
Giovanni Gadda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5988397/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Same Substrate, Many Reactions: Oxygen Activation in Flavoenzymes. Chemical Reviews, 2018, 118, 1742-1769.	23.0	306
2	On the Catalytic Mechanism of Choline Oxidase. Journal of the American Chemical Society, 2005, 127, 2067-2074.	6.6	115
3	Oxygen Activation in Flavoprotein Oxidases: The Importance of Being Positive. Biochemistry, 2012, 51, 2662-2669.	1.2	103
4	Design and application of a class of sensors to monitor Ca ²⁺ dynamics in high Ca ²⁺ concentration cellular compartments. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16265-16270.	3.3	96
5	On the Catalytic Role of the Conserved Active Site Residue His466of Choline Oxidaseâ€. Biochemistry, 2005, 44, 893-904.	1.2	83
6	Role of Glu312 in Binding and Positioning of the Substrate for the Hydride Transfer Reaction in Choline Oxidase [,] . Biochemistry, 2008, 47, 243-256.	1.2	82
7	Hydride Transfer Made Easy in the Reaction of Alcohol Oxidation Catalyzed by Flavin-dependent Oxidases. Biochemistry, 2008, 47, 13745-13753.	1.2	77
8	Nitronate monooxygenase, a model for anionic flavin semiquinone intermediates in oxidative catalysis. Archives of Biochemistry and Biophysics, 2010, 493, 53-61.	1.4	70
9	Characterization of Cholesterol Oxidase from Streptomyces hygroscopicus and Brevibacterium sterolicum. FEBS Journal, 1997, 250, 369-376.	0.2	68
10	Cloning, sequence analysis, and purification of choline oxidase from Arthrobacter globiformis: a bacterial enzyme involved in osmotic stress tolerance. Archives of Biochemistry and Biophysics, 2004, 421, 149-158.	1.4	67
11	The biochemistry of the metabolic poison propionate 3â€nitronate and its conjugate acid, 3â€nitropropionate. IUBMB Life, 2013, 65, 759-768.	1.5	61
12	Identification of the Naturally Occurring Flavin of Nitroalkane Oxidase from Fusarium oxysporum as a 5-Nitrobutyl-FAD and Conversion of the Enzyme to the Active FAD-containing Form. Journal of Biological Chemistry, 1997, 272, 5563-5570.	1.6	56
13	Crystallographic, Spectroscopic, and Computational Analysis of a Flavin C4aâ^'Oxygen Adduct in Choline Oxidase [,] . Biochemistry, 2009, 48, 720-728.	1.2	55
14	Spectroscopic and Kinetic Properties of Recombinant Choline Oxidase fromArthrobacter globiformisâ€. Biochemistry, 2003, 42, 15179-15188.	1.2	54
15	The COMBREX Project: Design, Methodology, and Initial Results. PLoS Biology, 2013, 11, e1001638.	2.6	54
16	Oxygen- and Temperature-Dependent Kinetic Isotope Effects in Choline Oxidase:  Correlating Reversible Hydride Transfer with Environmentally Enhanced Tunneling. Journal of the American Chemical Society, 2005, 127, 17954-17961.	6.6	50
17	Kinetic Solvent Viscosity Effects as Probes for Studying the Mechanisms of Enzyme Action. Biochemistry, 2018, 57, 3445-3453.	1.2	50
18	Biochemical and Physical Characterization of the Active FAD-Containing Form of Nitroalkane Oxidase fromFusarium oxysporumâ€,‡. Biochemistry, 1998, 37, 6154-6164.	1.2	49

#	Article	IF	CITATIONS
19	Effects of Reversing the Protein Positive Charge in the Proximity of the Flavin N(1) Locus of Choline Oxidase. Biochemistry, 2006, 45, 3437-3447.	1.2	49
20	Cloning, Expression, and Purification of Choline Dehydrogenase from the Moderate Halophile Halomonas elongata. Applied and Environmental Microbiology, 2003, 69, 2126-2132.	1.4	48
