Ajayan Vinu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5988315/publications.pdf

Version: 2024-02-01

474 papers 27,627 citations

83 h-index 9345 143 g-index

516 all docs

516 docs citations

516 times ranked

23994 citing authors

#	Article	IF	CITATIONS
1	Multifunctional applications of biochar beyond carbon storage. International Materials Reviews, 2022, 67, 150-200.	19.3	245
2	Selfâ€Assembled Fullerene Nanostructures: Synthesis and Applications. Advanced Functional Materials, 2022, 32, 2106924.	14.9	61
3	Antimony contamination and its risk management in complex environmental settings: A review. Environment International, 2022, 158, 106908.	10.0	125
4	Substitutional isomerism of triisopropylnaphthalenes in the isopropylation of naphthalene. Assignment by gas chromatography and confirmation by DFT calculation. Research on Chemical Intermediates, 2022, 48, 869-884.	2.7	4
5	Porous carbons derived from Arecanut seeds by direct pyrolysis for efficient CO2 capture. Emergent Materials, 2022, 5, 1757-1765.	5.7	5
6	Mesoporous Nanohybrids of 2D Niâ€Crâ€Layered Double Hydroxide Nanosheets Pillared with Polyoxovanadate Anions for Highâ€Performance Hybrid Supercapacitor. Advanced Materials Interfaces, 2022, 9, 2101216.	3.7	16
7	A Solutionâ€Processed Allâ€Perovskite Memory with Dualâ€Band Light Response and Triâ€Mode Operation. Advanced Functional Materials, 2022, 32, 2110975.	14.9	30
8	A critical review on the role of abiotic factors on the transformation, environmental identity and toxicity of engineered nanomaterials in aquatic environment. Environmental Pollution, 2022, 296, 118726.	7.5	22
9	Copper nanoparticles decorated N-doped mesoporous carbon with bimodal pores for selective gas separation and energy storage applications. Chemical Engineering Journal, 2022, 431, 134056.	12.7	12
10	Triple Surfactant Assisted Synthesis of Novel Core-Shell Mesoporous Silica Nanoparticles with High Surface Area for Drug Delivery for Prostate Cancer. Bulletin of the Chemical Society of Japan, 2022, 95, 331-340.	3.2	11
11	Metal nitride-based nanostructures for electrochemical and photocatalytic hydrogen production. Science and Technology of Advanced Materials, 2022, 23, 76-119.	6.1	28
12	Recovery, regeneration and sustainable management of spent adsorbents from wastewater treatment streams: A review. Science of the Total Environment, 2022, 822, 153555.	8.0	174
13	Synthesis of Nitrogenâ€Rich Carbon Nitrideâ€Based Hybrids and a New Insight of Their Battery Behaviors. Batteries and Supercaps, 2022, 5, .	4.7	8
14	Circular economy adoption by SMEs in emerging markets: Towards a multilevel conceptual framework. Journal of Business Research, 2022, 142, 605-619.	10.2	43
15	Nanoporous materials for pesticide formulation and delivery in the agricultural sector. Journal of Controlled Release, 2022, 343, 187-206.	9.9	46
16	Advanced porous borocarbonitride nanoarchitectonics: Their structural designs and applications. Carbon, 2022, 190, 142-169.	10.3	24
17	Highly graphitized porous biocarbon nanosheets with tunable Micro-Meso interfaces and enhanced layer spacing for CO2 capture and LIBs. Chemical Engineering Journal, 2022, 433, 134464.	12.7	28
18	Egg-yolk core–shell mesoporous silica nanoparticles for high doxorubicin loading and delivery to prostate cancer cells. Nanoscale, 2022, 14, 6830-6845.	5.6	10

#	Article	IF	CITATIONS
19	Single metal atoms catalysts—Promising candidates for next generation energy storage and conversion devices. EcoMat, 2022, 4, .	11.9	28
20	Nanomaterialsâ€based sensors for the detection of COVIDâ€19: A review. Bioengineering and Translational Medicine, 2022, 7, .	7.1	21
21	The emergence of nanoporous materials in lung cancer therapy. Science and Technology of Advanced Materials, 2022, 23, 225-274.	6.1	15
22	Nanostructured Metal Phosphide Based Catalysts for Electrochemical Water Splitting: A Review. Small, 2022, 18, e2107572.	10.0	100
23	Ordered Mesoporous Boron Carbon Nitrides with Tunable Mesopore Nanoarchitectonics for Energy Storage and CO ₂ Adsorption Properties. Advanced Science, 2022, 9, e2105603.	11.2	22
24	Hydrazine Hydrate Intercalated 1T-Dominant MoS ₂ with Superior Ambient Stability for Highly Efficient Electrocatalytic Applications. ACS Applied Materials & Samp; Interfaces, 2022, 14, 16338-16347.	8.0	17
25	Morphologically tunable nanoarchitectonics of mixed kaolin-halloysite derived nitrogen-doped activated nanoporous carbons for supercapacitor and CO2 capture applications. Carbon, 2022, 192, 133-144.	10.3	24
26	Layer-by-layer nanohybrids of Ni-Cr-LDH intercalated with OD polyoxotungstate for highly efficient hybrid supercapacitor. Journal of Colloid and Interface Science, 2022, 616, 548-559.	9.4	30
27	Mesoporous titanium carbonitride derived from mesoporous C3N5 for highly efficient hydrogen evolution reaction. Carbon, 2022, 195, 9-18.	10.3	21
28	Rareâ€Earth Doped Iron Oxide Nanostructures for Cancer Theranostics: Magnetic Hyperthermia and Magnetic Resonance Imaging. Small, 2022, 18, e2104855.	10.0	39
29	Nanoporous TiCN with High Specific Surface Area for Enhanced Hydrogen Evolution Reaction. ACS Applied Nano Materials, 2022, 5, 12077-12086.	5.0	9
30	Tuning Phase Transition and Thermochromic Properties of Vanadium Dioxide Thin Films via Cobalt Doping. ACS Applied Materials & Doping. ACS ACS Applied Materials & Doping. ACS Applied Materia	8.0	16
31	Super-reductive mesoporous phosphomolybdate with high crystallinity and its excellent performance for Li-ion battery application. Journal of Materials Chemistry A, 2022, 10, 12132-12140.	10.3	8
32	Tuning the enzyme-like activities of cerium oxide nanoparticles using a triethyl phosphite ligand. Biomaterials Science, 2022, 10, 3245-3258.	5.4	6
33	A review on the valorisation of food waste as a nutrient source and soil amendment. Environmental Pollution, 2021, 272, 115985.	7. 5	76
34	Nanoporous activated biocarbons with high surface areas from alligator weed and their excellent performance for CO2 capture at both low and high pressures. Chemical Engineering Journal, 2021, 406, 126787.	12.7	70
35	Ordered Mesoporous Carbon Nitrides with Tuneable Nitrogen Contents and Basicity for Knoevenagel Condensation. ChemCatChem, 2021, 13, 468-474.	3.7	24
36	Recognizing soft templates as stimulators in multivariate modulation of tin phosphate and its application in catalysis for alkyl levulinate synthesis. Catalysis Science and Technology, 2021, 11, 272-282.	4.1	5

#	Article	IF	CITATIONS
37	Ultrafine Copper Oxide Particles Dispersed on Nitrogenâ€Doped Hollow Carbon Nanospheres for Oxidative Esterification of Biomassâ€Derived 5â€Hydroxymethylfurfural. ChemPlusChem, 2021, 86, 259-269.	2.8	9
38	Recent Advances in Functionalized Nanoporous Carbons Derived from Waste Resources and Their Applications in Energy and Environment. Advanced Sustainable Systems, 2021, 5, .	5. 3	49
39	Single-Step Synthesis of 2D Mesoporous C60/Carbon Hybrids for Supercapacitor and Li-lon Battery Applications. Bulletin of the Chemical Society of Japan, 2021, 94, 133-140.	3.2	36
40	An Experimental and Theoretical Investigation on the Oxidation of CO over Pd/C Derived from the Spent Pd Catalyst. ChemCatChem, 2021, 13, 1326-1339.	3.7	3
41	Synthesis of functionalized nanoporous biocarbons with high surface area for CO ₂ capture and supercapacitor applications. Green Chemistry, 2021, 23, 5571-5583.	9.0	62
42	Fine-tuning the water oxidation performance of hierarchical Co3O4 nanostructures prepared from different cobalt precursors. Sustainable Energy and Fuels, 2021, 5, 1120-1128.	4.9	4
43	Recent advances in highly active nanostructured NiFe LDH catalyst for electrochemical water splitting. Journal of Materials Chemistry A, 2021, 9, 3180-3208.	10.3	224
44	Recent Progress in Polymorphs of Carbon Nitride: Synthesis, Properties, and Their Applications. Macromolecular Rapid Communications, 2021, 42, e2000676.	3.9	26
45	The Isopropylation of Naphthalene over USY Zeolite with FAU Topology. The Selectivities of the Products. Bulletin of the Chemical Society of Japan, 2021, 94, 606-615.	3.2	5
46	Direct Synthesis of Mesoporous Siliceous Phosphotungstic Acid and Its Superior Catalytic Activity on the Cyclohexylation of Phenol. Journal of Physical Chemistry C, 2021, 125, 6723-6734.	3.1	9
47	A Review on the Synthesis and Applications of Nanoporous Carbons for the Removal of Complex Chemical Contaminants. Bulletin of the Chemical Society of Japan, 2021, 94, 1232-1257.	3.2	67
48	Recent advances of layered-transition metal oxides for energy-related applications. Energy Storage Materials, 2021, 36, 514-550.	18.0	76
49	Nanoporous carbon oxynitride and its enhanced lithium-ion storage performance. Nano Energy, 2021, 82, 105733.	16.0	13
50	Amineâ€functionalized natural zeolites prepared through plasma polymerization for enhanced carbon dioxide adsorption. Plasma Processes and Polymers, 2021, 18, 2100028.	3.0	9
51	Vanadium doped 1T MoS2 nanosheets for highly efficient electrocatalytic hydrogen evolution in both acidic and alkaline solutions. Chemical Engineering Journal, 2021, 409, 128158.	12.7	98
52	Zn-Doped CeO ₂ Nanorods for Glycerol Carbonylation with CO ₂ . ACS Applied Nano Materials, 2021, 4, 4388-4397.	5.0	23
53	Silica-based nanomaterials as drug delivery tools for skin cancer (melanoma) treatment. Emergent Materials, 2021, 4, 1067-1092.	5.7	14
54	Microporous Carbon Nitride (C ₃ N _{5.4}) with Tetrazine based Molecular Structure for Efficient Adsorption of CO ₂ and Water. Angewandte Chemie, 2021, 133, 21412-21419.	2.0	6

