Keith D Robertson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5988356/publications.pdf

Version: 2024-02-01

117 13,467
papers citations h-

56 102
h-index g-index

118 118 all docs citations

118 times ranked 18587 citing authors

#	Article	IF	Citations
1	Interferon drives HCV scarring of the epigenome and creates targetable vulnerabilities following viral clearance. Hepatology, 2022, 75, 983-996.	7.3	15
2	Oncogenic gene expression and epigenetic remodeling of cis-regulatory elements in ASXL1-mutant chronic myelomonocytic leukemia. Nature Communications, 2022, 13, 1434.	12.8	17
3	SHP2 inhibition enhances Yes-associated protein–mediated liver regeneration in murine partial hepatectomy models. JCI Insight, 2022, 7, .	5.0	5
4	CpGtools: a python package for DNA methylation analysis. Bioinformatics, 2021, 37, 1598-1599.	4.1	19
5	Identification of DNA methylation signatures associated with poor outcome in lower-risk Stage, Size, Grade and Necrosis (SSIGN) score clear cell renal cell cancer. Clinical Epigenetics, 2021, 13, 12.	4.1	8
6	Distinguishing Active Versus Passive Using Illumina MethylationEPIC BeadChip Microarrays. Methods in Molecular Biology, 2021, 2272, 97-140.	0.9	1
7	Lipid-induced endothelial vascular cell adhesion molecule 1 promotes nonalcoholic steatohepatitis pathogenesis. Journal of Clinical Investigation, 2021, 131 , .	8.2	56
8	RAS mutations drive proliferative chronic myelomonocytic leukemia via a KMT2A-PLK1 axis. Nature Communications, 2021, 12, 2901.	12.8	44
9	Plasma Cell-Free DNA Methylomics of Bipolar Disorder With and Without Rapid Cycling. Frontiers in Neuroscience, 2021, 15, 774037.	2.8	4
10	Clinical, molecular, and prognostic correlates of number, type, and functional localization of TET2 mutations in chronic myelomonocytic leukemia (CMML)—a study of 1084 patients. Leukemia, 2020, 34, 1407-1421.	7.2	68
11	The role of survivin in the progression of pancreatic ductal adenocarcinoma (PDAC) and a novel survivin-targeted therapeutic for PDAC. PLoS ONE, 2020, 15, e0226917.	2.5	18
12	Title is missing!. , 2020, 15, e0226917.		0
13	Title is missing!. , 2020, 15, e0226917.		O
14	Title is missing!. , 2020, 15, e0226917.		0
15	Title is missing!. , 2020, 15, e0226917.		O
16	Loss of SETD2 Induces a Metabolic Switch in Renal Cell Carcinoma Cell Lines toward Enhanced Oxidative Phosphorylation. Journal of Proteome Research, 2019, 18, 331-340.	3.7	27
17	Integrating the Epigenome to Identify Drivers of Hepatocellular Carcinoma. Hepatology, 2019, 69, 639-652.	7.3	73
18	Genome-wide DNA methylomic differences between dorsolateral prefrontal and temporal pole cortices of bipolar disorder. Journal of Psychiatric Research, 2019, 117, 45-54.	3.1	24