21	Developing Sensors for Real-Time Measurement of High Ca2+ Concentrations. Biochemistry, 2007, 46, 12275-12288.	1.2	45
22	Mechanistic Studies of Choline Oxidase with Betaine Aldehyde and Its Isosteric Analogue 3,3-Dimethylbutyraldehydeâ€. Biochemistry, 2006, 45, 1979-1986.	1.2	44
23	Kinetic mechanism of choline oxidase from Arthrobacter globiformis. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2003, 1646, 112-118.	1.1	42
24	Involvement of a Flavosemiquinone in the Enzymatic Oxidation of Nitroalkanes Catalyzed by 2-Nitropropane Dioxygenase. Journal of Biological Chemistry, 2005, 280, 5195-5204.	1.6	42
25	The trimethylammonium headgroup of choline is a major determinant for substrate binding and specificity in choline oxidase. Archives of Biochemistry and Biophysics, 2004, 430, 264-273.	1.4	39
26	Human choline dehydrogenase: Medical promises and biochemical challenges. Archives of Biochemistry and Biophysics, 2013, 537, 243-252.	1.4	39
27	Substrate Specificity of a Nitroalkane-Oxidizing Enzyme. Archives of Biochemistry and Biophysics, 1999, 363, 309-313.	1.4	38
28	pH and deuterium kinetic isotope effects studies on the oxidation of choline to betaine-aldehyde catalyzed by choline oxidase. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2003, 1650, 4-9.	1.1	38
29	Alcohol oxidation by flavoenzymes. Biomolecular Concepts, 2014, 5, 299-318.	1.0	37
30	Cloning of nitroalkane oxidase from Fusarium oxysporum identifies a new member of the acyl-CoA dehydrogenase superfamily. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 2702-2707.	3.3	36
31	On the Role of Histidine 351 in the Reaction of Alcohol Oxidation Catalyzed by Choline Oxidase. Biochemistry, 2008, 47, 6762-6769.	1.2	35
32	Role of Valine 464 in the Flavin Oxidation Reaction Catalyzed by Choline Oxidase [,] . Biochemistry, 2010, 49, 2952-2961.	1.2	35
33	An Internal Equilibrium Preorganizes the Enzymeâ^'Substrate Complex for Hydride Tunneling in Choline Oxidase. Biochemistry, 2007, 46, 6402-6408.	1.2	34
34	Pathway of Glycine Betaine Biosynthesis in Aspergillus fumigatus. Eukaryotic Cell, 2013, 12, 853-863.	3.4	33
35	The Combined Structural and Kinetic Characterization of a Bacterial Nitronate Monooxygenase from Pseudomonas aeruginosa PAO1 Establishes NMO Class I and II. Journal of Biological Chemistry, 2014, 289, 23764-23775.	1.6	32
36	Structure of choline oxidase in complex with the reaction product glycine betaine. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 405-413.	2.5	32

#	Article	IF	CITATIONS
37	Use of pH and Kinetic Isotope Effects to Dissect the Effects of Substrate Size on Binding and Catalysis by Nitroalkane Oxidase. Archives of Biochemistry and Biophysics, 2000, 382, 138-144.	1.4	31
38	The Chemistry of Escapin: Identification and Quantification of the Components in the Complex Mixture Generated by an <scp>L</scp> â€Amino Acid Oxidase in the Defensive Secretion of the Sea Snail <i>Aplysia californica</i> . Chemistry - A European Journal, 2009, 15, 1597-1603.	1.7	30
39	The Cluster of Hydrophobic Residues Controls the Entrance to the Active Site of Choline Oxidase. Biochemistry, 2009, 48, 9599-9605.	1.2	29
40	Designing Protease Sensors for Real-Time Imaging of Trypsin Activation in Pancreatic Cancer Cells. Biochemistry, 2009, 48, 3519-3526.	1.2	28