#	Article	IF	Citations
55	Metal–organic frameworks containing uncoordinated nitrogen: Preparation, modification, and application in adsorption. Materials Today, 2021, 51, 566-585.	14.2	50
56	Mitigation of petroleum-hydrocarbon-contaminated hazardous soils using organic amendments: A review. Journal of Hazardous Materials, 2021, 416, 125702.	12.4	46
57	Activated Graphene Nanoplatelets Decorated with Carbon Nitrides for Efficient Electrocatalytic Oxygen Reduction Reaction. Advanced Energy and Sustainability Research, 2021, 2, 2100104.	5.8	11
58	Exploring tailor-made BrÃ,nsted acid sites in mesopores of tin oxide catalyst for β-alkoxy alcohol and amino alcohol syntheses. Scientific Reports, 2021, 11, 15718.	3.3	12
59	Redox Active Cerium Oxide Nanoparticles: Current Status and Burning Issues. Small, 2021, 17, e2102342.	10.0	79
60	Milk derived highly ordered mesoporous carbon with CaF2 nanoclusters as an efficient electrode for supercapacitors. Carbon, 2021, 180, 101-109.	10.3	22
61	Microporous Carbon Nitride (C ₃ N _{5.4}) with Tetrazine based Molecular Structure for Efficient Adsorption of CO ₂ and Water. Angewandte Chemie - International Edition, 2021, 60, 21242-21249.	13.8	46
62	Remediation of soils and sediments polluted with polycyclic aromatic hydrocarbons: To immobilize, mobilize, or degrade?. Journal of Hazardous Materials, 2021, 420, 126534.	12.4	150
63	Production, characterisation, utilisation, and beneficial soil application of steel slag: A review. Journal of Hazardous Materials, 2021, 419, 126478.	12.4	57
64	Distribution, behaviour, bioavailability and remediation of poly- and per-fluoroalkyl substances (PFAS) in solid biowastes and biowaste-treated soil. Environment International, 2021, 155, 106600.	10.0	74
65	From mine to mind and mobiles – Lithium contamination and its risk management. Environmental Pollution, 2021, 290, 118067.	7.5	58
66	Defects Engineering Induced Ultrahigh Magnetization in Rare Earth Element Ndâ€doped MoS ₂ . Advanced Quantum Technologies, 2021, 4, 2000093.	3.9	19
67	Tailoring the Pore Size, Basicity, and Binding Energy of Mesoporous C ₃ N ₅ for CO ₂ Capture and Conversion. Chemistry - an Asian Journal, 2021, 16, 3999-4005.	3.3	23
68	Intimately-coordinated carbon nitride-metal sulfide with high π-d conjugation for efficient battery performance. Nano Energy, 2021, 90, 106602.	16.0	9
69	Silicaâ€Based Nanoparticles as Drug Delivery Vehicles for Prostate Cancer Treatment. Chemical Record, 2021, 21, 1535-1568.	5.8	12
70	Boosting Photocatalytic Activity Using Carbon Nitride Based 2D/2D van der Waals Heterojunctions. Chemistry of Materials, 2021, 33, 9012-9092.	6.7	88
71	Nanostructured Carbon Nitrides for CO ₂ Capture and Conversion. Advanced Materials, 2020, 32, e1904635.	21.0	188
72	Mixed Copper/Copperâ€Oxide Anchored Mesoporous Fullerene Nanohybrids as Superior Electrocatalysts toward Oxygen Reduction Reaction. Small, 2020, 16, e1903937.	10.0	58

#	Article	IF	CITATIONS
73	High Coercivity and Magnetization in WSe ₂ by Codoping Co and Nb. Small, 2020, 16, e1903173.	10.0	43
74	Amine Functionalized Metal–Organic Framework Coordinated with Transition Metal Ions: d–d Transition Enhanced Optical Absorption and Role of Transition Metal Sites on Solar Light Driven H ₂ Production. Small, 2020, 16, e1902990.	10.0	54
75	Physico-chemical modification of natural mordenite-clinoptilolite zeolites and their enhanced CO2 adsorption capacity. Microporous and Mesoporous Materials, 2020, 294, 109871.	4.4	52
76	Oxygen functionalized porous activated biocarbons with high surface area derived from grape marc for enhanced capture of CO2 at elevated-pressure. Carbon, 2020, 160, 113-124.	10.3	76
77	Graphitic carbon nitride with different dimensionalities for energy and environmental applications. Nano Research, 2020, 13, 18-37.	10.4	214
78	Surface Activation and Reconstruction of Non-Oxide-Based Catalysts Through in Situ Electrochemical Tuning for Oxygen Evolution Reactions in Alkaline Media. ACS Catalysis, 2020, 10, 463-493.	11.2	196
79	Thermodynamically Stable Mesoporous C ₃ N ₇ and C ₃ N ₆ with Ordered Structure and Their Excellent Performance for Oxygen Reduction Reaction. Small, 2020, 16, e1903572.	10.0	53
80	Borophene: New Sensation in Flatland. Advanced Materials, 2020, 32, e2000531.	21.0	118
81	<i>Piper longum</i> Extract-Mediated Green Synthesis of Porous Cu ₂ O:Mo Microspheres and Their Superior Performance as Active Anode Material in Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 14557-14567.	6.7	15
82	Colossal Magnetization and Giant Coercivity in Ion-Implanted (Nb and Co) MoS ₂ Crystals. ACS Applied Materials & District (Nb and Co) MoS ₂ Crystals.	8.0	22
83	Carbon Capture and Conversion: Nanostructured Carbon Nitrides for CO ₂ Capture and Conversion (Adv. Mater. 18/2020). Advanced Materials, 2020, 32, 2070142.	21.0	4
84	Recent Advances in Developing Hybrid Materials for Sodium-Ion Battery Anodes. ACS Energy Letters, 2020, 5, 1939-1966.	17.4	149
85	The Influence of Nanoparticle Shape on Protein Corona Formation. Small, 2020, 16, e2000285.	10.0	108
86	Emerging trends in porous materials for CO ₂ capture and conversion. Chemical Society Reviews, 2020, 49, 4360-4404.	38.1	473
87	Highly enhanced photocatalytic hydrogen evolution activity of graphitic carbon nitride with 3D connected mesoporous structure. Sustainable Materials and Technologies, 2020, 25, e00184.	3.3	10
88	Rational design of bifunctional catalyst from KF and ZnO combination on alumina for cyclic urea synthesis from CO2 and diamine. Applied Catalysis A: General, 2020, 598, 117550.	4.3	12
89	Copper-catalyzed oxidative methyl-esterification of 5-hydroxymethylfurfural using TBHP as an oxidizing and methylating reagent: A new approach for the synthesis of furan-2,5-dimethylcarboxylate. Journal of Catalysis, 2020, 389, 259-269.	6.2	25
90	Theoretical and experimental investigations of mesoporous C3N5/MoS2 hybrid for lithium and sodium ion batteries. Nano Energy, 2020, 72, 104702.	16.0	65

#	Article	IF	CITATIONS
91	Fabrication of hybrid supercapacitor device based on NiCo2O4@ZnCo2O4 and the biomass-derived N-doped activated carbon with a honeycomb structure. Electrochimica Acta, 2020, 342, 136062.	5.2	39
92	Emerging Advanced Nanomaterials and their Applications. Small, 2020, 16, e2001287.	10.0	1
93	Shape and Orientation Controlled Hydrothermal Synthesis of Silicide and Metal Dichalcogenide on a Silicon Substrate. ACS Applied Materials & Silicon Substrate.	8.0	10
94	Recent Advances in the Preparation and Applications of Organoâ€functionalized Porous Materials. Chemistry - an Asian Journal, 2020, 15, 2588-2621.	3.3	33
95	Nanoparticle Shape: The Influence of Nanoparticle Shape on Protein Corona Formation (Small) Tj ETQq1 1 0.7843	314 rgBT 10.0	/Oyerlock 10
96	Electrochemical Performance of rGO/NiCo ₂ O ₄ Ternary Composite Material and the Fabrication of an all-Solid-State Supercapacitor Device. Energy & Energy & 2020, 34, 10131-10141.	5.1	38
97	Carbon Nanoflakes and Nanotubes from Halloysite Nanoclays and their Superior Performance in CO ₂ Capture and Energy Storage. ACS Applied Materials & Samp; Interfaces, 2020, 12, 11922-11933.	8.0	32
98	Tuning the ATP-triggered pro-oxidant activity of iron oxide-based nanozyme towards an efficient antibacterial strategy. Journal of Colloid and Interface Science, 2020, 567, 154-164.	9.4	50
99	Design of P-Doped Mesoporous Carbon Nitrides as High-Performance Anode Materials for Li-Ion Battery. ACS Applied Materials & Amp; Interfaces, 2020, 12, 24007-24018.	8.0	44
100	Oxygen Reduction Reaction: Thermodynamically Stable Mesoporous C ₃ N ₇ and C ₃ N ₆ with Ordered Structure and Their Excellent Performance for Oxygen Reduction Reaction (Small 12/2020). Small, 2020, 16, 2070064.	10.0	6
101	Enriched Photophysical Properties and Thermal Stability of Tin(II) Substituted Lead-Based Perovskite Nanocrystals with Mixed Organic–Inorganic Cations. Journal of Physical Chemistry C, 2020, 124, 9611-9621.	3.1	21
102	Singleâ€Step Synthesis of Mesoporous Carbon Nitride/Molybdenum Sulfide Nanohybrids for Highâ€Performance Sodiumâ€ion Batteries. Chemistry - an Asian Journal, 2020, 15, 1863-1868.	3.3	9
103	Characterization and Drug Release Control Ability of Chitosan/Lovastatin Particles Coated by Alginate. Journal of Nanoscience and Nanotechnology, 2020, 20, 7347-7355.	0.9	1
104	3D cubic mesoporous C3N4 with tunable pore diameters derived from KIT-6 and their application in base catalyzed Knoevenagel reaction. Catalysis Today, 2019, 324, 33-38.	4.4	39
105	RÃ⅓cktitelbild: Highly Crystalline Mesoporous Phosphotungstic Acid: A Highâ€Performance Electrode Material for Energyâ€Storage Applications (Angew. Chem. 32/2019). Angewandte Chemie, 2019, 131, 11244-11244.	2.0	0
106	Sulfur-Doped Mesoporous Carbon Nitride with an Ordered Porous Structure for Sodium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2019, 11, 27192-27199.	8.0	63
107	Borophene: Freestanding Borophene and Its Hybrids (Adv. Mater. 27/2019). Advanced Materials, 2019, 31, 1970196.	21.0	10
108	Characterization and Hydrogen Storage Performance of Halloysite Nanotubes. Journal of Nanoscience and Nanotechnology, 2019, 19, 7892-7898.	0.9	8

#	Article	IF	Citations
109	Confinement-Induced Giant Spin–Orbit-Coupled Magnetic Moment of Co Nanoclusters in TiO ₂ Films. ACS Applied Materials & Interfaces, 2019, 11, 43781-43788.	8.0	8
110	Controlled synthesis of three dimensional mesoporous C3N4 with ordered porous structure for room temperature Suzuki coupling reaction. Molecular Catalysis, 2019, 477, 110548.	2.0	7
111	Potential of Raman spectroscopy towards understanding structures of carbon-based materials and perovskites. Emergent Materials, 2019, 2, 417-439.	5.7	27
112	A facile synthesis of activated porous carbon spheres from d-glucose using a non-corrosive activating agent for efficient carbon dioxide capture. Applied Energy, 2019, 255, 113831.	10.1	66
113	Pure and strontium carbonate nanoparticles functionalized microporous carbons with high specific surface areas derived from chitosan for CO2 adsorption. Emergent Materials, 2019, 2, 337-349.	5.7	19
114	Convenient design of porous and heteroatom self-doped carbons for CO2 capture. Microporous and Mesoporous Materials, 2019, 287, 1-8.	4.4	45
115	Highly Crystalline Mesoporous Phosphotungstic Acid: A Highâ€Performance Electrode Material for Energyâ€6torage Applications. Angewandte Chemie, 2019, 131, 10965-10970.	2.0	6
116	Highly Crystalline Mesoporous Phosphotungstic Acid: A Highâ€Performance Electrode Material for Energyâ€Storage Applications. Angewandte Chemie - International Edition, 2019, 58, 10849-10854.	13.8	46
117	Highly ordered iron oxide-mesoporous fullerene nanocomposites for oxygen reduction reaction and supercapacitor applications. Microporous and Mesoporous Materials, 2019, 285, 21-31.	4.4	50
118	Freestanding Borophene and Its Hybrids. Advanced Materials, 2019, 31, e1900353.	21.0	195
119	Biomass derived porous carbon for CO2 capture. Carbon, 2019, 148, 164-186.	10.3	356
120	A novel geopolymer route to porous carbon: high CO ₂ adsorption capacity. Chemical Communications, 2019, 55, 3266-3269.	4.1	24
121	High-Performance Biomass-Derived Activated Porous Biocarbons for Combined Pre- and Post-Combustion CO ₂ Capture. ACS Sustainable Chemistry and Engineering, 2019, 7, 7412-7420.	6.7	64
122	Highly ordered mesoporous carbons with high specific surface area from carbonated soft drink for supercapacitor application. Microporous and Mesoporous Materials, 2019, 280, 337-346.	4.4	56
123	Oxygen-Functionalized Mesoporous Activated Carbons Derived from Casein and Their Superior CO ₂ Adsorption Capacity at Both Low- and High-Pressure Regimes. ACS Applied Nano Materials, 2019, 2, 1604-1613.	5.0	41
124	Recent Progress on the Sensing of Pathogenic Bacteria Using Advanced Nanostructures. Bulletin of the Chemical Society of Japan, 2019, 92, 216-244.	3.2	108
125	MOF-derived carbonaceous materials enriched with nitrogen: Preparation and applications in adsorption and catalysis. Materials Today, 2019, 25, 88-111.	14.2	180
126	Halloysite nanotubes: Novel and eco-friendly adsorbents for high-pressure CO2 capture. Microporous and Mesoporous Materials, 2019, 277, 229-236.	4.4	44

