
Robert Baxter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5986624/publications.pdf Version: 2024-02-01

POREDT RAYTED

#	Article	IF	CITATIONS
1	Abundance and accessibility of forage for reindeer in forests of Northern Sweden: Impacts of landscape and winter climate regime. Ecology and Evolution, 2022, 12, e8820.	1.9	3
2	Climate Variability May Delay Post-Fire Recovery of Boreal Forest in Southern Siberia, Russia. Remote Sensing, 2021, 13, 2247.	4.0	7
3	Transpiration from subarctic deciduous woodlands: Environmental controls and contribution to ecosystem evapotranspiration. Ecohydrology, 2020, 13, e2190.	2.4	12
4	Postfire recruitment failure in Scots pine forests of southern Siberia. Remote Sensing of Environment, 2020, 237, 111539.	11.0	23
5	Plant carbon allocation drives turnover of old soil organic matter in permafrost tundra soils. Global Change Biology, 2020, 26, 4559-4571.	9.5	31
6	Ecosystem carbon dynamics differ between tundra shrub types in the western Canadian Arctic. Environmental Research Letters, 2018, 13, 084014.	5.2	12
7	Biogeochemistry of "pristine―freshwater stream and lake systems in the western Canadian Arctic. Biogeochemistry, 2016, 130, 191-213.	3.5	17
8	Redox dynamics in the active layer of an Arctic headwater catchment; examining the potential for transfer of dissolved methane from soils to stream water. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 2776-2792.	3.0	28
9	Quantifying landscapeâ€level methane fluxes in subarctic Finland using a multiscale approach. Global Change Biology, 2015, 21, 3712-3725.	9.5	23
10	Biases in Reanalysis Snowfall Found by Comparing the JULES Land Surface Model to GlobSnow. Journal of Climate, 2014, 27, 624-632.	3.2	13
11	Environmental and Vegetation Drivers of Seasonal CO2 Fluxes in a Sub-arctic Forest–Mire Ecotone. Ecosystems, 2014, 17, 377-393.	3.4	15
12	Characterising forest gap fraction with terrestrial lidar and photography: An examination of relative limitations. Agricultural and Forest Meteorology, 2014, 189-190, 105-114.	4.8	71
13	Evaluating global snow water equivalent products for testing land surface models. Remote Sensing of Environment, 2013, 128, 107-117.	11.0	71
14	Evaluating the carbon balance estimate from an automated groundâ€level flux chamber system in artificial grass mesocosms. Ecology and Evolution, 2013, 3, 4998-5010.	1.9	11
15	A C-Repeat Binding Factor Transcriptional Activator (CBF/DREB1) from European Bilberry (Vaccinium) Tj ETQq1 2 e54119.	1 0.784314 2.5	1 rgBT /Overla 29
16	Effects of Warming on Shrub Abundance and Chemistry Drive Ecosystem-Level Changes in a Forest–Tundra Ecotone. Ecosystems, 2012, 15, 1219-1233.	3.4	48
17	Seasonal controls on net branch CO2 assimilation in sub-Arctic Mountain Birch (Betula pubescens) Tj ETQq1 1 0	.784314 rg 4.8	gBŢ /Overla <mark>c</mark> ł
18	Fast assimilate turnover revealed by in situ 13CO2 pulse-labelling in Subarctic tundra. Polar Biology, 2012, 35, 1209-1219.	1.2	17