41	Mechanism of Nitroalkane Oxidase: 2. pH and Kinetic Isotope Effectsâ€. Biochemistry, 2000, 39, 1406-1410.	1.2	27
42	On the contribution of the positively charged headgroup of choline to substrate binding and catalysis in the reaction catalyzed by choline oxidase. Archives of Biochemistry and Biophysics, 2006, 451, 182-187.	1.4	27
43	Stabilization of an Intermediate in the Oxidative Half-Reaction of Human Liver Glycolate Oxidase. Biochemistry, 2011, 50, 1-3.	1.2	27
44	In vitro heme biotransformation by the HupZ enzyme from Group A streptococcus. BioMetals, 2016, 29, 593-609.	1.8	27
45	Conformational Changes and Substrate Recognition in <i>Pseudomonas aeruginosa</i> <scp>d</scp> -Arginine Dehydrogenase [,] . Biochemistry, 2010, 49, 8535-8545.	1.2	26
46	Evidence for a Transient Peroxynitro Acid in the Reaction Catalyzed by Nitronate Monooxygenase with Propionate 3-Nitronate. Biochemistry, 2013, 52, 2694-2704.	1.2	26
47	Contribution of Flavin Covalent Linkage with Histidine 99 to the Reaction Catalyzed by Choline Oxidase. Journal of Biological Chemistry, 2009, 284, 16990-16997.	1.6	24
48	Structural and kinetic studies on the Ser101Ala variant of choline oxidase: Catalysis by compromise. Archives of Biochemistry and Biophysics, 2010, 501, 207-213.	1.4	24
49	Role of Asparagine 510 in the Relative Timing of Substrate Bond Cleavages in the Reaction Catalyzed by Choline Oxidase. Biochemistry, 2010, 49, 2483-2490.	1.2	23
50	Steady-State Kinetic Mechanism and Reductive Half-Reaction of <scp>d</scp> -Arginine Dehydrogenase from <i>Pseudomonas aeruginosa</i> . Biochemistry, 2010, 49, 9542-9550.	1.2	23
51	Enzyme-Mediated Conversion of Flavin Adenine Dinucleotide (FAD) to 8-Formyl FAD in Formate Oxidase Results in a Modified Cofactor with Enhanced Catalytic Properties. Biochemistry, 2017, 56, 3800-3807.	1.2	23
52	Iso-Mechanism of Nitroalkane Oxidase: 1. Inhibition Studies and Activation by Imidazoleâ€. Biochemistry, 2000, 39, 1400-1405.	1.2	22
53	Relative Timing of Hydrogen and Proton Transfers in the Reaction of Flavin Oxidation Catalyzed by Choline Oxidase. Biochemistry, 2013, 52, 1221-1226.	1.2	22
54	Insights on the Mechanism of Amine Oxidation Catalyzed by <scp>d</scp> -Arginine Dehydrogenase Through pH and Kinetic Isotope Effects. Journal of the American Chemical Society, 2011, 133, 18957-18965.	6.6	20

#	Article	IF	CITATIONS
55	Probing the Chemical Steps of Nitroalkane Oxidation Catalyzed by 2-Nitropropane Dioxygenase with Solvent Viscosity, pH, and Substrate Kinetic Isotope Effectsâ€. Biochemistry, 2006, 45, 13889-13898.	1.2	19
56	Mala s 12 is a major allergen in patients with atopic eczema and has sequence similarities to the GMC oxidoreductase family. Allergy: European Journal of Allergy and Clinical Immunology, 2007, 62, 695-703.	2.7	19
57	Effect of a conservative mutation of an active site residue involved in substrate binding on the hydride tunneling reaction catalyzed by choline oxidase. Archives of Biochemistry and Biophysics, 2009, 489, 10-14.	1.4	19
58	Kinetics of heme transfer by the Shr NEAT domains of Group A Streptococcus. Archives of Biochemistry and Biophysics, 2013, 538, 71-79.	1.4	19
59	Fluorescence Properties of Flavin Semiquinone Radicals in Nitronate Monooxygenase. ChemBioChem, 2019, 20, 1646-1652.	1.3	19