#	Article	IF	Citations
127	Green synthetic methodology: An evaluative study for impact of surface basicity of MnO2 doped MgO nanocomposites in Wittig reaction. Journal of Solid State Chemistry, 2019, 269, 167-174.	2.9	8
128	2D Nanostructured Metal Hydroxides with Gene Delivery and Theranostic Functions; A Comprehensive Review. Chemical Record, 2018, 18, 1033-1053.	5.8	45
129	Additive assisted morphological optimization of photoactive layer in polymer solar cells. Solar Energy Materials and Solar Cells, 2018, 182, 246-254.	6.2	39
130	Mesoporous Cu-SBA-15 with highly ordered porous structure and its excellent CO2 adsorption capacity. Microporous and Mesoporous Materials, 2018, 267, 134-141.	4.4	40
131	Recent advances in functionalized micro and mesoporous carbon materials: synthesis and applications. Chemical Society Reviews, 2018, 47, 2680-2721.	38.1	737
132	Mesoporous tin oxide: An efficient catalyst with versatile applications in acid and oxidation catalysis. Catalysis Today, 2018, 309, 61-76.	4.4	58
133	A new optical-electrical integrated buffer layer design based on gold nanoparticles tethered thiol containing sulfonated polyaniline towards enhancement of solar cell performance. Solar Energy Materials and Solar Cells, 2018, 174, 112-123.	6.2	50
134	Facile Oneâ€Pot Synthesis of Activated Porous Biocarbons with a High Nitrogen Content for CO ₂ Capture. ChemNanoMat, 2018, 4, 281-290.	2.8	40
135	Highly Crystalline Mesoporous C ₆₀ with Ordered Pores: A Class of Nanomaterials for Energy Applications. Angewandte Chemie - International Edition, 2018, 57, 569-573.	13.8	71
136	Highly Crystalline Mesoporous C ₆₀ with Ordered Pores: A Class of Nanomaterials for Energy Applications. Angewandte Chemie, 2018, 130, 578-582.	2.0	21
137	Design and fabrication of nanoporous adsorbents for the removal of aromatic sulfur compounds. Journal of Materials Chemistry A, 2018, 6, 23978-24012.	10.3	147
138	Ordered Mesoporous C ₃ N ₅ with a Combined Triazole and Triazine Framework and Its Graphene Hybrids for the Oxygen Reduction Reaction (ORR). Angewandte Chemie, 2018, 130, 17381-17386.	2.0	64
139	Ordered Mesoporous C ₃ N ₅ with a Combined Triazole and Triazine Framework and Its Graphene Hybrids for the Oxygen Reduction Reaction (ORR). Angewandte Chemie - International Edition, 2018, 57, 17135-17140.	13.8	155
140	Highly Enhanced Photocatalytic Water-Splitting Activity of Gallium Zinc Oxynitride Derived from Flux-Assisted Zn/Ga Layered Double Hydroxides. Industrial & Engineering Chemistry Research, 2018, 57, 16264-16271.	3.7	13
141	Mesoporous Carbons with Hexagonally Ordered Pores Prepared from Carbonated Soft-Drink for CO ₂ Capture at High Pressure. Journal of Nanoscience and Nanotechnology, 2018, 18, 7830-7837.	0.9	10
142	Electrochemical Material Processing via Continuous Chargeâ€Discharge Cycling: Enhanced Performance upon Cycling for Porous LaMnO ₃ Perovskite Supercapacitor Electrodes. ChemElectroChem, 2018, 5, 3723-3730.	3.4	23
143	A combined strategy of acid-assisted polymerization and solid state activation to synthesize functionalized nanoporous activated biocarbons from biomass for CO2 capture. Microporous and Mesoporous Materials, 2018, 271, 23-32.	4.4	48
144	Electrochemical Determination of Nitrite Using Catalyst Free Mesoporous Carbon Nanoparticles from Bio Renewable <i>Areca nut </i> Seeds. Journal of the Electrochemical Society, 2018, 165, H614-H619.	2.9	40

#	Article	IF	CITATIONS
145	Ordered Mesoporous C ₇₀ with Highly Crystalline Pore Walls for Energy Applications. Advanced Functional Materials, 2018, 28, 1803701.	14.9	73
146	Excellent supercapacitance performance of 3-D mesoporous carbon with large pores from FDU-12 prepared using a microwave method. RSC Advances, 2018, 8, 17017-17024.	3.6	15
147	Dynamic multistimuli-responsive reversible chiral transformation in supramolecular helices. Scientific Reports, 2018, 8, 11220.	3.3	30
148	Cyclohexylation of Resorcinol with Cyclohexanol Catalyzed by Tungstophosphoric Acid Supported Zirconia Catalysts. Journal of Nanoscience and Nanotechnology, 2018, 18, 2986-2992.	0.9	1
149	Thickness-dependent humidity sensing by poly(vinyl alcohol) stabilized Au–Ag and Ag–Au core–shell bimetallic nanomorph resistors. Royal Society Open Science, 2018, 5, 171986.	2.4	14
150	Amylation of Resorcinol by Tert-Amyl Alcohol Catalyzed by Tungstophosphoric Acid Supported on Zirconia. Advanced Porous Materials, 2018, 6, 56-60.	0.3	0
151	High electrocatalytic performance of nitrogen-doped carbon nanofiber-supported nickel oxide nanocomposite for methanol oxidation in alkaline medium. Applied Surface Science, 2017, 401, 306-313.	6.1	35
152	Energy efficient synthesis of highly ordered mesoporous carbon nitrides with uniform rods and their superior CO ₂ adsorption capacity. Journal of Materials Chemistry A, 2017, 5, 16220-16230.	10.3	79
153	Effect of Heat Treatment on the Nitrogen Content and Its Role on the Carbon Dioxide Adsorption Capacity of Highly Ordered Mesoporous Carbon Nitride. Chemistry - an Asian Journal, 2017, 12, 595-604.	3.3	16
154	Microwave treated sol–gel synthesis and characterization of hybrid ZnS–RGO composites for efficient photodegradation of dyes. New Journal of Chemistry, 2017, 41, 1723-1735.	2.8	49
155	Single step synthesis of activated bio-carbons with a high surface area and their excellent CO2 adsorption capacity. Carbon, 2017, 116, 448-455.	10.3	262
156	Asymmetric Supercapacitors Based on Reduced Graphene Oxide with Different Polyoxometalates as Positive and Negative Electrodes. ChemSusChem, 2017, 10, 2742-2750.	6.8	89
157	Remarkable catalytic activity of a sulfonated mesoporous polymer (MP-SO ₃ H) for the synthesis of solketal at room temperature. New Journal of Chemistry, 2017, 41, 5745-5751.	2.8	49
158	Pt-Ru nanoparticles functionalized mesoporous carbon nitride with tunable pore diameters for DMFC applications. Microporous and Mesoporous Materials, 2017, 252, 50-58.	4.4	13
159	Highly Ordered Nitrogenâ€Rich Mesoporous Carbon Nitrides and Their Superior Performance for Sensing and Photocatalytic Hydrogen Generation. Angewandte Chemie, 2017, 129, 8601-8605.	2.0	40
160	Highly Ordered Nitrogenâ€Rich Mesoporous Carbon Nitrides and Their Superior Performance for Sensing and Photocatalytic Hydrogen Generation. Angewandte Chemie - International Edition, 2017, 56, 8481-8485.	13.8	345
161	A Nanoporous Cytochrome <i>c</i> Film with Highly Ordered Porous Structure for Sensing of Toxic Vapors. Advanced Materials, 2017, 29, 1702295.	21.0	23
162	Metal organic framework derived mesoporous carbon nitrides with a high specific surface area and chromium oxide nanoparticles for CO ₂ and hydrogen adsorption. Journal of Materials Chemistry A, 2017, 5, 21542-21549.	10.3	45

#	Article	IF	Citations
163	Heteroatom functionalized activated porous biocarbons and their excellent performance forÂCO ₂ capture at high pressure. Journal of Materials Chemistry A, 2017, 5, 21196-21204.	10.3	91
164	Energy Efficient Synthesis of Ordered Mesoporous Carbon Nitrides with a High Nitrogen Content and Enhanced CO ₂ Capture Capacity. Chemistry - A European Journal, 2017, 23, 10753-10757.	3.3	85
165	Diaminotetrazine based mesoporous C ₃ N ₆ with a well-ordered 3D cubic structure and its excellent photocatalytic performance for hydrogen evolution. Journal of Materials Chemistry A, 2017, 5, 18183-18192.	10.3	7 5
166	Highly Efficient Method for the Synthesis of Activated Mesoporous Biocarbons with Extremely High Surface Area for High-Pressure CO ₂ Adsorption. ACS Applied Materials & Interfaces, 2017, 9, 29782-29793.	8.0	125
167	Mesoporous carbon nitrides: synthesis, functionalization, and applications. Chemical Society Reviews, 2017, 46, 72-101.	38.1	534
168	Highly Efficient Electrocatalysis of Metal-Free, Graphitic and Sustainable Nitrogen Doped Mesoporous Carbon Towards Oxygen Reduction Reaction. Advanced Porous Materials, 2017, 5, 26-35.	0.3	3
169	Anionic clay as the drug delivery vehicle: tumor targeting function of layered double hydroxide-methotrexate nanohybrid in C33A orthotopic cervical cancer model. International Journal of Nanomedicine, 2016, 11 , 337 .	6.7	46
170	Novel Bifunctional Zn–Sn Composite Oxide Catalyst for the Selective Synthesis of Glycerol Carbonate by Carbonylation of Glycerol with Urea. ChemCatChem, 2016, 8, 631-639.	3.7	42
171	Review of Clay-Drug Hybrid Materials for Biomedical Applications: Administration Routes. Clays and Clay Minerals, 2016, 64, 115-130.	1.3	74
172	Synthesis of biodiesel and acetins by transesterification reactions using novel CaSn(OH)6 heterogeneous base catalystâ€∢. Applied Catalysis A: General, 2016, 523, 1-11.	4.3	36
173	Catalytic etherification of glycerol to tert-butyl glycerol ethers using tert-butanol over sulfonic acid functionalized mesoporous polymer. RSC Advances, 2016, 6, 82654-82660.	3.6	28
174	Synthesis of mesoporous carbons with controlled morphology and pore diameters from SBA-15 prepared through the microwave-assisted process and their CO2 adsorption capacity. Microporous and Mesoporous Materials, 2016, 233, 44-52.	4.4	52
175	Facile Synthesis of Crystalline Nanoporous GaN Templated by Nitrogen Enriched Mesoporous Carbon Nitride for Friedel rafts Reaction. ChemistrySelect, 2016, 1, 6062-6068.	1.5	9
176	Synthesis of ultra-long hierarchical ZnO whiskers in a hydrothermal system for dye-sensitised solar cells. RSC Advances, 2016, 6, 109406-109413.	3.6	10
177	Fluorescent and Magnetic Mesoporous Hybrid Material: A Chemical and Biological Nanosensor for Hg2+ Ions. Scientific Reports, 2016, 6, 21820.	3.3	13
178	Lanthanide oxide modified H-Mordenites: Deactivation of external acid sites in the isopropylation of naphthalene. Microporous and Mesoporous Materials, 2016, 230, 217-226.	4.4	5
179	Preparation of Highly Active Triflic Acid Functionalized SBAâ€15 Catalysts for the Synthesis of Coumarin under Solventâ€Free Conditions. ChemCatChem, 2016, 8, 336-344.	3.7	12
180	X-ray diffraction and X-ray absorption spectroscopic analyses for intercalative nanohybrids with low crystallinity. Arabian Journal of Chemistry, 2016, 9, 190-205.	4.9	26

