Jean-Baptiste Raina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5988198/publications.pdf Version: 2024-02-01

IEAN-RADTISTE RAINA

#	Article	IF	CITATIONS
1	Zooming in on the phycosphere: the ecological interface for phytoplankton–bacteria relationships. Nature Microbiology, 2017, 2, 17065.	13.3	727
2	The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts. ISME Journal, 2015, 9, 2261-2274.	9.8	548
3	Coral-Associated Bacteria and Their Role in the Biogeochemical Cycling of Sulfur. Applied and Environmental Microbiology, 2009, 75, 3492-3501.	3.1	395
4	DMSP biosynthesis by an animal and its role in coral thermal stress response. Nature, 2013, 502, 677-680.	27.8	258
5	Do the organic sulfur compounds DMSP and DMS drive coral microbial associations?. Trends in Microbiology, 2010, 18, 101-108.	7.7	203
6	A bacterial pathogen uses dimethylsulfoniopropionate as a cue to target heat-stressed corals. ISME Journal, 2014, 8, 999-1007.	9.8	180
7	Heat stress destabilizes symbiotic nutrient cycling in corals. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	179
8	The role of microbial motility and chemotaxis in symbiosis. Nature Reviews Microbiology, 2019, 17, 284-294.	28.6	160
9	Isolation of an antimicrobial compound produced by bacteria associated with reef-building corals. PeerJ, 2016, 4, e2275.	2.0	122
10	Gearâ€based fisheries management as a potential adaptive response to climate change and coral mortality. Journal of Applied Ecology, 2009, 46, 724-732.	4.0	119
11	DSYB catalyses the key step of dimethylsulfoniopropionate biosynthesis in many phytoplankton. Nature Microbiology, 2018, 3, 430-439.	13.3	116
12	Down to the bone: the role of overlooked endolithic microbiomes in reef coral health. ISME Journal, 2020, 14, 325-334.	9.8	97
13	Nutrient cycling in early coral life stages: <i>Pocillopora damicornis</i> larvae provide their algal symbiont (<i>Symbiodinium</i>) with nitrogen acquired from bacterial associates. Ecology and Evolution, 2013, 3, 2393-2400.	1.9	94
14	Defining the core microbiome of the symbiotic dinoflagellate, <i>Symbiodinium</i> . Environmental Microbiology Reports, 2018, 10, 7-11.	2.4	94
15	Symbiodiniaceaeâ€bacteria interactions: rethinking metabolite exchange in reefâ€building corals as multiâ€partner metabolic networks. Environmental Microbiology, 2020, 22, 1675-1687.	3.8	89
16	Subcellular tracking reveals the location of dimethylsulfoniopropionate in microalgae and visualises its uptake by marine bacteria. ELife, 2017, 6, .	6.0	74
17	Using Aiptasia as a Model to Study Metabolic Interactions in Cnidarian-Symbiodinium Symbioses. Frontiers in Physiology, 2018, 9, 214.	2.8	72
18	Genetic markers for antioxidant capacity in a reef-building coral. Science Advances, 2016, 2, e1500842.	10.3	69

JEAN-BAPTISTE RAINA

#	Article	IF	CITATIONS
19	Coral-Bacterial Communities before and after a Coral Mass Spawning Event on Ningaloo Reef. PLoS ONE, 2012, 7, e36920.	2.5	68
20	Validation of picogram- and femtogram-input DNA libraries for microscale metagenomics. PeerJ, 2016, 4, e2486.	2.0	64
21	A microfluidics-based in situ chemotaxis assay to study the behaviour of aquatic microbial communities. Nature Microbiology, 2017, 2, 1344-1349.	13.3	60
22	Comparison of Outcomes of Permanently Closed and Periodically Harvested Coral Reef Reserves. Conservation Biology, 2009, 23, 1475-1484.	4.7	56
23	Antimicrobial and stress responses to increased temperature and bacterial pathogen challenge in the holobiont of a reefâ€building coral. Molecular Ecology, 2018, 27, 1065-1080.	3.9	53
24	Chemotaxis shapes the microscale organization of the ocean's microbiome. Nature, 2022, 605, 132-138.	27.8	51
25	A multi-trait systems approach reveals a response cascade to bleaching in corals. BMC Biology, 2017, 15, 117.	3.8	45
26	Allorecognition maturation in the broadcast-spawning coral Acropora millepora. Coral Reefs, 2012, 31, 1019-1028.	2.2	39
27	Direct measurement of dimethylsulfoniopropionate (DMSP) in reef-building corals using quantitative nuclear magnetic resonance (qNMR) spectroscopy. Journal of Experimental Marine Biology and Ecology, 2013, 443, 85-89.	1.5	37
28	Reactive oxygen species (ROS) and dimethylated sulphur compounds in coral explants under acute thermal stress. Journal of Experimental Biology, 2017, 220, 1787-1791.	1.7	37
29	Coral endosymbionts (Symbiodiniaceae) emit species-specific volatilomes that shift when exposed to thermal stress. Scientific Reports, 2019, 9, 17395.	3.3	35
30	Symbiosis in the microbial world: from ecology to genome evolution. Biology Open, 2018, 7, .	1.2	34
31	Transcriptomic analysis reveals protein homeostasis breakdown in the coral Acropora millepora during hypo-saline stress. BMC Genomics, 2019, 20, 148.	2.8	33
32	Single-cell bacterial transcription measurements reveal the importance of dimethylsulfoniopropionate (DMSP) hotspots in ocean sulfur cycling. Nature Communications, 2020, 11, 1942.	12.8	30
33	Symbiont shuffling across environmental gradients aligns with changes in carbon uptake and translocation in the reef-building coral Pocillopora acuta. Coral Reefs, 2021, 40, 595-607.	2.2	29
34	Mucospheres produced by a mixotrophic protist impact ocean carbon cycling. Nature Communications, 2022, 13, 1301.	12.8	27
35	Symbiotic associations of the deepest recorded photosynthetic scleractinian coral (172 m depth). ISME Journal, 2021, 15, 1564-1568.	9.8	25
36	Host Coenzyme Q Redox State Is an Early Biomarker of Thermal Stress in the Coral Acropora millepora. PLoS ONE, 2015, 10, e0139290.	2.5	25