60	Rapid subcellular calcium responses and dynamics by calcium sensor G-CatchER+. IScience, 2021, 24, 102129.	1.9	19
61	Oxidation of alkyl nitronates catalyzed by 2-nitropropane dioxygenase from Hansenula mrakii. Archives of Biochemistry and Biophysics, 2008, 473, 61-68.	1.4	18
62	A novel activity for fungal nitronate monooxygenase: Detoxification of the metabolic inhibitor propionate-3-nitronate. Archives of Biochemistry and Biophysics, 2012, 521, 84-89.	1.4	18
63	Identification of the Catalytic Base for Alcohol Activation in Choline Oxidase. Biochemistry, 2015, 54, 413-421.	1.2	18
64	Functional Annotation of a Presumed Nitronate Monoxygenase Reveals a New Class of NADH:Quinone Reductases. Journal of Biological Chemistry, 2016, 291, 21160-21170.	1.6	18
65	Importance of Loop L1 Dynamics for Substrate Capture and Catalysis in <i>Pseudomonas aeruginosa</i> <scp>d</scp> -Arginine Dehydrogenase. Biochemistry, 2017, 56, 2477-2487.	1.2	18
66	Substitution of an Active Site Valine Uncovers a Kinetically Slow Equilibrium between Competent and Incompetent Forms of Choline Oxidase. Biochemistry, 2008, 47, 13850-13861.	1.2	16
67	Involvement of Ionizable Groups in Catalysis of Human Liver Glycolate Oxidase. Journal of Biological Chemistry, 2009, 284, 31214-31222.	1.6	16
68	Solvent isotope and viscosity effects on the steadyâ€state kinetics of the flavoprotein nitroalkane oxidase. FEBS Letters, 2013, 587, 2785-2789.	1.3	16
69	Photoirradiation Generates an Ultrastable 8-Formyl FAD Semiquinone Radical with Unusual Properties in Formate Oxidase. Biochemistry, 2018, 57, 5818-5826.	1.2	16
70	Identification of Lys116 as the target of N-ethylmaleimide inactivation of ferredoxin:NADP+ oxidoreductase. FEBS Journal, 1991, 198, 21-24.	0.2	15
71	Identification of Native Flavin Adducts fromFusarium oxysporumUsing Accurate Mass Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Analytical Chemistry, 1997, 69, 2862-2865.	3.2	15
72	Importance of a Serine Proximal to the C(4a) and N(5) Flavin Atoms for Hydride Transfer in Choline Oxidase. Biochemistry, 2011, 50, 770-779.	1.2	15

#	Article	IF	CITATIONS
73	Identification of an Essential Tyrosine Residue in Nitroalkane Oxidase by Modification with Tetranitromethaneâ€. Biochemistry, 2000, 39, 1162-1168.	1.2	14
74	The Nonoxidative Conversion of Nitroethane to Ethylnitronate in <i>Neurospora crassa</i> 2-Nitropropane Dioxygenase Is Catalyzed by Histidine 196. Biochemistry, 2008, 47, 9136-9144.	1.2	14
75	Mechanistic and Computational Studies of the Reductive Half-Reaction of Tyrosine to Phenylalanine Active Site Variants of <scp>d</scp> -Arginine Dehydrogenase. Biochemistry, 2014, 53, 6574-6583.	1.2	13
76	Mechanistic studies of formate oxidase from Aspergillus oryzae : A novel member of the glucose-Methanol-choline oxidoreductase enzyme superfamily that oxidizes carbon acids. Archives of Biochemistry and Biophysics, 2018, 643, 24-31.	1.4	13
77	Identification of a Cysteine Residue in the Active Site of Nitroalkane Oxidase by Modification withN-Ethylmaleimide. Journal of Biological Chemistry, 2000, 275, 31891-31895.	1.6	12
78	Solvent-Slaved Motions in the Hydride Tunneling Reaction Catalyzed by Human Glycolate Oxidase. ACS Catalysis, 2016, 6, 2113-2120.	5.5	12
79	Choline oxidases. The Enzymes, 2020, 47, 137-166.	0.7	12