#	Article	IF	Citations
19	In silico DNA methylation analysis identifies potential prognostic biomarkers in type 2 papillary renal cell carcinoma. Cancer Medicine, 2019, 8, 5760-5768.	2.8	8
20	DNA methylation of individual repetitive elements in hepatitis C virus infection-induced hepatocellular carcinoma. Clinical Epigenetics, 2019, 11, 145.	4.1	31
21	Genome-wide discovery and validation of diagnostic DNA methylation-based biomarkers for hepatocellular cancer detection in circulating cell free DNA. Theranostics, 2019, 9, 7239-7250.	10.0	59
22	Alphaâ€1 Antitrypsin Deficiency Liver Disease, Mutational Homogeneity Modulated by Epigenetic Heterogeneity With Links to Obesity. Hepatology, 2019, 70, 51-66.	7.3	26
23	Enhanced and controlled chromatin extraction from FFPE tissues and the application to ChIP-seq. BMC Genomics, 2019, 20, 249.	2.8	16
24	Phenotypic Correlates and Prognostic Outcomes of TET2 Mutations in Myelodysplastic Syndrome/Myeloproliferative Neoplasm Overlap Syndromes: A Comprehensive Study of 504 Patients. Blood, 2019, 134, 3005-3005.	1.4	0
25	Epigenomic Determinants of Transcriptional Activity in ASXL1-Mutant Chronic Myelomonocytic Leukemia. Blood, 2019, 134, 2987-2987.	1.4	0
26	Distal Enhancer Elements in ASXL1-Mutant Chronic Myelomonocytic Leukemia. Blood, 2019, 134, 2981-2981.	1.4	0
27	Clinical Categorization of Chronic Myelomonocytic Leukemia into Proliferative and Dysplastic Subtypes Correlates with Distinct Genomic, Transcriptomic and Epigenomic Signatures. Blood, 2019, 134, 1710-1710.	1.4	0
28	Genetic and Epigenetic Heterogeneity in Normal Liver Homeostasis and Its Implications for Liver Disease and Hepatocellular Cancer. Seminars in Liver Disease, 2018, 38, 041-050.	3.6	25
29	Use of the CRISPR/Cas9â€based epigenetic gene activation system In Vivo: A new potential therapeutic modality. Hepatology, 2018, 68, 1191-1193.	7.3	1
30	Epigenetic Regulations in the Pathogenesis of HCC and the Clinical Application. Molecular Pathology Library, 2018, , 69-93.	0.1	0
31	DNA methylation age is accelerated in alcohol dependence. Translational Psychiatry, 2018, 8, 182.	4.8	73
32	A Threeâ€Pronged Epigenetic Approach to the Treatment of Hepatocellular Carcinoma. Hepatology, 2018, 68, 1226-1228.	7.3	15
33	Distinctive epigenomes characterize glioma stem cells and their response to differentiation cues. Genome Biology, 2018, 19, 43.	8.8	81
34	ZBTB24 is a transcriptional regulator that coordinates with DNMT3B to control DNA methylation. Nucleic Acids Research, 2018, 46, 10034-10051.	14.5	45
35	Association of Clinical Epidemiologic Exposures and Overall Survival with Genome-Wide DNA Methylation Profiles in Acute Myeloid Leukemia: Analysis of the Mayo Clinic AML Epidemiology Cohort. Blood, 2018, 132, 3987-3987.	1.4	1
36	Indoleamine 2,3-Dioxygenase-1 Expressing Dendritic Cell Populations Are Associated with Tumor-Induced Immune Tolerance & Aggressive Disease Biology in Chronic Myelomonocytic Leukemia. Blood, 2018, 132, 4344-4344.	1.4	0