#	Article	IF	CITATIONS
181	The isopropylation of biphenyl over transition metal substituted aluminophosphates: MAPO-5 (M: Co) Tj ETQq1	l 0,784314 4.8	rgBT /Over
182	Superior performance of mesoporous tin oxide over nano and bulk forms in the activation of a carbonyl group: conversion of bio-renewable feedstock. Catalysis Science and Technology, 2016, 6, 2268-2279.	4.1	23
183	Highly efficient and selective adsorption of In3+ on pristine Zn/Al layered double hydroxide (Zn/Al-LDH) from aqueous solutions. Journal of Solid State Chemistry, 2016, 233, 133-142.	2.9	50
184	Growth and physico-chemical properties of interconnected carbon nanotubes in FeSBA-15 mesoporous molecular sieves. Arabian Journal of Chemistry, 2016, 9, 171-178.	4.9	6
185	Hydrophobic Guest Mediated Micellization and Demicellization of Rationally Designed Amphiphilic Poly(organophosphazene) for Efficient Drug Delivery. Science of Advanced Materials, 2016, 8, 1553-1562.	0.7	3
186	Molecular Orientation of Intercalants Stabilized in the Interlayer Space of Layered Ceramics: 1-D Electron Density Simulation. Journal of the Korean Ceramic Society, 2016, 53, 417-428.	2.3	4
187	Bifunctional Mesoporous Carbon Nitride: Highly Efficient Enzyme-like Catalyst for One-pot Deacetalization-Knoevenagel Reaction. Scientific Reports, 2015, 5, 12901.	3.3	31
188	A Singleâ€Step Synthesis of Electroactive Mesoporous ProDOTâ€Silica Structures. Angewandte Chemie - International Edition, 2015, 54, 8407-8410.	13.8	22
189	Friedel-Crafts Alkylation of Arenes Catalyzed by Ion-Exchange Resin Nanoparticles: An Expedient Synthesis of Triarylmethanes. Journal of Nanoscience and Nanotechnology, 2015, 15, 6826-6832.	0.9	1
190	Shape-Selective Catalysis in the Alkylation of Naphthalene: Steric Interaction with the Nanospace of Zeolites. Journal of Nanoscience and Nanotechnology, 2015, 15, 9369-9381.	0.9	14
191	Alkaline Earth Metal Modified H-Mordenites. Their Catalytic Properties in the Isopropylation of Biphenyl. Industrial & Engineering Chemistry Research, 2015, 54, 12283-12292.	3.7	3
192	Cobalt oxide functionalized nanoporous carbon electrodes and their excellent supercapacitive performance. RSC Advances, 2015, 5, 13930-13940.	3.6	20
193	Intercalative Ionâ€Exchange Route to Amino Acid Layered Double Hydroxide Nanohybrids and Their Sorption Properties. European Journal of Inorganic Chemistry, 2015, 2015, 925-930.	2.0	26
194	Hierarchically Ordered Porous CoOOH Thinâ€Film Electrodes for Highâ€Performance Supercapacitors. ChemElectroChem, 2015, 2, 497-502.	3.4	39
195	TiO ₂ -pillared clays with well-ordered porous structure and excellent photocatalytic activity. RSC Advances, 2015, 5, 8210-8215.	3.6	33
196	Alkylation of Biphenyl over Zeolites: Shape-Selective Catalysis in Zeolite Channels. Catalysis Surveys From Asia, 2015, 19, 188-200.	2.6	15
197	Morphological control of mesoporous CN based hybrid materials and their excellent CO ₂ adsorption capacity. RSC Advances, 2015, 5, 40183-40192.	3.6	38
198	Highly Uniform Pd Nanoparticles Supported on g-C3N4 for Efficiently Catalytic Suzuki–Miyaura Reactions. Catalysis Letters, 2015, 145, 1388-1395.	2.6	44

#	Article	IF	Citations
199	Quick high-temperature hydrothermal synthesis of mesoporous materials with 3D cubic structure for the adsorption of lysozyme. Science and Technology of Advanced Materials, 2015, 16, 024806.	6.1	17
200	Influence of anionic surface modifiers on the thermal stability and mechanical properties of layered double hydroxide/polypropylene nanocomposites. Journal of Materials Chemistry A, 2015, 3, 22730-22738.	10.3	52
201	Glycerol acetins: fuel additive synthesis by acetylation and esterification of glycerol using cesium phosphotungstate catalyst. RSC Advances, 2015, 5, 104354-104362.	3.6	51
202	Highly Ordered Nanoporous Carbon Films with Tunable Pore Diameters and their Excellent Sensing Properties. Chemistry - A European Journal, 2015, 21, 697-703.	3.3	24
203	Pd nanoparticles embedded in mesoporous carbon: A highly efficient catalyst for Suzuki-Miyaura reaction. Catalysis Today, 2015, 243, 195-198.	4.4	39
204	Cage type mesoporous carbon nitride with large mesopores for CO2 capture. Catalysis Today, 2015, 243, 209-217.	4.4	93
205	Room temperature synthesis of solketal from acetalization of glycerol with acetone: Effect of crystallite size and the role of acidity of beta zeolite. Journal of Molecular Catalysis A, 2015, 396, 47-54.	4.8	138
206	The isopropylation of naphthalene with propene over H-mordenite: The catalysis at the internal and external acid sites. Journal of Molecular Catalysis A, 2014, 395, 543-552.	4.8	15
207	Titania Nanoparticles Stabilized HPA in SBAâ€15 for the Intermolecular Hydroamination of Activated Olefins. ChemCatChem, 2014, 6, 3347-3354.	3.7	12
208	Titania Nanoparticles Stabilized HPA in SBA-15 for the Intermolecular Hydroamination of Activated Olefins. ChemCatChem, 2014, 6, 3267-3267.	3.7	2
209	Photocatalytic hydrogen generation from water using a hybrid of graphene nanoplatelets and self doped TiO ₂ –Pd. RSC Advances, 2014, 4, 13469-13476.	3.6	18
210	Co ₃ O ₄ microcubes with exceptionally high conductivity using a CoAl layered double hydroxide precursor via soft chemically synthesized cobalt carbonate. Journal of Materials Chemistry A, 2014, 2, 6301-6304.	10.3	13
211	Highly ordered macro-mesoporous carbon nitride film for selective detection of acidic/basic molecules. Chemical Communications, 2014, 50, 5976-5979.	4.1	61
212	Mesoporous BN and BCN nanocages with high surface area and spherical morphology. Physical Chemistry Chemical Physics, 2014, 16, 23554-23557.	2.8	23
213	Highly Magnetic Nanoporous Carbon/Ironâ€Oxide Hybrid Materials. ChemPhysChem, 2014, 15, 3440-3443.	2.1	1
214	Synthesis of a novel hierarchical mesoporous organic–inorganic nanohybrid using polyhedral oligomericsilsesquioxane bricks. New Journal of Chemistry, 2014, 38, 2766-2769.	2.8	10
215	Mesoporous Carbons Functionalized with Aromatic, Aliphatic, and Cyclic Amines, and their Superior Catalytic Activity. ChemCatChem, 2014, 6, 2872-2880.	3.7	11
216	Application of MCN-1 to the Adsorptive Removal of Indoor Formaldehyde. Science of Advanced Materials, 2014, 6, 1511-1515.	0.7	8

#	Article	IF	Citations
217	Highly Dispersed and Active Iron Oxide Nanoparticles in SBA-15 with Different Pore Sizes for the Synthesis of Diphenylmethane. Science of Advanced Materials, 2014, 6, 1618-1626.	0.7	4
218	Biomolecule Encapsulation Over Mesoporous Silica with Ultra-Large Tuneable Porous Structure Prepared by High Temperature Microwave Process. Science of Advanced Materials, 2014, 6, 1481-1488.	0.7	6
219	Selected Peer-Reviewed Articles from the 1st International Conference on Emerging Advanced Nanomaterials (ICEAN-2012). Science of Advanced Materials, 2014, 6, 1299-1301.	0.7	0
220	Nanoporous Carbon Sensor with Cage-in-Fiber Structure: Highly Selective Aniline Adsorbent toward Cancer Risk Management. ACS Applied Materials & Samp; Interfaces, 2013, 5, 2930-2934.	8.0	62
221	The isopropylation of biphenyl over H-mordenite — Roles of 3- and 4-isopropylbiphenyls. Korean Journal of Chemical Engineering, 2013, 30, 1043-1050.	2.7	6
222	Transesterification of ethylacetoacetate catalysed by metal free mesoporous carbon nitride. Catalysis Today, 2013, 204, 164-169.	4.4	25
223	Cage type mesoporous ferrosilicate catalysts with 3D structure for benzylation of aromatics. Catalysis Today, 2013, 204, 125-131.	4.4	19
224	Nanocrystalline Ce1â^'xSmxO2â^'Î^' (x = 0.4) solid solutions: structural characterization versus CO oxidation. RSC Advances, 2013, 3, 7953.	3.6	100
225	Selective sensing performance of mesoporous carbon nitride with a highly ordered porous structure prepared from 3-amino-1,2,4-triazine. Journal of Materials Chemistry A, 2013, 1, 2913.	10.3	90
226	Post-synthetic functionalization of mesoporous carbon electrodes with copper oxide nanoparticles for supercapacitor application. Microporous and Mesoporous Materials, 2013, 172, 77-86.	4.4	44
227	Enhanced Supercapacitor Performance of Nâ€Doped Mesoporous Carbons Prepared from a Gelatin Biomolecule. ChemPhysChem, 2013, 14, 1563-1569.	2.1	44
228	Mesoporous Gallosilicate with 3 D Architecture as a Robust Energyâ€Efficient Heterogeneous Catalyst for Diphenylmethane Production. ChemCatChem, 2013, 5, 1863-1870.	3.7	3
229	Condensation reactions assisted by acidic hydrogen bonded hydroxyl groups in solid tin(ii)hydroxychloride. RSC Advances, 2013, 3, 10795.	3.6	21
230	Template-Free Synthesis of Nanostructured Cd _{<i>x</i>} Zn _{1–<i>x</i>} S with Tunable Band Structure for H ₂ Production and Organic Dye Degradation Using Solar Light. Environmental Science & Description (Science) (1988) 1988 1989 1989 1989 1989 1989 1989	10.0	75
231	Fabrication and electrocatalytic application of functionalized nanoporous carbon material with different transition metal oxides. Applied Surface Science, 2013, 265, 214-221.	6.1	19
232	Direct synthesis and characterization of highly ordered cobalt substituted KIT-5 with 3D nanocages for cyclohexene epoxidation. Microporous and Mesoporous Materials, 2013, 167, 146-154.	4.4	20
233	Isopropylation of biphenyl over ZSM-12 zeolites. Journal of Molecular Catalysis A, 2013, 367, 23-30.	4.8	13
234	Highly Selective Synthesis of <i>Ortho</i> à€Prenylated Phenols and Chromans by using a New Bimetallic CuAlâ€KITâ€5 with a 3Dâ€Cageâ€type Mesoporous Structure. ChemCatChem, 2013, 5, 899-902.	3.7	7

