Jose V Die

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5987628/publications.pdf

Version: 2024-02-01

471509 477307 34 858 17 29 h-index citations g-index papers 37 37 37 1260 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Aldehyde Dehydrogenase 3 Is an Expanded Gene Family with Potential Adaptive Roles in Chickpea. Plants, 2021, 10, 2429.	3.5	3
2	Characterization and Analysis of Anthocyanin-Related Genes in Wild-Type Blueberry and the Pink-Fruited Mutant Cultivar â€~Pink Lemonade': New Insights into Anthocyanin Biosynthesis. Agronomy, 2020, 10, 1296.	3.0	15
3	Genetic analysis reveals PDH1 as a candidate gene for control of pod dehiscence in chickpea. Molecular Breeding, 2020, 40, 1.	2.1	14
4	geneHummus: an R package to define gene families and their expression in legumes and beyond. BMC Genomics, 2019, 20, 591.	2.8	3
5	Candidate genes expression profiling during wilting in chickpea caused by Fusarium oxysporum f. sp. ciceris race 5. PLoS ONE, 2019, 14, e0224212.	2.5	18
6	Evidence of epistatic suppression of repeat fruiting in cultivated strawberry. BMC Plant Biology, 2019, 19, 386.	3.6	7
7	First RNA-seq approach to study fruit set and parthenocarpy in zucchini (Cucurbita pepo L.). BMC Plant Biology, 2019, 19, 61.	3.6	19
8	Transcriptome analysis identifies genes related to the waxy coating on blueberry fruit in two northern-adapted rabbiteye breeding populations. BMC Plant Biology, 2019, 19, 460.	3.6	22
9	Genome-scale examination of NBS-encoding genes in blueberry. Scientific Reports, 2018, 8, 3429.	3.3	18
10	Genome-wide identification of the auxin response factor gene family in Cicer arietinum. BMC Genomics, 2018, 19, 301.	2.8	40
11	Segmental and Tandem Duplications Driving the Recent NBS-LRR Gene Expansion in the Asparagus Genome. Genes, 2018, 9, 568.	2.4	18
12	Auxin signalling regulation during induced and parthenocarpic fruit set in zucchini. Molecular Breeding, 2017, 37, 1.	2.1	21
13	Selection of internal reference genes for normalization of reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis in the rumen epithelium. PLoS ONE, 2017, 12, e0172674.	2.5	15
14	Proteome dynamics of cold-acclimating Rhododendron species contrasting in their freezing tolerance and thermonasty behavior. PLoS ONE, 2017, 12, e0177389.	2. 5	16
15	Design and Sampling Plan Optimization for RT-qPCR Experiments in Plants: A Case Study in Blueberry. Frontiers in Plant Science, 2016, 7, 271.	3.6	9
16	Global patterns of protein abundance during the development of cold hardiness in blueberry. Environmental and Experimental Botany, 2016, 124, 11-21.	4.2	11
17	Identification, cloning, and expression analysis of three phytoene synthase genes from Cucurbita pepo. Biologia Plantarum, 2015, 59, 201-210.	1.9	9
18	Elucidating cold acclimation pathway in blueberry by transcriptome profiling. Environmental and Experimental Botany, 2014, 106, 87-98.	4.2	30

#	Article	IF	CITATIONS
19	Carotenogenic Gene Expression and Carotenoid Accumulation in Three Varieties of Cucurbita pepo during Fruit Development. Journal of Agricultural and Food Chemistry, 2013, 61, 6393-6403.	5.2	33
20	Advent of genomics in blueberry. Molecular Breeding, 2013, 32, 493-504.	2.1	18
21	Superior Cross-Species Reference Genes: A Blueberry Case Study. PLoS ONE, 2013, 8, e73354.	2.5	35
22	RNA quality assessment: a view from plant qPCR studies. Journal of Experimental Botany, 2012, 63, 6069-6077.	4.8	52
23	Selection of reference genes for expression studies in Cicer arietinum L.: analysis of cyp81E3 gene expression against Ascochyta rabiei. Molecular Breeding, 2012, 29, 261-274.	2.1	26
24	Selection of Reference Genes for Gene Expression Studies in Zucchini (Cucurbita pepo) Using qPCR. Journal of Agricultural and Food Chemistry, 2011, 59, 5402-5411.	5.2	74
25	Characterization of the 3′:5′ ratio for reliable determination of RNA quality. Analytical Biochemistry, 2011, 419, 336-338.	2.4	21
26	Selection of reference genes in Hedysarum coronarium under various stresses and stages of development. Analytical Biochemistry, 2011, 409, 236-243.	2.4	28
27	Evaluation of candidate reference genes for expression studies in Pisum sativum under different experimental conditions. Planta, 2010, 232, 145-153.	3.2	151
28	Gene expression profiling of <i>Medicago truncatula</i> roots in response to the parasitic plant <i>Orobanche crenata</i> Weed Research, 2009, 49, 66-80.	1.7	26
29	Gene expression analysis of molecular mechanisms of defense induced in Medicago truncatula parasitized by Orobanche crenata. Plant Physiology and Biochemistry, 2009, 47, 635-641.	5.8	10
30	Expression analysis of Pisum sativum putative defence genes during Orobanche crenata infection. Crop and Pasture Science, 2009, 60, 490.	1.5	7
31	Selection of housekeeping genes for normalization by real-time RT–PCR: Analysis of Or-MYB1 gene expression in Orobanche ramosa development. Analytical Biochemistry, 2008, 379, 176-181.	2.4	46
32	Isolation and expression analysis of a cobalamin-independent methionine synthase gene from the parasitic plant Orobanche ramosa. Scientia Horticulturae, 2008, 116, 337-341.	3.6	2
33	First Report of <i>Orobanche crenata</i> on Sulla (<i>Hedysarum coronarium</i>) in Andalusia, Southern Spain. Plant Disease, 2008, 92, 1709-1709.	1.4	2
34	Identification by suppression subtractive hybridization and expression analysis of Medicago truncatula putative defence genes in response to Orobanche crenata parasitization. Physiological and Molecular Plant Pathology, 2007, 70, 49-59.	2.5	37