80	Inflated Kinetic Isotope Effects in the Branched Mechanism of <i>Neurospora crassa</i> 2-Nitropropane Dioxygenase. Biochemistry, 2009, 48, 2403-2410.	1.2	10
81	Atomic-Resolution Structure of an N(5) Flavin Adduct in <scp>d</scp> -Arginine Dehydrogenase. Biochemistry, 2011, 50, 6292-6294.	1.2	10
82	Role of F357 as an Oxygen Gate in the Oxidative Half-Reaction of Choline Oxidase. Biochemistry, 2016, 55, 1473-1484.	1.2	10
83	Preclinical Development of a Nontoxic Oral Formulation of Monoethanolamine, a Lipid Precursor, for Prostate Cancer Treatment. Clinical Cancer Research, 2017, 23, 3781-3793.	3.2	10
84	Amine oxidation by d-arginine dehydrogenase in Pseudomonas aeruginosa. Archives of Biochemistry and Biophysics, 2017, 632, 192-201.	1.4	10
85	Stepwise Hydrogen Atom and Proton Transfers in Dioxygen Reduction by Aryl-Alcohol Oxidase. Biochemistry, 2018, 57, 1790-1797.	1.2	10
86	Tuning Protein Dynamics to Sense Rapid Endoplasmicâ€Reticulum Calcium Dynamics. Angewandte Chemie - International Edition, 2021, 60, 23289-23298.	7.2	10
87	Characterization of 2-Oxo-3-pentynoate as an Active-Site-Directed Inactivator of Flavoprotein Oxidases: Identification of Active-Site Peptides in Tryptophan 2-Monooxygenaseâ€. Biochemistry, 1999, 38, 5822-5828.	1.2	9
88	Trapping choline oxidase in a nonfunctional conformation by freezing at low pH. Proteins: Structure, Function and Bioinformatics, 2006, 66, 611-620.	1.5	9
89	Rescuing of the hydride transfer reaction in the Glu312Asp variant of choline oxidase by a substrate analogue. Archives of Biochemistry and Biophysics, 2010, 499, 1-5.	1.4	9
90	Pseudomonas aeruginosa LysR PA4203 Regulator NmoR Acts as a Repressor of the PA4202 <i>nmoA</i> Gene, Encoding a Nitronate Monooxygenase. Journal of Bacteriology, 2015, 197, 1026-1039.	1.0	9

#	Article	IF	CITATIONS
91	A pH switch affects the steady-state kinetic mechanism of pyranose 2-oxidase from Trametes ochracea. Archives of Biochemistry and Biophysics, 2009, 483, 10-15.	1.4	8
92	Crystal structure of yeast nitronate monooxygenase from Cyberlindnera saturnus. Proteins: Structure, Function and Bioinformatics, 2018, 86, 599-605.	1.5	8
93	Ionic Atmosphere Effect on the Absorption Spectrum of a Flavoprotein: A Reminder to Consider Solution Ions. Journal of Physical Chemistry Letters, 2021, 12, 8384-8396.	2.1	8
94	Kinetic evidence for an anion binding pocket in the active site of nitronate monooxygenase. Bioorganic Chemistry, 2009, 37, 167-172.	2.0	7
95	A Reversible, Charge-Induced Intramolecular C4a-S-Cysteinyl-Flavin in Choline Oxidase Variant S101C. Biochemistry, 2017, 56, 6677-6690.	1.2	7
96	Kinetic Characterization of PA1225 from <i>Pseudomonas aeruginosa</i> PAO1 Reveals a New NADPH:Quinone Reductase. Biochemistry, 2018, 57, 3050-3058.	1.2	7
97	A Single-Point Mutation in <scp>d</scp> -Arginine Dehydrogenase Unlocks a Transient Conformational State Resulting in Altered Cofactor Reactivity. Biochemistry, 2021, 60, 711-724.	1.2	7
98	Importance of glutamate 87 and the substrate α-amine for the reaction catalyzed by d-arginine dehydrogenase. Archives of Biochemistry and Biophysics, 2015, 568, 56-63.	1.4	6
99	Structural determinants for substrate specificity of flavoenzymes oxidizing d-amino acids. Archives of Biochemistry and Biophysics, 2018, 660, 87-96.	1.4	6