#	Article	IF	Citations
235	Welcome to the Advanced Porous Materials. Advanced Porous Materials, 2013, 1, 1-3.	0.3	5
236	New Ideas for Mesoporous Materials. Advanced Porous Materials, 2013, 1, 63-71.	0.3	40
237	Inorganic Nanomedicines and their Labeling for Biological Imaging. Current Topics in Medicinal Chemistry, 2013, 13, 488-503.	2.1	11
238	Low-Temperature Synthesis of Pyrano- and Furo[3,2-c]quinolines via Povarov Reaction Using a Highly Ordered 3D Nanoporous Catalyst with a High Acidity. Synlett, 2012, 23, 2237-2240.	1.8	5
239	Nanoporous materials for energy related and sensing applications. , 2012, , .		0
240	Mesoporous Carbon Encapsulated with SrO Nanoparticles for the Transesterification of Ethyl Acetoacetate. Journal of Nanoscience and Nanotechnology, 2012, 12, 8467-8474.	0.9	2
241	Highly Basic CaO Nanoparticles in Mesoporous Carbon Materials and Their Excellent Catalytic Activity. Journal of Nanoscience and Nanotechnology, 2012, 12, 4613-4620.	0.9	3
242	Nanoarchitectonics for Mesoporous Materials. Bulletin of the Chemical Society of Japan, 2012, 85, 1-32.	3.2	650
243	Microwave-assisted Synthesis of Highly Crystalline Mesoporous Hydroxyapatite with a Rod-shaped Morphology. Chemistry Letters, 2012, 41, 458-460.	1.3	5
244	Effect of calcination atmosphere on the structure and photocatalytic properties of titania mesoporous powder. Research on Chemical Intermediates, 2012, 38, 1467-1482.	2.7	6
245	Catalytic N2O decomposition on Pr0.8Ba0.2MnO3 type perovskite catalyst for industrial emission control. Catalysis Today, 2012, 198, 125-132.	4.4	53
246	Facile synthesis and basic catalytic application of 3D mesoporous carbon nitride with a controllable bimodal distribution. Journal of Materials Chemistry, 2012, 22, 9831.	6.7	140
247	Catalytic guanylation of aliphatic, aromatic, heterocyclic primary and secondary amines using nanocrystalline zinc(II) oxide. Tetrahedron, 2012, 68, 5730-5737.	1.9	26
248	Immobilization of carbonic anhydrase on mesoporous aluminosilicate for carbonation reaction. Microporous and Mesoporous Materials, 2012, 160, 151-158.	4.4	47
249	Preparation of mesoporous titanosilicate molecular sieves with a cage type 3D porous structure for cyclohexene epoxidation. Microporous and Mesoporous Materials, 2012, 160, 159-166.	4.4	20
250	Re-dispersion and film formation of GdVO4 :  Ln3+ (Ln3+ = Dy3+, Eu3+, Sm3+, Tm3+) nanoparticles: particle size and luminescence studies. Dalton Transactions, 2012, 41, 4404.	3.3	85
251	A facile photo-induced synthesis of COOH functionalized meso-macroporous carbon films and their excellent sensing capability for aromatic amines. Chemical Communications, 2012, 48, 9029.	4.1	24
252	Chapter 5. Mesoporous Nanoarchitectonics. RSC Nanoscience and Nanotechnology, 2012, , 112-128.	0.2	1

#	Article	IF	CITATIONS
253	Deactivation of External Acid Sites of H-Mordenite by Modification with Lanthanide Oxides for the Isopropylation of Biphenyl and the Cracking of 1,3,5-Triisopropylbenzene and Cumene. Industrial & Engineering Chemistry Research, 2012, 51, 12214-12221.	3.7	12
254	Mesoporous and hexagonally ordered CuAl-SBA-15-catalyzed tandem C–C and C–O bond formation between phenols and allylic alcohols. Tetrahedron Letters, 2012, 53, 5656-5659.	1.4	9
255	Dopant Induced Bandgap Narrowing in Y-Doped Zinc Oxide Nanostructures. Journal of Nanoscience and Nanotechnology, 2012, 12, 75-83.	0.9	17
256	Inorganic Nanoarchitectonics for Biological Applications. Chemistry of Materials, 2012, 24, 728-737.	6.7	206
257	Preparation of Highly Ordered Nitrogen ontaining Mesoporous Carbon from a Gelatin Biomolecule and its Excellent Sensing of Acetic Acid. Advanced Functional Materials, 2012, 22, 3596-3604.	14.9	194
258	Catalytic Polymerization of Anthracene in a Recyclable SBAâ€15 Reactor with High Iron Content by a Friedel–Crafts Alkylation. Angewandte Chemie - International Edition, 2012, 51, 2859-2863.	13.8	15
259	Inside Cover: Catalytic Polymerization of Anthracene in a Recyclable SBA-15 Reactor with High Iron Content by a Friedel-Crafts Alkylation (Angew. Chem. Int. Ed. 12/2012). Angewandte Chemie - International Edition, 2012, 51, 2786-2786.	13.8	0
260	Synthesis of Nitrogenâ€Rich Mesoporous Carbon Nitride with Tunable Pores, Band Gaps and Nitrogen Content from a Single Aminoguanidine Precursor. ChemSusChem, 2012, 5, 700-708.	6.8	136
261	Fine tuning of the supercapacitive performance of nanoporous carbon electrodes with different pore diameters. Electrochimica Acta, 2012, 77, 256-261.	5.2	30
262	Immobilization of chiral amide derived from $(1R,2S)$ - (\hat{a}°) -norephedrine over 3D nanoporous silica for the enantioselective addition of diethylzinc to aldehydes. Microporous and Mesoporous Materials, 2012, 155, 40-46.	4.4	7
263	Soft-templating synthesis of ordered mesoporous carbons in the presence of tetraethyl orthosilicate and silver salt. Microporous and Mesoporous Materials, 2012, 156, 121-126.	4.4	19
264	The isopropylation of diphenyl ether over H-mordenite catalysts. Journal of Molecular Catalysis A, 2012, 355, 113-122.	4.8	1
265	3D Nanoporous FeAl-KIT-5 with a cage type pore structure: a highly efficient and stable catalyst for hydroarylation of styrene and arylacetylenes. Tetrahedron Letters, 2012, 53, 1485-1489.	1.4	18
266	Nanocrystalline magnesium oxide stabilized gold nanoparticles: an advanced nanotechnology based recyclable heterogeneous catalyst platform for the one-pot synthesis of propargylamines. Green Chemistry, 2011, 13, 2878.	9.0	89
267	Ordered mesoporous carbon with tunable, unusually large pore size and well-controlled particle morphology. Journal of Materials Chemistry, 2011, 21, 7410.	6.7	36
268	Preparation and characterization of highly ordered mesoporous SiC nanoparticles with rod shaped morphology and tunable pore diameters. Journal of Materials Chemistry, 2011, 21, 8792.	6.7	9
269	Facile Synthesis of Ordered Mesoporous Alumina and Alumina-Supported Metal Oxides with Tailored Adsorption and Framework Properties. Chemistry of Materials, 2011, 23, 1147-1157.	6.7	268
270	General Description of the Adsorption of Proteins at Their Iso-electric Point in Nanoporous Materials. Langmuir, 2011, 27, 13828-13837.	3.5	85

#	Article	IF	CITATIONS
271	Immobilization of chiral oxazaborolidine catalyst over highly ordered 3D mesoporous silica with Ia3d symmetry for enantioselective reduction of prochiral ketone. Physical Chemistry Chemical Physics, 2011, 13, 4950.	2.8	5
272	Template assisted polymerization of functional materials and their opto-electronic properties. , 2011, , .		0
273	Carbon Nanocage: Super-Adsorber of Intercalators for DNA Protection. Journal of Nanoscience and Nanotechnology, 2011, 11, 3084-3090.	0.9	10
274	Preparation of Conductive Transparent Adhesive Films from Carbon Nanomaterials and Polar Acrylate. Journal of Nanoscience and Nanotechnology, 2011, 11, 6306-6311.	0.9	0
275	Synthesis and Morphological Control of Europium Doped Cadmium Sulphide Nanocrystals. Journal of Nanoscience and Nanotechnology, 2011, 11, 7783-7788.	0.9	9
276	Morphological Control of Porous SiC Templated by As-Synthesized Form of Mesoporous Silica. Journal of Nanoscience and Nanotechnology, 2011, 11, 6823-6829.	0.9	5
277	Base-Selective Adsorption of Nucleosides to Pore-Engineered Nanocarbon, Carbon Nanocage. Journal of Nanoscience and Nanotechnology, 2011, 11, 3959-3964.	0.9	12
278	Adsorption and structural properties of ordered mesoporous alumina synthesized in the presence of F127 block copolymer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 385, 121-125.	4.7	32
279	Stable nanostructured polyaniline electrode for supercapacitor application. Electrochimica Acta, 2011, 56, 9482-9487.	5.2	130
280	Iron Oxide Nanoparticles Embedded onto 3D Mesochannels of KIT \hat{a} \in 6 with Different Pore Diameters and Their Excellent Magnetic Properties. Chemistry - an Asian Journal, 2011, 6, 834-841.	3.3	9
281	Effect of humidity treatment on the structure and photocatalytic properties of titania mesoporous powder. Journal of Materials Science: Materials in Electronics, 2011, 22, 273-280.	2.2	6
282	A Facile Templateâ€Free Approach for the Largeâ€Scale Solidâ€Phase Synthesis of CdS Nanostructures and Their Excellent Photocatalytic Performance. Small, 2011, 7, 957-964.	10.0	99
283	Gasâ€Phase Photooxidation of Alkenes by Vâ€Doped TiO ₂ â€MCMâ€41: Mechanistic Insights of Ethylene Photooxidation and Understanding the Structure–Activity Correlation. Chemistry - A European Journal, 2011, 17, 12310-12325.	3.3	9
284	Highly Crystalline and Conductive Nitrogenâ€Doped Mesoporous Carbon with Graphitic Walls and Its Electrochemical Performance. Chemistry - A European Journal, 2011, 17, 3390-3397.	3.3	89
285	Functionalization of Mesoporous Carbon with Superbasic MgO Nanoparticles for the Efficient Synthesis of Sulfinamides. Chemistry - A European Journal, 2011, 17, 6673-6682.	3.3	20
286	Cellulose-SO3H: an efficient and biodegradable solid acid for the synthesis of quinazolin-4(1H)-ones. Tetrahedron Letters, 2011, 52, 1891-1894.	1.4	64
287	Room-Temperature Multicomponent Synthesis of 3,4-Dihydroquinoxalin-2-amine Derivatives Using Highly Ordered 3D Nanoporous Aluminosilicate Catalyst. Synlett, 2011, 2011, 1923-1929.	1.8	4
288	Fabrication and textural characterization of nanoporous carbon electrodes embedded with CuO nanoparticles for supercapacitors. Science and Technology of Advanced Materials, 2011, 12, 044602.	6.1	46