#	Article	IF	CITATIONS
37	CAME: identification of chromatin accessibility from nucleosome occupancy and methylome sequencing. Bioinformatics, 2017, 33, 1139-1146.	4.1	4
38	Initiation of aberrant DNA methylation patterns and heterogeneity in precancerous lesions of human hepatocellular cancer. Epigenetics, 2017, 12, 215-225.	2.7	23
39	Focal adhesion kinase inhibitor PF573228 and death receptor 5 agonist lexatumumab synergistically induce apoptosis in pancreatic carcinoma. Tumor Biology, 2017, 39, 101042831769912.	1.8	6
40	Misregulation of DNA Methylation Regulators in Cancer. Cancer Drug Discovery and Development, 2017, , 97-124.	0.4	2
41	A Novel Vaccine Targeting Glypican-3 as a Treatment for Hepatocellular Carcinoma. Molecular Therapy, 2017, 25, 2299-2308.	8.2	21
42	High fat diet and exercise lead to a disrupted and pathogenic DNA methylome in mouse liver. Epigenetics, 2017, 12, 55-69.	2.7	40
43	Purification of nanogram-range immunoprecipitated DNA in ChIP-seq application. BMC Genomics, 2017, 18, 985.	2.8	34
44	Nucleosome positioning changes during human embryonic stem cell differentiation. Epigenetics, 2016, 11, 426-437.	2.7	7
45	Targeting epigenetic pathways in acute myeloid leukemia and myelodysplastic syndrome: a systematic review of hypomethylating agents trials. Clinical Epigenetics, 2016, 8, 68.	4.1	62
46	Number and Type of TET2 Mutations in Chronic Myelomonocytic Leukemia: Clinical and Prognostic Correlates. Blood, 2016, 128, 4343-4343.	1.4	1
47	Dynamic reprogramming of DNA methylation in SETD2-deregulated renal cell carcinoma. Oncotarget, 2016, 7, 1927-1946.	1.8	52
48	Unique Clinical Epidemiologic Risk Factors Are Associated with Distinct Methylation Subgroups in Newly-Diagnosed Acute Myeloid Leukemia (AML). Blood, 2016, 128, 1719-1719.	1.4	1
49	iTagPlot: an accurate computation and interactive drawing tool for tag density plot. Bioinformatics, 2015, 31, 2384-2387.	4.1	0
50	Small Molecule Inhibitor YM155-Mediated Activation of Death Receptor 5 Is Crucial for Chemotherapy-Induced Apoptosis in Pancreatic Carcinoma. Molecular Cancer Therapeutics, 2015, 14, 80-89.	4.1	18
51	Effects of Alcohol metabolism on Hepatocellular carcinoma progression. FASEB Journal, 2015, 29, .	0.5	0
52	Acute Depletion Redefines the Division of Labor among DNA Methyltransferases in Methylating the Human Genome. Cell Reports, 2014, 9, 1554-1566.	6.4	33
53	Distinct and overlapping control of 5-methylcytosine and 5-hydroxymethylcytosine by the TET proteins in human cancer cells. Genome Biology, 2014, 15, R81.	9.6	91
54	Impact of human MLL/COMPASS and polycomb complexes on the DNA methylome. Oncotarget, 2014, 5, 6338-6352.	1.8	9