100	Steric hindrance controls pyridine nucleotide specificity of a flavinâ€dependent NADH:quinone oxidoreductase. Protein Science, 2019, 28, 167-175.	3.1	6
101	Effect of Salt and pH on the Reductive Half-Reaction of <i>Mycobacterium tuberculosis</i> FprA with NADPH. Biochemistry, 2008, 47, 3418-3425.	1.2	5
102	Substitutions of S101 decrease proton and hydride transfers in the oxidation of betaine aldehyde by choline oxidase. Archives of Biochemistry and Biophysics, 2017, 634, 76-82.	1.4	5
103	Characterization of conserved active site residues in class I nitronate monooxygenase. Archives of Biochemistry and Biophysics, 2019, 672, 108058.	1.4	5
104	Kinetic and Bioinformatic Characterization of <scp>d</scp> -2-Hydroxyglutarate Dehydrogenase from <i>Pseudomonas aeruginosa</i> PAO1. Biochemistry, 2020, 59, 4833-4844.	1.2	5
105	A Metastable Photoinduced Protein–Flavin Adduct in Choline Oxidase, an Enzyme Not Involved in Light-Dependent Processes. Journal of Physical Chemistry B, 2020, 124, 3936-3943.	1.2	5
106	Conserved Hydration Sites in Pin1 Reveal a Distinctive Water Recognition Motif in Proteins. Journal of Chemical Information and Modeling, 2016, 56, 139-147.	2.5	4
107	Evidence for proton tunneling and a transient covalent flavin-substrate adduct in choline oxidase S101A. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 1470-1478.	1.1	4
108	Introduction to flavoproteins: Beyond the classical paradigms. Archives of Biochemistry and Biophysics, 2017, 632, 1-3.	1.4	4

#	Article	IF	CITATIONS
109	Kinetic solvent viscosity effects reveal a protein isomerization in the reductive half-reaction of Neurospora crassa class II nitronate monooxygenase. Archives of Biochemistry and Biophysics, 2020, 695, 108625.	1.4	4
110	Kinetic solvent viscosity effects uncover an internal isomerization of the enzyme-substrate complex in Pseudomonas aeruginosa PAO1 NADH:Quinone oxidoreductase. Archives of Biochemistry and Biophysics, 2022, 727, 109342.	1.4	4
111	Reactivity of histidyl residues ind-amino acid oxidase fromRhodotorula gracilis. FEBS Letters, 1995, 363, 307-310.	1.3	3
112	Evidence for an Essential Arginine in the Flavoprotein Nitroalkane Oxidase. Journal of Enzyme Inhibition and Medicinal Chemistry, 2001, 16, 157-163.	0.5	3
113	Guest Editor's Introduction. Archives of Biochemistry and Biophysics, 2010, 493, 1-2.	1.4	2
114	Kinetic Investigation of a Presumed Nitronate Monooxygenase from <i>Pseudomonas aeruginosa</i> PAO1 Establishes a New Class of NAD(P)H:Quinone Reductases. Biochemistry, 2019, 58, 2594-2607.	1.2	2
115	Tuning Protein Dynamics to Sense Rapid Endoplasmicâ€Reticulum Calcium Dynamics. Angewandte Chemie, 2021, 133, 23477.	1.6	2
116	On the use of noncompetitive kinetic isotope effects to investigate flavoenzyme mechanism. Methods in Enzymology, 2019, 620, 115-143.	0.4	1
117	Discovery of a new flavin N5-adduct in a tyrosine to phenylalanine variant of d-Arginine dehydrogenase. Archives of Biochemistry and Biophysics, 2022, 715, 109100.	1.4	1
118	Design and Application of a Class of Sensors to Monitor Ca2+ Dynamics in High Ca2+ Concentration Cellular Compartments. Biophysical Journal, 2012, 102, 312a.	0.2	0
119	Design and Application of Fluorescent Calcium Binding Proteins with Fast Kinetics. Biophysical Journal, 2013, 104, 530a.	0.2	0
120	Cofactor assisted enzymatic catalysis. Archives of Biochemistry and Biophysics, 2014, 544, 1.	1.4	0