#	Article	IF	Citations
289	Highly Ordered Poly(thiophene)s Prepared in Mesoporous Silica Nanoparticles. Journal of Nanoscience and Nanotechnology, 2011, 11, 4567-4572.	0.9	1
290	Ultrafast Microwave Assisted Synthesis of Mesoporous SnO ₂ and Its Characterization. Journal of Nanoscience and Nanotechnology, 2010, 10, 8362-8366.	0.9	4
291	Fabrication of Mesoporous Carbons with Rod and Winding Road Like Morphology Using NbSBA-15 Templates. Journal of Nanoscience and Nanotechnology, 2010, 10, 329-335.	0.9	5
292	High temperature microwave-assisted synthesis and the physico-chemical characterisation of mesoporous crystalline titania. International Journal of Nanotechnology, 2010, 7, 1065.	0.2	4
293	Structural and optical properties of Dy doped ZnO thin films prepared by pyrolysis technique. International Journal of Nanotechnology, 2010, 7, 1087.	0.2	5
294	Preparation and Characterization of Chiral Oxazaborolidine Complex Immobilized SBAâ€15 and Its Application in the Asymmetric Reduction of Prochiral Ketones. Chemistry - an Asian Journal, 2010, 5, 897-903.	3.3	8
295	Gasâ€Sensing Properties of Needleâ€Shaped Niâ€Doped SnO ₂ Nanocrystals Prepared by a Simple Sol–Gel Chemical Precipitation Method. Chemistry - an Asian Journal, 2010, 5, 2379-2385.	3.3	33
296	Mesoporous Non-Siliceous Materials and Their Functions. Advances in Nanoporous Materials, 2010, , 151-235.	0.2	1
297	Friedel–Crafts benzylation of benzene and other aromatics using 3D mesoporous gallosilicate with cage type porous structure. Microporous and Mesoporous Materials, 2010, 134, 87-92.	4.4	17
298	Supramolecular Materials from Inorganic Building Blocks. Journal of Inorganic and Organometallic Polymers and Materials, 2010, 20, 1-9.	3.7	21
299	Microwave Assisted Ligand Free Palladium Catalyzed Synthesis of \hat{I}^2 -Arylalkenyl Nitriles Using Water as Solvent. Catalysis Letters, 2010, 135, 148-151.	2.6	9
300	Fabrication and Electrocatalytic Application of Nanoporous Carbon Material with Different Pore Diameters. Topics in Catalysis, 2010, 53, 291-296.	2.8	6
301	Effects of ageing conditions and block copolymer concentration on the stability and micellization of P123-Ti4+ sols prepared by the templating method. Research on Chemical Intermediates, 2010, 36, 897-923.	2.7	3
302	Synthesis of Superacidâ€Functionalized Mesoporous Nanocages with Tunable Pore Diameters and Their Application in the Synthesis of Coumarins. Chemistry - A European Journal, 2010, 16, 2843-2851.	3.3	30
303	Growth of Shape―and Size‧elective Zinc Oxide Nanorods by a Microwaveâ€Assisted Chemical Bath Deposition Method: Effect on Photocatalysis Properties. Chemistry - A European Journal, 2010, 16, 10569-10575.	3.3	49
304	Selective Monoacylation of Ferrocene with Bulky Acylating Agents over Mesoporous Sieve AlKITâ€5. Chemistry - A European Journal, 2010, 16, 7773-7780.	3.3	12
305	Gold Nanoparticles Embedded in a Mesoporous Carbon Nitride Stabilizer for Highly Efficient Threeâ€Component Coupling Reaction. Angewandte Chemie - International Edition, 2010, 49, 5961-5965.	13.8	321
306	Layerâ€byâ€Layer Films of Graphene and Ionic Liquids for Highly Selective Gas Sensing. Angewandte Chemie - International Edition, 2010, 49, 9737-9739.	13.8	296

#	Article	lF	Citations
307	Comparison of the catalytic performance of the metal substituted cage type mesoporous silica catalysts in the alkylation of naphthalene. Applied Catalysis A: General, 2010, 377, 76-82.	4.3	14
308	Self-assembly of mesoporous silicas hollow microspheres via food grade emulsifiers for delivery systems. Microporous and Mesoporous Materials, 2010, 128, 187-193.	4.4	44
309	Room temperature synthesis of 1,5-benzodiazepine and its derivatives using cage type mesoporous aluminosilicate catalysts. Microporous and Mesoporous Materials, 2010, 129, 112-117.	4.4	21
310	Novel synthesis of tetrahydro-β-carbolines and tetrahydroisoquinolines via three-component reaction using hexagonally ordered mesoporous AlSBA-15 catalysts. Tetrahedron Letters, 2010, 51, 702-706.	1.4	8
311	Synthesis of triazolo indazolones using 3D mesoporous aluminosilicate catalyst with nanocage structure. Tetrahedron Letters, 2010, 51, 2629-2632.	1.4	23
312	Nanoporous aluminosilicate catalyst with 3D cage-type porous structure as an efficient catalyst for the synthesis of benzimidazole derivatives. Tetrahedron Letters, 2010, 51, 5195-5199.	1.4	54
313	Cellulose-SO3H as a recyclable catalyst for the synthesis of tetrahydropyranols via Prins cyclization. Tetrahedron Letters, 2010, 51, 6511-6515.	1.4	17
314	A facile synthesis of alkylated nitrogen heterocycles catalysed by 3D mesoporous aluminosilicates with cage type pores in aqueous medium. Green Chemistry, 2010, 12, 49-53.	9.0	28
315	Highly Efficient Friedel-Crafts Alkylation of Indoles and Pyrrole Catalyzed by Mesoporous 3D Aluminosilicate Catalyst with Electron-Deficient Olefins. Synlett, 2010, 2010, 2813-2817.	1.8	0
316	Ligand-Free Palladium-Catalyzed C-S Coupling Reactions Using Water as Solvent and Microwaves. Synlett, 2010, 2010, 2733-2736.	1.8	17
317	Efficient Synthesis of 2,3,4-Trisubstituted Quinolines via Friedläder Annulation with Nanoporous Cage-Type Aluminosilicate AlKIT-5 Catalyst. Synlett, 2010, 2010, 2597-2600.	1.8	0
318	Low Temperature Synthesis and Visible Light Driven Photocatalytic Activity of Highly Crystalline Mesoporous TiO ₂ Particles. Journal of Nanoscience and Nanotechnology, 2010, 10, 8124-8129.	0.9	4
319	Room Temperature Ferromagnetism in Ce _{1â°'<i>x</i>} Fe _{<i>x</i>} O _{2â°'<i>Î'</i>} (<i>x</i> = 0.0, 0.05, 0.10, 0.20)	15),Tj ETQ	q1 ₅ 1 0.7843
320	Recent Developments in Supramolecular Approach for Nanocomposites. Journal of Nanoscience and Nanotechnology, 2010, 10, 21-33.	0.9	39
321	Inclusion of size controlled gallium oxide nanoparticles into highly ordered 3D mesoporous silica with tunable pore diameters and their unusual catalytic performance. Journal of Materials Chemistry, 2010, 20, 10120.	6.7	25
322	Superior adsorption capacity of mesoporous carbon nitride with basic CN framework for phenol. Journal of Materials Chemistry, 2010, 20, 10801.	6.7	125
323	Nucleation sequence on the cation exchange process between Y0.95Eu0.05PO4 and CePO4 nanorods. Nanoscale, 2010, 2, 2847.	5.6	19
324	Adsorption of Phenol on Mesoporous Carbon CMK-3: Effect of Textural Properties. Bulletin of the Korean Chemical Society, 2010, 31, 1638-1642.	1.9	42

#	Article	IF	Citations
325	Eu3+ and Dy3+ Doped YPO4 Nanoparticles: Low Temperature Synthesis and Luminescence Studies. Journal of Nanoscience and Nanotechnology, 2009, 9, 3034-3039.	0.9	19
326	An Investigation on Co-Precipitation Derived ZnO Nanospheres. Journal of Nanoscience and Nanotechnology, 2009, 9, 5966-5972.	0.9	16
327	Room Temperature Exciton Formation in SnO ₂ Nanocrystals in SiO ₂ :Eu Matrix: Quantum Dot System, Heat-Treatment Effect. Journal of Nanoscience and Nanotechnology, 2009, 9, 2634-2638.	0.9	20
328	Electric Double-Layer Capacitance of Carbon Nanocages. Journal of Nanoscience and Nanotechnology, 2009, 9, 391-395.	0.9	11
329	Structural and Optical Characterization of Samarium Doped Yttrium Oxide Nanoparticles. Journal of Nanoscience and Nanotechnology, 2009, 9, 6747-6752.	0.9	10
330	Hierarchic Nanostructure for Autoâ€Modulation of Material Release: Mesoporous Nanocompartment Films. Advanced Functional Materials, 2009, 19, 1792-1799.	14.9	83
331	Unusual Magnetic Properties of Sizeâ€Controlled Iron Oxide Nanoparticles Grown in a Nanoporous Matrix with Tunable Pores. Angewandte Chemie - International Edition, 2009, 48, 7358-7361.	13.8	41
332	Highly Ordered Mesoporous Carbon Nitride Nanoparticles with High Nitrogen Content: A Metalâ€Free Basic Catalyst. Angewandte Chemie - International Edition, 2009, 48, 7884-7887.	13.8	287
333	Synthesis of 3,4-dihydropyrimidin-2-ones (DHPMs) using mesoporous aluminosilicate (AlKIT-5) catalyst with cage type pore structure. Tetrahedron, 2009, 65, 10608-10611.	1.9	49
334	Mesoporous aluminosilicate nanocage-catalyzed three-component coupling reaction: an expedient synthesis of \hat{l}_{\pm} -aminophosphonates. Tetrahedron Letters, 2009, 50, 7132-7136.	1.4	39
335	Novel Highly Acidic Nanoporous Cage Type Materials and Their Catalysis. Topics in Catalysis, 2009, 52, 111-118.	2.8	5
336	Alkylation of Naphthalene Over Mesoporous Ga-SBA-1 Catalysts. Topics in Catalysis, 2009, 52, 1001-1004.	2.8	17
337	Characterization and the catalytic applications of mesoporous AlSBA-1. Microporous and Mesoporous Materials, 2009, 121, 18-25.	4.4	26
338	Three-dimensional mesoporous cage type aluminosilicate: An efficient catalyst for ring opening of epoxides with aromatic and aliphatic amines. Microporous and Mesoporous Materials, 2009, 123, 338-344.	4.4	32
339	Chiral amide from (1S,2R)-(+)-norephedrine alkaloid in the enantioselective addition of diethylzinc to aryl and heteroaryl aldehydes. Tetrahedron: Asymmetry, 2009, 20, 1731-1735.	1.8	16
340	X-ray peak broadening analysis in ZnO nanoparticles. Solid State Communications, 2009, 149, 1919-1923.	1.9	421
341	Comparative study on the magnetic properties of iron oxide nanoparticles loaded on mesoporous silica and carbon materials with different structure. Microporous and Mesoporous Materials, 2009, 121, 178-184.	4.4	35
342	A comparative study on liquid phase alkylation of 2-methylnaphthalene with long chain olefins using different solid acid catalysts. Applied Catalysis A: General, 2009, 352, 74-80.	4.3	41

