	3.5	13
3	Transition from a meiotic to a somatic-like DNA damage response during the pachytene stage in mouse meiosis. PLoS Genetics, 2019, 15, e1007439.	3. 5	59
4	Meiotic behavior of a complex hexavalent in heterozygous mice for Robertsonian translocations: insights for synapsis dynamics. Chromosoma, 2019, 128, 149-163.	2.2	16
5	Transcription reactivation during the first meiotic prophase in bugs is not dependent on synapsis. Chromosoma, 2017, 126, 179-194.	2.2	9
6	Do Exogenous DNA Double-Strand Breaks Change Incomplete Synapsis and Chiasma Localization in the Grasshopper Stethophyma grossum?. PLoS ONE, 2016, 11, e0168499.	2.5	3
7	B1Was the Ancestor B Chromosome Variant in the Western Mediterranean Area in the GrasshopperEyprepocnemis plorans. Cytogenetic and Genome Research, 2014, 142, 54-58.	1.1	15
8	Chromatin Organization and Remodeling of Interstitial Telomeric Sites During Meiosis in the Mongolian Gerbil (Meriones unguiculatus). Genetics, 2014, 197, 1137-1151.	2.9	8
9	Dynamics of cohesin subunits in grasshopper meiotic divisions. Chromosoma, 2013, 122, 77-91.	2.2	6
10	A synaptonemal complex-derived mechanism for meiotic segregation precedes the evolutionary loss of homology between sex chromosomes in arvicolid mammals. Chromosoma, 2012, 121, 433-446.	2.2	21
11	Inactivation or non-reactivation: what accounts better for the silence of sex chromosomes during mammalian male meiosis?. Chromosoma, 2012, 121, 307-326.	2.2	87
12	Incomplete Synapsis and Chiasma Localization: The Chicken or the Egg?. Cytogenetic and Genome Research, 2010, 128, 139-151.	1.1	7
13	Meiosis inStethophyma(Mecostethus)Grossum(Orthoptera: Acrididae): An Exciting History. Journal of Orthoptera Research, 2010, 19, 267-273.	1.0	5
14	Marsupial Sex Chromosome Behaviour During Male Meiosis., 2010,, 187-206.		8
15	Sequential Assembly of Centromeric Proteins in Male Mouse Meiosis. PLoS Genetics, 2009, 5, e1000417.	3.5	43
16	A High Incidence of Meiotic Silencing of Unsynapsed Chromatin Is Not Associated with Substantial Pachytene Loss in Heterozygous Male Mice Carrying Multiple Simple Robertsonian Translocations. PLoS Genetics, 2009, 5, e1000625.	3.5	90
17	CDK2 is required for proper homologous pairing, recombination and sex-body formation during male mouse meiosis. Journal of Cell Science, 2009, 122, 2149-2159.	2.0	99
18	Relationship between incomplete synapsis and chiasma localization. Chromosoma, 2009, 118, 377-389.	2.2	20

#	Article	IF	CITATIONS
19	Cohesin axis maturation and presence of RAD51 during first meiotic prophase in a true bug. Chromosoma, 2009, 118, 575-589.	2.2	10
20	Inverted Meiosis: The True Bugs as a Model to Study. Genome Dynamics, 2008, 5, 137-156.	2.4	52
21	Sequential Loading of Cohesin Subunits during the First Meiotic Prophase of Grasshoppers. PLoS Genetics, 2007, 3, e28.	3 . 5	23
22	Meiotic Pairing and Segregation of Achiasmate Sex Chromosomes in Eutherian Mammals: The Role of SYCP3 Protein. PLoS Genetics, 2007, 3, e198.	3. 5	73
23	Mammalian SGO2 appears at the inner centromere domain and redistributes depending on tension across centromeres during meiosis II and mitosis. EMBO Reports, 2007, 8, 173-180.	4.5	84
24	Chromatid Cores in Meiotic Chromosome Structure and Segregation., 2007,, 31-56.		0
25	Condensin I Reveals New Insights on Mouse Meiotic Chromosome Structure and Dynamics. PLoS ONE, 2007, 2, e783.	2.5	35
26	Sex chromosomes, synapsis, and cohesins: a complex affair. Chromosoma, 2006, 115, 250-259.	2.2	42
27	A Perikinetochoric Ring Defined by MCAK and Aurora-B as a Novel Centromere Domain. PLoS Genetics, 2006, 2, e84.	3 . 5	26
28	Involvement of Synaptonemal Complex Proteins in Sex Chromosome Segregation during Marsupial Male Meiosis. PLoS Genetics, 2006, 2, e136.	3.5	49
29	The Program of Sex Chromosome Pairing in Meiosis Is Highly Conserved Across Marsupial Species. Genetics, 2005, 170, 793-799.	2.9	40
30	DNA double-strand breaks and homology search: inferences from a species with incomplete pairing and synapsis. Journal of Cell Science, 2005, 118, 2957-2963.	2.0	31