#	Article	IF	CITATIONS
55	Epigenetic signatures of alcohol abuse and hepatitis infection during human hepatocarcinogenesis. Oncotarget, 2014, 5, 9425-9443.	1.8	78
56	DNA Methyltransferases, DNA Damage Repair, and Cancer. Advances in Experimental Medicine and Biology, 2013, 754, 3-29.	1.6	361
57	Butyrate suppresses colonic inflammation through HDAC1-dependent Fas upregulation and Fas-mediated apoptosis of T cells. American Journal of Physiology - Renal Physiology, 2012, 302, G1405-G1415.	3.4	218
58	Linking DNA Methyltransferases to Epigenetic Marks and Nucleosome Structure Genome-wide in Human Tumor Cells. Cell Reports, 2012, 2, 1411-1424.	6.4	96
59	Molecular Modeling of Inhibitors of Human DNA Methyltransferase with a Crystal Structure. Advances in Protein Chemistry and Structural Biology, 2012, 87, 219-247.	2.3	53
60	DNA Methylation: Superior or Subordinate in the Epigenetic Hierarchy?. Genes and Cancer, 2011, 2, 607-617.	1.9	564
61	DNA Methylation Suppresses Expression of the Urea Cycle Enzyme Carbamoyl Phosphate Synthetase 1 (CPS1) in Human Hepatocellular Carcinoma. American Journal of Pathology, 2011, 178, 652-661.	3.8	95
62	SIRT1 Deacetylates the DNA Methyltransferase 1 (DNMT1) Protein and Alters Its Activities. Molecular and Cellular Biology, 2011, 31, 4720-4734.	2.3	178
63	The transglutaminase 2 gene is aberrantly hypermethylated in glioma. Journal of Neuro-Oncology, 2011, 101, 429-440.	2.9	38
64	Epigenetic mechanisms and genome stability. Clinical Epigenetics, 2011, 2, 299-314.	4.1	96
65	Epigenetic mechanisms and genome stability. Clinical Epigenetics, 2011, 2, 299-314. Rapid and transient recruitment of DNMT1 to DNA double-strand breaks is mediated by its interaction with multiple components of the DNA damage response machinery. Human Molecular Genetics, 2011, 20, 126-140.	2.9	96
	Rapid and transient recruitment of DNMT1 to DNA double-strand breaks is mediated by its interaction with multiple components of the DNA damage response machinery. Human Molecular Genetics, 2011,		
65	Rapid and transient recruitment of DNMT1 to DNA double-strand breaks is mediated by its interaction with multiple components of the DNA damage response machinery. Human Molecular Genetics, 2011, 20, 126-140. Modulation of Dnmt3b function in vitro by interactions with Dnmt3L, Dnmt3a and Dnmt3b splice	2.9	94
65	Rapid and transient recruitment of DNMT1 to DNA double-strand breaks is mediated by its interaction with multiple components of the DNA damage response machinery. Human Molecular Genetics, 2011, 20, 126-140. Modulation of Dnmt3b function in vitro by interactions with Dnmt3L, Dnmt3a and Dnmt3b splice variants. Nucleic Acids Research, 2011, 39, 4984-5002. Targeted bisulfite sequencing by solution hybrid selection and massively parallel sequencing. Nucleic	2.9	94
65 66 67	Rapid and transient recruitment of DNMT1 to DNA double-strand breaks is mediated by its interaction with multiple components of the DNA damage response machinery. Human Molecular Genetics, 2011, 20, 126-140. Modulation of Dnmt3b function in vitro by interactions with Dnmt3L, Dnmt3a and Dnmt3b splice variants. Nucleic Acids Research, 2011, 39, 4984-5002. Targeted bisulfite sequencing by solution hybrid selection and massively parallel sequencing. Nucleic Acids Research, 2011, 39, e127-e127. Verticillin A Overcomes Apoptosis Resistance in Human Colon Carcinoma through DNA	2.9 14.5 14.5	94 67 61
65 66 67 68	Rapid and transient recruitment of DNMT1 to DNA double-strand breaks is mediated by its interaction with multiple components of the DNA damage response machinery. Human Molecular Genetics, 2011, 20, 126-140. Modulation of Dnmt3b function in vitro by interactions with Dnmt3L, Dnmt3a and Dnmt3b splice variants. Nucleic Acids Research, 2011, 39, 4984-5002. Targeted bisulfite sequencing by solution hybrid selection and massively parallel sequencing. Nucleic Acids Research, 2011, 39, e127-e127. Verticillin A Overcomes Apoptosis Resistance in Human Colon Carcinoma through DNA Methylation-Dependent Upregulation of BNIP3. Cancer Research, 2011, 71, 6807-6816. DNMT1 and DNMT3B Modulate Distinct Polycomb-Mediated Histone Modifications in Colon Cancer.	2.9 14.5 14.5	94 67 61 52
65 66 67 68	Rapid and transient recruitment of DNMT1 to DNA double-strand breaks is mediated by its interaction with multiple components of the DNA damage response machinery. Human Molecular Genetics, 2011, 20, 126-140. Modulation of Dnmt3b function in vitro by interactions with Dnmt3L, Dnmt3a and Dnmt3b splice variants. Nucleic Acids Research, 2011, 39, 4984-5002. Targeted bisulfite sequencing by solution hybrid selection and massively parallel sequencing. Nucleic Acids Research, 2011, 39, e127-e127. Verticillin A Overcomes Apoptosis Resistance in Human Colon Carcinoma through DNA Methylation-Dependent Upregulation of BNIP3. Cancer Research, 2011, 71, 6807-6816. DNMT1 and DNMT3B Modulate Distinct Polycomb-Mediated Histone Modifications in Colon Cancer. Cancer Research, 2009, 69, 7412-7421. DNMT3B interacts with constitutive centromere protein CENP-C to modulate DNA methylation and the	2.9 14.5 14.5 0.9	94 67 61 52