JEAN-BAPTISTE RAINA

#	Article	IF	CITATIONS
37	Crustose coralline algae that promote coral larval settlement harbor distinct surface bacterial communities. Coral Reefs, 2020, 39, 1703-1713.	2.2	23
38	The coral holobiont highlights the dependence of cnidarian animal hosts on their associated microbes. , 2020, , 91-118.		23
39	Transcriptomic analysis of the response of Acropora millepora to hypo-osmotic stress provides insights into DMSP biosynthesis by corals. BMC Genomics, 2017, 18, 612.	2.8	22
40	The Volatilomes of Symbiodiniaceae-Associated Bacteria Are Influenced by Chemicals Derived From Their Algal Partner. Frontiers in Marine Science, 2020, 7, .	2.5	22
41	Heat stress reduces the contribution of diazotrophs to coral holobiont nitrogen cycling. ISME Journal, 2022, 16, 1110-1118.	9.8	21
42	Greater functional diversity and redundancy of coral endolithic microbiomes align with lower coral bleaching susceptibility. ISME Journal, 2022, 16, 2406-2420.	9.8	21
43	Rapid Shifts in Bacterial Communities and Homogeneity of Symbiodiniaceae in Colonies of Pocillopora acuta Transplanted Between Reef and Mangrove Environments. Frontiers in Microbiology, 2021, 12, 756091.	3.5	18
44	DMSP Production by Coral-Associated Bacteria. Frontiers in Marine Science, 2022, 9, .	2.5	17
45	Heat stress decreases the diversity, abundance and functional potential of coral gas emissions. Global Change Biology, 2021, 27, 879-891.	9.5	14
46	Coral mucus rapidly induces chemokinesis and genome-wide transcriptional shifts toward early pathogenesis in a bacterial coral pathogen. ISME Journal, 2021, 15, 3668-3682.	9.8	14
47	Disentangling compartment functions in sessile marine invertebrates. Trends in Ecology and Evolution, 2022, 37, 740-748.	8.7	13
48	Comparative volatilomics of coral endosymbionts from one- and comprehensive two-dimensional gas chromatography approaches. Marine Biology, 2021, 168, 1.	1.5	12
49	Highly heterogeneous temporal dynamics in the abundance and diversity of the emerging pathogens Arcobacter at an urban beach. Water Research, 2020, 171, 115405.	11.3	11
50	In Situ Chemotaxis Assay to Examine Microbial Behavior in Aquatic Ecosystems. Journal of Visualized Experiments, 2020, , .	0.3	10
51	Microvolume DNA extraction methods for microscale amplicon and metagenomic studies. ISME Communications, 2021, 1, .	4.2	10
52	<i>In situ</i> metabolomic- and transcriptomic-profiling of the host-associated cyanobacteria <i>Prochloron</i> and <i>Acaryochloris marina</i> . ISME Journal, 2018, 12, 556-567.	9.8	7
53	Quantifying Inorganic Nitrogen Assimilation by Synechococcus Using Bulk and Single-Cell Mass Spectrometry: A Comparative Study. Frontiers in Microbiology, 2018, 9, 2847.	3.5	6
54	Diatom Biogeography, Temporal Dynamics, and Links to Bacterioplankton across Seven Oceanographic Time-Series Sites Spanning the Australian Continent. Microorganisms, 2022, 10, 338.	3.6	5

#	Article	IF	CITATIONS
55	Swimming in the sea: chemotaxis by marine bacteria. Microbiology Australia, 2018, 39, 12.	0.4	4
56	The Life Aquatic at the Microscale. MSystems, 2018, 3, .	3.8	3
57	Survival in a Sea of Gradients: Bacterial and Archaeal Foraging in a Heterogeneous Ocean. The Microbiomes of Humans, Animals, Plants, and the Environment, 2022, , 47-102.	0.6	1