31	Involvement of synaptonemal complex proteins in sex chromosome segregation during marsupial male meiosis. PLoS Genetics, 2005, preprint, e136.	3. 5	0
32	A Perikinetochoric Ring Defined by MCAK as a New Centromere Domain in Meiosis. PLoS Genetics, 2005, preprint, e84.	3.5	0
33	Meiotic pairing and segregation of achiasmate sex chromosomes in eutherian mammals: the role of SYCP3 protein. PLoS Genetics, 2005, preprint, e198.	3. 5	0
34	Involvement of the cohesin Rad21 and SCP3 in monopolar attachment of sister kinetochores during mouse meiosis I. Journal of Cell Science, 2004, 117, 1221-1234.	2.0	149
35	X and B chromosomes display similar meiotic characteristics in male grasshoppers. Cytogenetic and Genome Research, 2004, 106, 302-308.	1.1	19
36	DNA doubleâ€strand breaks, recombination and synapsis: the timing of meiosis differs in grasshoppers and flies. EMBO Reports, 2004, 5, 385-391.	4.5	39

#	Article	lF	Citations
37	Drosophila cohesins DSA1 and Drad21 persist and colocalize along the centromeric heterochromatin during mitosis. Biology of the Cell, 2004, 96, 457-462.	2.0	15
38	Dynamic relocation of telomere complexes in mouse meiotic chromosomes. Chromosome Research, 2003, 11, 797-807.	2.2	17
39	Dynamic relocalization of the chromosomal passenger complex proteins inner centromere protein (INCENP) and aurora-B kinase during male mouse meiosis. Journal of Cell Science, 2003, 116, 961-974.	2.0	74
40	The pairing of X and Y chromosomes during meiotic prophase in the marsupial species <i>Thylamys elegans</i> is maintained by a dense plate developed from their axial elements. Journal of Cell Science, 2003, 116, 551-560.	2.0	79
41	Size heterogeneity of telomeric DNA in mouse meiotic chromosomes. Cytogenetic and Genome Research, 2002, 98, 221-224.	1.1	8
42	Expression and behaviour of CENP-E at kinetochores during mouse spermatogenesis. Chromosoma, 2002, 111, 53-61.	2.2	33
43	Colchicine promotes a change in chromosome structure without loss of sister chromatid cohesion in prometaphase I-arrested bivalents. Chromosoma, 2001, 110, 478-486.	2.2	9
44	Mammalian STAG3 is a cohesin specific to sister chromatid arms in meiosis I. Nature Cell Biology, 2001, 3, 761-766.	10.3	237
45	Meiosis in holocentric chromosomes: orientation and segregation of an autosome and sex chromosomes in Triatoma infestans (Heteroptera). Chromosome Research, 2000, 8, 17-25.	2.2	38
46	Meiotic sister chromatid cohesion in holocentric sex chromosomes of three heteropteran species is maintained in absence of axial elements. Chromosoma, 2000, 109, 35-43.	2.2	31
47	Squash procedure for protein immunolocalization in meiotic cells. Chromosome Research, 1998, 6, 639-642.	2.2	123
48	Effects of supernumerary heterochromatin on chiasma formation and chromosome segregation in Dociostaurus genei (Orthoptera). Heredity, 1998, 80, 353-360.	2.6	5
49	Constitutive heterochromatin, NOR location and FISH in the grasshopper Xyleus angulatus (Romaleidae). Caryologia, 1998, 51, 73-80.	0.3	19
50	Meiotic behaviour of holocentric chromosomes: orientation and segregation of autosomes in Triatoma infestans (Heteroptera). Chromosome Research, 1997, 5, 47-56.	2.2	63
51	Melosis in holocentric chromosomes: Kinetic activity is randomly restricted to the chromatid ends of sex univalents inGraphosoma italicum (Heteroptera). Chromosome Research, 1996, 4, 124-132.	2.2	57
52	Nucleolar cycle and localization of NORs in early embryos of Parascaris univalens. Chromosoma, 1995, 104, 287-297.	2,2	11
53	Nucleolar cycle and localization of NORs in early embryos of Parascaris univalens. Chromosoma, 1995, 104, 287-297.	2.2	6
54	The telochore: A telomeric differentiation of the chromosome axis. Chromosome Research, 1994, 2, 361-368.	2.2	14

#	Article	IF	CITATIONS
55	Ultrastructural detection of kinetochores by silver impregnation. Chromosome Research, 1994, 2, 369-375.	2.2	18