#	Article	IF	CITATIONS
7 3	A Novel DNMT3B Splice Variant Expressed in Tumor and Pluripotent Cells Modulates Genomic DNA Methylation Patterns and Displays Altered DNA Binding. Molecular Cancer Research, 2009, 7, 1622-1634.	3.4	78
74	Missteps in "tango―for epigenome targeting. Blood, 2009, 114, 2569-2570.	1.4	2
75	Specific Loss of Histone H3 Lysine 9 Trimethylation and HP1 \hat{I}^3 /Cohesin Binding at D4Z4 Repeats Is Associated with Facioscapulohumeral Dystrophy (FSHD). PLoS Genetics, 2009, 5, e1000559.	3.5	234
76	Invasion suppressor cystatin E/M (CST6): high-level cell type-specific expression in normal brain and epigenetic silencing in gliomas. Laboratory Investigation, 2008, 88, 910-925.	3.7	55
77	DNA methylation in development and human disease. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2008, 647, 30-38.	1.0	222
78	DNA methyltransferase 3B (DNMT3B) mutations in ICF syndrome lead to altered epigenetic modifications and aberrant expression of genes regulating development, neurogenesis and immune function. Human Molecular Genetics, 2008, 17, 690-709.	2.9	216
79	DNA Methylation Inhibitor 5-Aza-2′-Deoxycytidine Induces Reversible Genome-Wide DNA Damage That Is Distinctly Influenced by DNA Methyltransferases 1 and 3B. Molecular and Cellular Biology, 2008, 28, 752-771.	2.3	321
80	Epigenetic Control of Tumor Suppression. Critical Reviews in Eukaryotic Gene Expression, 2007, 17, 295-316.	0.9	34
81	DNMT1 knockout delivers a strong blow to genome stability and cell viability. Nature Genetics, 2007, 39, 289-290.	21.4	51
82	The tumor suppressor Wnt inhibitory factor 1 is frequently methylated in nasopharyngeal and esophageal carcinomas. Laboratory Investigation, 2007, 87, 644-650.	3.7	93
83	Potential advantages of DNA methyltransferase 1 (DNMT1)-targeted inhibition for cancer therapy. Journal of Molecular Medicine, 2007, 85, 1137-1148.	3.9	58
84	The DNA methylation inhibitor 5â€azaâ€2â€deoxycytidine (5â€azadC) induces reversible genomeâ€wide DNA damage that is distinctly influenced by DNA methyltransferases (DNMTs) 1 and 3B. FASEB Journal, 2007, 21, A660.	0.5	0
85	Histone Deacetylase Inhibitors for Cancer Therapy. Epigenetics, 2006, 1, 15-24.	2.7	61
86	Inactivation of Wnt inhibitory factor-1 (WIF1) expression by epigenetic silencing is a common event in breast cancer. Carcinogenesis, 2006, 27, 1341-1348.	2.8	169
87	Epigenomic Profiling Reveals Novel and Frequent Targets of Aberrant DNA Methylation-Mediated Silencing in Malignant Glioma. Cancer Research, 2006, 66, 7490-7501.	0.9	153
88	Epigenetic Silencing of the Tumor Suppressor Cystatin M Occurs during Breast Cancer Progression. Cancer Research, 2006, 66, 7899-7909.	0.9	89
89	An EBF3-Mediated Transcriptional Program That Induces Cell Cycle Arrest and Apoptosis. Cancer Research, 2006, 66, 9445-9452.	0.9	64
90	DNA methylation and human disease. Nature Reviews Genetics, 2005, 6, 597-610.	16.3	2,449