#	Article	IF	CITATIONS
343	Layer-by-Layer Films of Dual-Pore Carbon Capsules with Designable Selectivity of Gas Adsorption. Journal of the American Chemical Society, 2009, 131, 4220-4221.	13.7	143
344	Nanocasting Synthesis of Iron-Doped Mesoporous Alâ^'Ti Mixed Oxides Using Ordered Mesoporous Carbon Templates. Journal of Physical Chemistry C, 2009, 113, 13565-13573.	3.1	12
345	CePO4:Ln (Ln = Tb3+ and Dy3+) Nanoleaves Incorporated in Silica Sols. Crystal Growth and Design, 2009, 9, 2451-2456.	3.0	28
346	Effect of Surfactant Treatment on the Magnetic Properties of Mn-Doped ZnO Bulk and Nanoparticles. Journal of Physical Chemistry C, 2009, 113, 4814-4819.	3.1	38
347	Coupling of soft technology (layer-by-layer assembly) with hard materials (mesoporous solids) to give hierarchic functional structures. Soft Matter, 2009, 5, 3562.	2.7	84
348	Catalysis by Mesoporous Molecular Sieves. , 2009, , 669-692.		4
349	Nanocrystalline HoCrO ₄ : Facile Synthesis and Magnetic Properties. Journal of Nanoscience and Nanotechnology, 2009, 9, 501-505.	0.9	4
350	A Rapid Method for the Synthesis of Nitrogen Doped TiO ₂ Nanoparticles for Photocatalytic Hydrogen Generation. Journal of Nanoscience and Nanotechnology, 2009, 9, 4663-4667.	0.9	9
351	Heteropoly Acid Encapsulated SBAâ€15/TiO ₂ Nanocomposites and Their Unusual Performance in Acidâ€Catalysed Organic Transformations. Chemistry - A European Journal, 2008, 14, 3200-3212.	3.3	41
352	Threeâ€Dimensional Mesoporous Gallosilicate with <i>Pm</i> 3 <i>n</i> Symmetry and its Unusual Catalytic Performances. Chemistry - A European Journal, 2008, 14, 3553-3561.	3.3	28
353	Threeâ€Dimensional Ultralargeâ€Pore <i>la</i> dMesoporous Silica with Various Pore Diameters and Their Application in Biomolecule Immobilization. Chemistry - A European Journal, 2008, 14, 11529-11538.	3.3	80
354	A Layered Mesoporous Carbon Sensor Based on Nanoporeâ€Filling Cooperative Adsorption in the Liquid Phase. Angewandte Chemie - International Edition, 2008, 47, 7254-7257.	13.8	140
355	Twoâ€Dimensional Hexagonallyâ€Ordered Mesoporous Carbon Nitrides with Tunable Pore Diameter, Surface Area and Nitrogen Content. Advanced Functional Materials, 2008, 18, 816-827.	14.9	455
356	Novel Three Dimensional Cubic <i>Fm</i> 3 <i>m</i> Mesoporous Aluminosilicates with Tailored Cage Type Pore Structure and High Aluminum Content. Advanced Functional Materials, 2008, 18, 640-651.	14.9	75
357	Inside Front Cover: Two-Dimensional Hexagonally-Ordered Mesoporous Carbon Nitrides with Tunable Pore Diameter, Surface Area and Nitrogen Content (Adv. Funct. Mater. 5/2008). Advanced Functional Materials, 2008, 18, NA-NA.	14.9	1
358	Highly active three-dimensional cage type mesoporous ferrosilicate catalysts for the Friedel–Crafts alkylation. Microporous and Mesoporous Materials, 2008, 111, 72-79.	4.4	27
359	Hexagonally ordered mesoporous highly acidic AlSBA-15 with different morphology: An efficient catalyst for acetylation of aromatics. Microporous and Mesoporous Materials, 2008, 116, 108-115.	4.4	38
360	Non-phosgene route for the synthesis of methyl phenyl carbamate using ordered AlSBA-15 catalyst. Journal of Molecular Catalysis A, 2008, 295, 29-33.	4.8	31

#	Article	IF	CITATIONS
361	Preparation and characterization of novel microporous carbon nitride with very high surface area via nanocasting technique. Microporous and Mesoporous Materials, 2008, 108, 340-344.	4.4	43
362	Fabrication of partially graphitic three-dimensional nitrogen-doped mesoporous carbon using polyaniline nanocomposite through nanotemplating method. Microporous and Mesoporous Materials, 2008, 109, 398-404.	4.4	105
363	Fabrication and morphological control of three-dimensional cage type mesoporous titanosilicate with extremely high Ti content. Microporous and Mesoporous Materials, 2008, 110, 422-430.	4.4	14
364	Highly active three-dimensional cage type mesoporous aluminosilicates and their catalytic performances in the acetylation of aromatics. Microporous and Mesoporous Materials, 2008, 114, 303-311.	4.4	33
365	Chemoselective synthesis of \hat{l}^2 -amino acid derivatives by hydroamination of activated olefins using AlSBA-15 catalyst prepared by post-synthetic treatment. Journal of Molecular Catalysis A, 2008, 284, 16-23.	4.8	28
366	Experimental and Theoretical Studies Suggesting the Possibility of Metallic Boron Nitride Edges in Porous Nanourchins. Nano Letters, 2008, 8, 1026-1032.	9.1	88
367	Challenges and breakthroughs in recent research on self-assembly. Science and Technology of Advanced Materials, 2008, 9, 014109.	6.1	695
368	Synthesis of biodiesel over zirconia-supported isopoly and heteropoly tungstate catalysts. Catalysis Communications, 2008, 9, 696-702.	3.3	131
369	Alkene epoxidation catalyzed by vanadomolybdophosphoric acids supported on hydrated titania. Catalysis Communications, 2008, 9, 931-938.	3.3	14
370	Highly efficient and chemo selective catalyst system for the synthesis of blossom orange fragrance and flavoring compounds. Catalysis Communications, 2008, 9, 1671-1675.	3.3	10
371	Indium Oxide and Europium/Dysprosium Doped Indium Oxide Nanoparticles:  Sonochemical Synthesis, Characterization, and Photoluminescence Studies. Journal of Physical Chemistry C, 2008, 112, 6781-6785.	3.1	60
372	Room temperature ferromagnetism in Th1â^'xFexO2â^'Î^ (x=0.0, 0.05, 0.10, 0.15, 0.20 and 0.25) nanoparticles. Journal of Alloys and Compounds, 2008, 461, 608-611.	5. 5	8
373	Stimuli-Free Auto-Modulated Material Release from Mesoporous Nanocompartment Films. Journal of the American Chemical Society, 2008, 130, 2376-2377.	13.7	142
374	Direct Synthesis and the Morphological Control of Highly Ordered Two-Dimensional <i>P</i> 6 <i>mm</i> Mesoporous Niobium Silicates with High Niobium Content. Journal of Physical Chemistry C, 2008, 112, 10130-10140.	3.1	22
375	Synthesis of Fructone and Acylal Using Hexagonally Ordered Mesoporous Aluminosilicate Catalyst. Collection of Czechoslovak Chemical Communications, 2008, 73, 1112-1124.	1.0	7
376	Unusual magnetic properties of Mn-doped ThO ₂ nanoparticles. Journal of Materials Research, 2008, 23, 463-472.	2.6	6
377	Development of high quality Pt–CeO ₂ electrodes supported on carbon black for direct methanol fuel cell applications. Advances in Applied Ceramics, 2008, 107, 57-63.	1.1	16
378	Luminescence Studies on Low Temperature Synthesized ZnGa2O4:Ln3+ (Ln = Tb and Eu) Nanoparticles. Journal of Nanoscience and Nanotechnology, 2008, 8, 5776-5780.	0.9	16

#	Article	IF	CITATIONS
379	Alkylation of naphthalene over mesoporous metal substituted SBA-1 catalysts. Studies in Surface Science and Catalysis, 2008, 174, 1299-1302.	1.5	2
380	INCORPORATION OF AI INTO CAGE-TYPE MESOPOROUS SILICA MOLECULAR SIEVES., 2008, , .		0
381	Three-dimensional Mesoporous TiKIT-6 with <i>la</i> 3 <i>d</i> Symmetry Synthesized at Low Acid Concentration and Its Catalytic Performances. Chemistry Letters, 2008, 37, 1016-1017.	1.3	12
382	IRON OXIDE MAGNETIC NANOPARTICLES CONFINED IN MESOPOROUS SILICA AND CARBON MATERIALS. , 2008, , .		1
383	Supramolecular Chemistry as a Versatile Tool for Advanced Sciences in Nanospace. Advanced Science Letters, 2008, 1, 28-58.	0.2	10
384	THREE DIMENSIONAL MESOPOROUS FeSBA-1 CATALYSTS FOR ALKYLATION AND ACYLATION OF AROMATICS. , 2008, , .		0
385	NOVEL MESOPOROUS NITRIDES AND NITROGEN DOPED CARBON MATERIALS WITH DIFFERENT STRUCTURE, PORE DIAMETERS, AND NITROGEN CONTENTS. , 2008, , .		0
386	CARBOXYL, AMINE AND THIOL FUNCTIONALIZED MESOPOROUS CARBON MATERIALS. , 2008, , .		0
387	Novel Microporous Carbon Material with Flower Like Structure Templated by MCM-22. Journal of Nanoscience and Nanotechnology, 2007, 7, 2913-2916.	0.9	7
388	Carboxyl Group Functionalization of Mesoporous Carbon Nanocage through Reaction with Ammonium Persulfate. Journal of Nanoscience and Nanotechnology, 2007, 7, 3250-3256.	0.9	16
389	Synthesis of well-ordered carboxyl group functionalized mesoporous carbon using non-toxic oxidant, (NH4)2S2O8. Studies in Surface Science and Catalysis, 2007, 165, 909-912.	1.5	2
390	Lysozyme Adsorption onto Mesoporous Materials: Effect of Pore Geometry and Stability of Adsorbents. Journal of Nanoscience and Nanotechnology, 2007, 7, 828-832.	0.9	28
391	Mesoporous Nitrides through Nano-Hard Templating Techniques. Solid State Phenomena, 2007, 119, 291-294.	0.3	1
392	One and three dimensional mesoporous carbon nitride molecular sieves with tunable pore diameters. Studies in Surface Science and Catalysis, 2007, 165, 905-908.	1.5	2
393	Novel Hexagonally Ordered Nitrogen-doped Mesoporous Carbon from SBA-15/Polyaniline Nanocomposite. Chemistry Letters, 2007, 36, 770-771.	1.3	26
394	One-step synthesis of SBA-15 containing tungsten oxide nanoclusters: a chemoselective catalyst for oxidation of sulfides to sulfoxides under ambient conditions. Chemical Communications, 2007, , 4806.	4.1	30
395	Photocatalytic degradation of 2,4,6-trichlorophenol using lanthanum doped ZnO in aqueous suspension. Catalysis Communications, 2007, 8, 1377-1382.	3.3	189
396	Alkylation of naphthalene using propylene over mesoporous Al-MCM-48 catalysts. Catalysis Communications, 2007, 8, 1681-1683.	3.3	22

#	Article	IF	Citations
397	Three-Dimensional Cage Type Mesoporous CN-Based Hybrid Material with Very High Surface Area and Pore Volume. Chemistry of Materials, 2007, 19, 4367-4372.	6.7	127
398	Synthesis and structure of silicalite-1/SBA-15 composites prepared by carbon templating and crystallization. Journal of Materials Chemistry, 2007, 17, 4265.	6.7	30
399	Carboxy-mesoporous carbon and its excellent adsorption capability for proteins. Journal of Materials Chemistry, 2007, 17, 1819.	6.7	177
400	One-Pot Separation of Tea Components through Selective Adsorption on Pore-Engineered Nanocarbon, Carbon Nanocage. Journal of the American Chemical Society, 2007, 129, 11022-11023.	13.7	134
401	BIFC and QFC promoted rapid and cleaner aromatization of 1,4â€dihydropyridines under solventâ€free condition. Journal of Heterocyclic Chemistry, 2007, 44, 973-977.	2.6	3
402	Two-dimensional 11B–11B exchange NMR study in mesoporous boron carbon nitride at 21.8T. Solid State Nuclear Magnetic Resonance, 2007, 31, 193-196.	2.3	14
403	Oxyfunctionalisation of adamantane using inorganic–organic hybrid materials based on isopoly and heteropoly anions: Kinetics and mechanistic studies. Applied Catalysis A: General, 2007, 333, 143-152.	4.3	18
404	Coordination chemistry and supramolecular chemistry in mesoporous nanospace. Coordination Chemistry Reviews, 2007, 251, 2562-2591.	18.8	179
405	Controlling the textural parameters of mesoporous carbon materials. Microporous and Mesoporous Materials, 2007, 100, 20-26.	4.4	100
406	Halogen-free acylation of toluene over FeSBA-1 molecular sieves. Microporous and Mesoporous Materials, 2007, 100, 87-94.	4.4	28
407	Photocatalytic activity of La-doped ZnO for the degradation of monocrotophos in aqueous suspension. Journal of Molecular Catalysis A, 2007, 266, 149-157.	4.8	315
408	Catalytic performances of silicotungstic acid/zirconia supported SBA-15 in an esterification of benzyl alcohol with acetic acid. Journal of Molecular Catalysis A, 2007, 276, 150-157.	4.8	62
409	Tungstophosphoric acid supported over zirconia in mesoporous channels of MCM-41 as catalyst in veratrole acetylation. Journal of Molecular Catalysis A, 2007, 262, 98-108.	4.8	40
410	Silicotungstic acid/zirconia immobilized on SBA-15 for esterifications. Journal of Molecular Catalysis A, 2007, 271, 46-56.	4.8	33
411	Magnetization and structural studies of Mn doped ZnO nanoparticles: Prepared by reverse micelle method. Journal of Crystal Growth, 2007, 300, 358-363.	1.5	51
412	Surfactant-induced enhanced room temperature ferromagnetism in Zn0.96Mn0.03Li0.010 nanoparticles: Prepared by solid-state pyrolitic reaction. Journal of Crystal Growth, 2007, 307, 315-320.	1.5	9
413	Design of High-Quality Pt?CeO2Composite Anodes Supported by Carbon Black for Direct Methanol Fuel Cell Application. Journal of the American Ceramic Society, 2007, 90, 1291-1294.	3.8	60
414	Adsorption myoglobin over mesoporous silica molecular sieves: Pore size effect and pore-filling model. Materials Science and Engineering C, 2007, 27, 232-236.	7.3	66