56	Supernumerary chromosome segments and intrabivalent chiasma redistribution in Pyrgomorpha conica (Orthoptera). Heredity, 1994, 73, 1-10.	2.6	6
57	Supernumerary heterochromatic segments associated with the nucleolar chromosomes of Pyrgomorpha conica (Orthoptera) contain methylated rDNA sequences. Chromosoma, 1993, 102, 491-499.	2.2	17
58	Meiotic chromosome structure: relationship between the synaptonemal complex and the chromatid cores. Genome, 1992, 35, 1054-1061.	2.0	27
59	Involvement of chromatid cohesiveness at the centromere and chromosome arms in meiotic chromosome segregation: A cytological approach. Chromosoma, 1992, 101, 493-501.	2.2	39
60	Meiotic chromosome structure. Kinetochores and chromatid cores in standard and B chromosomes of <i>Arcyptera fusca</i> (Orthoptera) revealed by silver staining. Genome, 1991, 34, 19-27.	2.0	27
61	Nucleolar organizer regions are associated with silver-stained chromatid cores in meiotic chromosomes of grasshoppers. Genome, 1989, 32, 829-833.	2.0	2
62	Mechanisms promoting the appearance of abnormal spermatids in B-carrier individuals of Eyprepocnemis plorans (Orthoptera). Genome, 1989, 32, 64-71.	2.0	13
63	Recombination within extra segments: evidence from the grasshopper Chorthippus jucundus. Chromosoma, 1988, 96, 95-101.	2.2	13
64	Nucleolar meiotic cycle in orthoptera. Cell Biology International Reports, 1987, 11, 289-299.	0.6	8
65	Chromosome organization in meiosis revealed by light microscope analysis of silver-stained cores. Genome, 1987, 29, 706-712.	2.0	60
66	Meiotic stability of B chromosomes and production of macrospermatids in <i>Aiolopus strepens</i> (Orthoptera: Acrididae). Genome, 1987, 29, 5-10.	2.0	16
67	Analysis of a centric shift in the S11 chromosome of Aiolopus strepens (Orthoptera: Acrididae). Genetica, 1986, 70, 211-216.	1.1	4
68	A cytogenetic analysis in Psophus stridulus (L.) (Orthoptera: Acrididae): B-chromosomes and abnormal spermatid nuclei. Genetica, 1986, 70, 217-224.	1,1	17
69	Ultrastructure of the kinetochore inGraphosoma italicum (Hemiptera: Heteroptera). Protoplasma, 1986, 132, 142-148.	2.1	21
70	NOR's disturbing chiasma distribution inSphingonotus coerulans (L.) (Orthoptera: Acrididae). Genetica, 1986, 68, 109-111.	1.1	3
71	A Method for Visualizing the Acrosome by Light Microscopy. Biotechnic & Histochemistry, 1986, 61, 227-230.	0.4	6
72	Generation by a polymorphic supernumerary segment of recombination in a normally achiasmate proximal region in <i>Acrotylus insubricus</i> (Scopoli) (Orthoptera, Acrididae). Genome, 1986, 28, 433-438.	0.7	8

#	Article	lF	CITATIONS
73	NOR and nucleolus in the spermatogenesis of acridoid grasshoppers. Genetica, 1985, 66, 139-144.	1.1	37
74	The plant nucleolar cycle under hypoxia. Protoplasma, 1985, 126, 47-53.	2.1	8
75	Response of interphasic nucleoli to hypoxia in root meristems. Cell Biology International Reports, 1985, 9, 699-708.	0.6	5
76	Ultrastructure and the relationship between the nucleolus and the nucleolar organizer region in Orthoptera male germ cells. Genome, 1985, 27, 186-191.	0.7	2
77	Cytogenetic studies on Chorthippus jucundus (Fisch.) (Orthoptera) III. The meiotic consequences of a spontaneous centric fusion. Genetica, 1984, 63, 3-7.	1.1	18
78	Complete dependence between Ag NORs and C-positive heterochromatin revealed by simultaneous Ag-NOR C-banding method. Cell Biology International Reports, 1983, 7, 275-281.	0.6	25
79	Localization and development of kinetochores and a chromatid core during meiosis in grasshoppers. Genetica, 1983, 61, 233-238.	1.1	32
80	Development of Silver Stained Structures During Spermatogenesis of Schistocerca Gregaria (Forsk.) (Orthoptera: Acrididae). Caryologia, 1982, 35, 261-267.	0.3	30
81	Presence of a chromatid core in mitotic and meiotic chromosomes of grasshoppers. Cell Biology International Reports, 1982, 6, 261-267.	0.6	53
82	Non-random segregation during anaphase II in an individual of Arcyptera tornosi (Bol.) (Orthoptera) heterozygous for three supernumerary heterochromatic segments. Genetica, 1982, 60, 37-39.	1.1	6