#	Article	IF	CITATIONS
91	Epigenetic Mechanisms of Gene Regulation. , 2005, , 13-30.		5
92	Azacitidine Induces Demethylation of the Epstein-Barr Virus Genome in Tumors. Journal of Clinical Oncology, 2004, 22, 1373-1381.	1.6	129
93	Doxorubicin Inhibits DNMT1, Resulting in Conditional Apoptosis. Molecular Pharmacology, 2004, 66, 1415-1420.	2.3	93
94	Isolation and characterization of a novel DNA methyltransferase complex linking DNMT3B with components of the mitotic chromosome condensation machinery. Nucleic Acids Research, 2004, 32, 2716-2729.	14.5	109
95	Human DNA Methyltransferase 1 Is Required for Maintenance of the Histone H3 Modification Pattern. Journal of Biological Chemistry, 2004, 279, 37175-37184.	3.4	171
96	Modification of de novo DNA methyltransferase 3a (Dnmt3a) by SUMO-1 modulates its interaction with histone deacetylases (HDACs) and its capacity to repress transcription. Nucleic Acids Research, 2004, 32, 598-610.	14.5	117
97	Dimethyl sulfoxide stimulates the catalytic activity of de novo DNA methyltransferase 3a (Dnmt3a) in vitro. Bioorganic Chemistry, 2004, 32, 234-243.	4.1	17
98	DNMT3B interacts with hSNF2H chromatin remodeling enzyme, HDACs 1 and 2, and components of the histone methylation system. Biochemical and Biophysical Research Communications, 2004, 318, 544-555.	2.1	108
99	Effects of chromatin structure on the enzymatic and DNA binding functions of DNA methyltransferases DNMT1 and Dnmt3a in vitro. Biochemical and Biophysical Research Communications, 2004, 322, 110-118.	2.1	67
100	Stealth technology: how Epstein–Barr virus utilizes DNA methylation to cloak itself from immune detection. Clinical Immunology, 2003, 109, 53-63.	3.2	84
101	Defective de novo methylation of viral and cellular DNA sequences in ICF syndrome cells. Human Molecular Genetics, 2002, 11, 2091-2102.	2.9	131
102	Preferential Methylation of Unmethylated DNA by Mammalian de Novo DNA Methyltransferase Dnmt3a. Journal of Biological Chemistry, 2002, 277, 11735-11745.	3.4	134
103	Chromatin remodeling, histone modifications, and DNA methylation—how does it all fit together?. Journal of Cellular Biochemistry, 2002, 87, 117-125.	2.6	281
104	DNA methylation and chromatin – unraveling the tangled web. Oncogene, 2002, 21, 5361-5379.	5.9	408
105	DNA methylation, methyltransferases, and cancer. Oncogene, 2001, 20, 3139-3155.	5.9	660
106	DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nature Genetics, 2000, 25, 338-342.	21.4	884
107	DNA methylation in health and disease. Nature Reviews Genetics, 2000, 1, 11-19.	16.3	959
108	Differential mRNA expression of the human DNA methyltransferases (DNMTs) 1, 3a and 3b during the GO/G1 to S phase transition in normal and tumor cells. Nucleic Acids Research, 2000, 28, 2108-2113.	14.5	170

#	Article	IF	CITATIONS
109	Tissue-specific alternative splicing in the human INK4a/ARF cell cycle regulatory locus. Oncogene, 1999, 18, 3810-3820.	5.9	99
110	DNA methylation and the Epstein–Barr virus. Seminars in Cancer Biology, 1999, 9, 369-375.	9.6	82
111	Methylation Status of the Epstein-Barr Virus Major Latent Promoter C in latrogenic B Cell Lymphoproliferative Disease. American Journal of Pathology, 1999, 155, 619-625.	3.8	100
112	Roles of Cell Division and Gene Transcription in the Methylation of CpG Islands. Molecular and Cellular Biology, 1999, 19, 6690-6698.	2.3	120
113	The Human ARF Cell Cycle Regulatory Gene Promoter Is a CpG Island Which Can Be Silenced by DNA Methylation and Down-Regulated by Wild-Type p53. Molecular and Cellular Biology, 1998, 18, 6457-6473.	2.3	323
114	Epstein-Barr Virus (EBV) in Endemic Burkitt's Lymphoma: Molecular Analysis of Primary Tumor Tissue. Blood, 1998, 91, 1373-1381.	1.4	169
115	The Epstein-Barr Virus Major Latent Promoter Qp Is Constitutively Active, Hypomethylated, and Methylation Sensitive. Journal of Virology, 1998, 72, 7075-7083.	3.4	69
116	Dynamic Interrelationships between DNA Replication, Methylation, and Repair. American Journal of Human Genetics, 1997, 61, 1220-1224.	6.2	20
117	Methylation of the Epstein-Barr Virus Genome in Normal Lymphocytes. Blood, 1997, 90, 4480-4484.	1.4	60