#	Article	IF	Citations
415	Synthesis of nitrogen-doped mesoporous carbon using templating technique. Transactions of the Materials Research Society of Japan, 2007, 32, 1003-1005.	0.2	O
416	Synthesis and Characterization of Microporous Carbon Material with High Surface Area. Transactions of the Materials Research Society of Japan, 2007, 32, 999-1001.	0.2	0
417	Photocatalytic activity of ZnO impregnated $H\hat{l}^2$ and mechanical mix of ZnO/ $H\hat{l}^2$ in the degradation of monocrotophos in aqueous solution. Journal of Molecular Catalysis A, 2006, 256, 312-320.	4.8	108
418	Preparation and anode property of Pt-CeO2 electrodes supported on carbon black for direct methanol fuel cell applications. Journal of Materials Research, 2006, 21, 2314-2322.	2.6	25
419	Characterization and Catalytic Performances of Three-Dimensional Mesoporous FeSBA-1 Catalysts. Journal of Physical Chemistry B, 2006, 110, 11924-11931.	2.6	40
420	Preparation and Catalytic Performances of Ultralarge-Pore TiSBA-15 Mesoporous Molecular Sieves with Very High Ti Content. Journal of Physical Chemistry B, 2006, 110, 801-806.	2.6	96
421	Chemically Nonequivalent Sites in Mesoporous BCN Revealed by Solid-state NMR at 21.8 T. Chemistry Letters, 2006, 35, 986-987.	1.3	22
422	Adsorption of l-histidine over mesoporous carbon molecular sieves. Carbon, 2006, 44, 530-536.	10.3	162
423	Spectroscopic characterization of iron-containing MCM-58. Microporous and Mesoporous Materials, 2006, 89, 47-57.	4.4	33
424	New families of mesoporous materials. Science and Technology of Advanced Materials, 2006, 7, 753-771.	6.1	156
425	Heterogeneous intermolecular hydroamination of terminal alkynes with aromatic amines. Tetrahedron Letters, 2006, 47, 141-143.	1.4	59
426	Adsorption study of heme proteins on SBA-15 mesoporous silica with pore-filling models. Thin Solid Films, 2006, 499, 13-18.	1.8	70
427	Carbon nanocage: a large-pore cage-type mesoporous carbon material as an adsorbent for biomolecules. Journal of Porous Materials, 2006, 13, 379-383.	2.6	107
428	Rapid and cleaner synthesis of 1,4-dihydropyridines in aqueous medium. Heteroatom Chemistry, 2006, 17, 267-271.	0.7	31
429	Assemblies of Biomaterials in Mesoporous Media. Journal of Nanoscience and Nanotechnology, 2006, 6, 1510-1532.	0.9	85
430	Immobilization of Lysozyme onto Pore-engineered Mesoporous AlSBA-15. Journal of Nanoscience and Nanotechnology, 2006, 6, 1765-1771.	0.9	19
431	Visible Light Active Photocatalytic Degradation of Bisphenol-A Using Nitrogen Doped TiO ₂ . Journal of Nanoscience and Nanotechnology, 2006, 6, 2499-2507.	0.9	36
432	Recent Progresses in Bio-Inorganic Nanohybrids. Current Nanoscience, 2006, 2, 197-210.	1.2	34

#	Article	IF	Citations
433	Adsorption of lysozyme over mesoporous carbons with various pore diameters. Studies in Surface Science and Catalysis, 2005, , 637-642.	1.5	11
434	Spectroscopic characterization and catalytic performances of Iron substituted three dimensional cubic SBA-1 and KIT-5 mesoporous molecular sieves. Studies in Surface Science and Catalysis, 2005, , 703-710.	1.5	4
435	Preparation of Novel Mesoporous Carbon Materials with Tunable Pore Diameters Using Directly Synthesized AlSBA-15 Materials. Chemistry Letters, 2005, 34, 674-675.	1.3	18
436	Benzylation of benzene and other aromatics by benzyl chloride over mesoporous AlSBA-15 catalysts. Microporous and Mesoporous Materials, 2005, 80, 195-203.	4.4	153
437	ortho-Selective ethylation of phenol with ethanol catalyzed by bimetallic mesoporous catalyst, CoAl-MCM-41. Journal of Molecular Catalysis A, 2005, 230, 151-157.	4.8	19
438	Preparation of highly ordered mesoporous AlSBA-15 and its application to isopropylation of m-cresol. Journal of Molecular Catalysis A, 2005, 235, 57-66.	4.8	45
439	Characterization and microporosity analysis of mesoporous carbon molecular sieves by nitrogen and organics adsorption. Catalysis Today, 2005, 102-103, 189-196.	4.4	53
440	Formation of nanosized zirconia-supported 12-tungstophosphoric acid in mesoporous silica SBA-15: A stable and versatile solid acid catalyst for benzylation of phenol. Journal of Catalysis, 2005, 235, 341-352.	6.2	68
441	Preparation and Characterization of Well-Ordered Hexagonal Mesoporous Carbon Nitride. Advanced Materials, 2005, 17, 1648-1652.	21.0	512
442	Highly active and selective AlSBA-15 catalysts for the vapor phase tert-butylation of phenol. Applied Catalysis A: General, 2005, 281, 207-213.	4.3	84
443	Nanoporous Reactor with Tunable Selectivity on Alkylation of Ethylbenzene. Journal of Nanoscience and Nanotechnology, 2005, 5, 542-549.	0.9	7
444	Preparation and pore size control of cage type mesoporous carbon materials and their application in protein adsorption. Studies in Surface Science and Catalysis, 2005, , 971-978.	1.5	17
445	Selective formation 2,6-diisopropyl naphthalene over mesoporous Al-MCM-48 catalysts. Journal of Molecular Catalysis A, 2005, 237, 238-245.	4.8	26
446	Large pore cage type mesoporous carbon, carbon nanocage: a superior adsorbent for biomaterials. Journal of Materials Chemistry, 2005, 15, 5122.	6.7	144
447	Biomaterial Immobilization in Nanoporous Carbon Molecular Sieves:  Influence of Solution pH, Pore Volume, and Pore Diameter. Journal of Physical Chemistry B, 2005, 109, 6436-6441.	2.6	219
448	Recent Advances in Functionalization of Mesoporous Silica. Journal of Nanoscience and Nanotechnology, 2005, 5, 347-371.	0.9	306
449	Direct Synthesis of Well-Ordered and Unusually Reactive FeSBA-15 Mesoporous Molecular Sieves. Chemistry of Materials, 2005, 17, 5339-5345.	6.7	138
450	Synthesis of Mesoporous BN and BCN Exhibiting Large Surface Areas via Templating Methods. Chemistry of Materials, 2005, 17, 5887-5890.	6.7	164

#	Article	IF	Citations
451	Adsorption of vitamin E on mesoporous silica molecular sieves. Studies in Surface Science and Catalysis, 2005, 158, 1169-1176.	1.5	23
452	Adsorption of Vitamin E on Mesoporous Carbon Molecular Sieves. Chemistry of Materials, 2005, 17, 829-833.	6.7	220
453	Recent Advances in Functionalization of Mesoporous Silica. Journal of Nanoscience and Nanotechnology, 2005, 5, 347-371.	0.9	35
454	Intermolecular hydroamination of alkynes catalyzed by zinc-exchanged montmorillonite clay. Journal of Molecular Catalysis A, 2004, 222, 223-228.	4.8	47
455	Direct Synthesis of Novel FeSBA-1 Cubic Mesoporous Catalyst and Its High Activity in thetert-Butylation of Phenol. Advanced Materials, 2004, 16, 1817-1821.	21.0	84
456	Direct Synthesis and Spectroscopic Evidence of Framework Co(II) Ions in SBA-15 Mesoporous Molecular Sieves ChemInform, 2004, 35, no.	0.0	0
457	Synthesis of highly acidic and well ordered MgAl-MCM-41 and its catalytic performance on the isopropylation of m-cresol. Microporous and Mesoporous Materials, 2004, 76, 91-98.	4.4	28
458	Synthesis, characterization and catalytic performance of Mg and Co substituted mesoporous aluminophosphates. Microporous and Mesoporous Materials, 2004, 70, 15-25.	4.4	55
459	Mesoporous FeAlMCM-41: an improved catalyst for the vapor phase tert-butylation of phenol. Applied Catalysis A: General, 2004, 265, 1-10.	4.3	76
460	Characterization of Co,Al-MCM-41 and its activity in the t-butylation of phenol using isobutanol. Applied Catalysis A: General, 2004, 268, 139-149.	4.3	74
461	Adsorption of Lysozyme over Mesoporous Molecular Sieves MCM-41 and SBA-15:Â Influence of pH and Aluminum Incorporation. Journal of Physical Chemistry B, 2004, 108, 7323-7330.	2.6	330
462	An Optimized Procedure for the Synthesis of AlSBA-15 with Large Pore Diameter and High Aluminum Content. Journal of Physical Chemistry B, 2004, 108, 11496-11505.	2.6	215
463	Adsorption of cytochrome c on MCM-41 and SBA-15: Influence of pH. Studies in Surface Science and Catalysis, 2004, 154, 2987-2994.	1.5	20
464	Adsorption of Cytochrome c on Mesoporous Molecular Sieves:Â Influence of pH, Pore Diameter, and Aluminum Incorporation. Chemistry of Materials, 2004, 16, 3056-3065.	6.7	315
465	Direct Synthesis and Spectroscopic Evidence of Framework Co(II) ions in SBA-15 Mesoporous Molecular Sieves. Chemistry Letters, 2004, 33, 588-589.	1.3	32
466	Bio/Carbon Nanomaterials-The Adsorption of Lysozyme on Mesoporous Carbon Molecular Sieves Kobunshi Ronbunshu, 2004, 61, 623-627.	0.2	7
467	Hydrogenation of olefins over hydrido chlorocarbonyl tris-(triphenylphosphine) ruthenium(II) complex immobilized on functionalized MCM-41 and SBA-15. Journal of Molecular Catalysis A, 2003, 206, 13-21.	4.8	88
468	Pore Size Engineering and Mechanical Stability of the Cubic Mesoporous Molecular Sieve SBA-1. Chemistry of Materials, 2003, 15, 1385-1393.	6.7	123

#	Article	IF	CITATION
469	Adsorption of Cytochrome C on New Mesoporous Carbon Molecular Sieves. Journal of Physical Chemistry B, 2003, 107, 8297-8299.	2.6	238
470	Comparison of the mechanical stability of cubic and hexagonal meso- porous molecular sieves with different pore sizes. Studies in Surface Science and Catalysis, 2003, , 285-288.	1.5	8
471	Synthesis and Characterization of CoSBA-1 Cubic Mesoporous Molecular Sieves. Chemistry of Materials, 2002, 14, 2433-2435.	6.7	60
472	Mechanical Stability and Porosity Analysis of Large-Pore SBA-15 Mesoporous Molecular Sieves by Mercury Porosimetry and Organics Adsorption. Langmuir, 2002, 18, 8010-8016.	3.5	218
473	Direct synthesis and catalytic evaluation of AlSBA-1. Chemical Communications, 2002, , 1238-1239.	4.1	55
474	Assessment of the impact of abiotic factors on the stability of engineered nanomaterials in fish embryo media. Emergent Materials, 0 , , 1 .	5.7	2