ROBERT BAXTER

#	Article	IF	CITATIONS
19	Photosynthesis and productivity in heterogeneous arctic tundra: consequences for ecosystem function of mixing vegetation types at stand edges. Journal of Ecology, 2012, 100, 441-451.	4.0	21
20	Carbon balance of Arctic tundra under increased snow cover mediated by a plant pathogen. Nature Climate Change, 2011, 1, 220-223.	18.8	102
21	Soil respiration: implications of the plantâ€soil continuum and respiration chamber collarâ€insertion depth on measurement and modelling of soil CO ₂ efflux rates in three ecosystems. European Journal of Soil Science, 2011, 62, 82-94.	3.9	96
22	Snow-induced changes in dwarf birch chemistry increase moth larval growth rate and level of herbivory. Polar Biology, 2010, 33, 693-702.	1.2	22
23	The Effect of Snow on Plant Chemistry and Invertebrate Herbivory: Experimental Manipulations Along a Natural Snow Gradient. Ecosystems, 2010, 13, 741-751.	3.4	19
24	Transition zones between vegetation patches in a heterogeneous Arctic landscape: how plant growth and photosynthesis change with abundance at small scales. Oecologia, 2010, 163, 47-56.	2.0	20
25	Predicting spatial and temporal patterns of budâ€burst and spring frost risk in northâ€west Europe: the implications of local adaptation to climate. Global Change Biology, 2010, 16, 1503-1514.	9.5	125
26	Characterising inter-annual variation in the spatial pattern of thermal microclimate in a UK upland using a combined empirical–physical model. Agricultural and Forest Meteorology, 2010, 150, 12-19.	4.8	34
27	SNOWMIP2: An Evaluation of Forest Snow Process Simulations. Bulletin of the American Meteorological Society, 2009, 90, 1120-1136.	3.3	186
28	Upscaling as ecological information transfer: a simple framework with application to Arctic ecosystem carbon exchange. Landscape Ecology, 2009, 24, 971-986.	4.2	34
29	Nonvascular contribution to ecosystem NPP in a subarctic heath during early and late growing season. Plant Ecology, 2009, 202, 41-53.	1.6	35
30	Slope, aspect and climate: Spatially explicit and implicit models of topographic microclimate in chalk grassland. Ecological Modelling, 2008, 216, 47-59.	2.5	406
31	Net ecosystem exchange over heterogeneous Arctic tundra: Scaling between chamber and eddy covariance measurements. Global Biogeochemical Cycles, 2008, 22, .	4.9	60
32	Species-specific effects of elevated CO2 on resource allocation in Plantago maritima and Armeria maritima. Biochemical Systematics and Ecology, 2007, 35, 121-129.	1.3	4
33	Influence of slope and aspect on long-term vegetation change in British chalk grasslands. Journal of Ecology, 2006, 94, 355-368.	4.0	269
34	Phosphorus compounds in subarctic Fennoscandian soils at the mountain birch (Betula) Tj ETQq0 0 0 rgBT /Ove	rlock ₈ 10 Tr	f 59,142 Td (_F
35	Effects of elevated CO2 on the vasculature and phenolic secondary metabolism of Plantago maritima. Phytochemistry, 2004, 65, 2197-2204.	2.9	36

Robert Baxter

#	Article	IF	CITATIONS
37	Nitrogen and phosphorus in soil solutions and drainage streams in Upper Teesdale, northern England: implications of organic compounds for biological nutrient limitation. Science of the Total Environment, 2003, 314-316, 153-170.	8.0	36
38	Pseudoviviparous Reproduction of Poa alpina var. vivipara L. (Poaceae) during Long-term Exposure to Elevated Atmospheric CO2. Annals of Botany, 2003, 91, 613-622.	2.9	40
39	Seasonal phosphatase activity in three characteristic soils of the English uplands polluted by long-term atmospheric nitrogen deposition. Environmental Pollution, 2002, 120, 313-317.	7.5	55
40	Characterization of the phosphatase activities of mosses in relation to their environment. Plant, Cell and Environment, 2001, 24, 1165-1176.	5.7	55
41	Standardisation of temperature observed by automatic weather stations. Environmental Monitoring and Assessment, 2001, 68, 127-136.	2.7	16
42	Host plant growth characteristics as determinants of abundance and phenology in jumping plant-lice on downy willow. Ecological Entomology, 2001, 26, 376-387.	2.2	21
43	The influence of secondary senescence processes within the culm of a pseudoviviparous grass (Poa) Tj ETQq1 1 1067-1075.	0.784314 4.8	rgBT /Overlo 5
44	Architectural and physiological heterogeneity within the synflorescence of the pseudoviviparous grass Poa alpina var. vivipara L. Journal of Experimental Botany, 2000, 51, 1705-1712.	4.8	10
45	Export of carbon from leaf blades of Poa alpina L. at elevated CO2 and two nutrient regimes. Journal of Experimental Botany, 1999, 50, 1215-1221.	4.8	5
46	Some Ecophysiological and Production Responses of Grasslands to Long-Term Elevated CO2 under Continental and Atlantic Climatesa. Annals of the New York Academy of Sciences, 1998, 851, 241-250.	3.8	12
47	Could competition between plants and microbes regulate plant nutrition and atmospheric CO2 concentrations?. Science of the Total Environment, 1998, 220, 181-184.	8.0	16
48	Vegetation responses to local climatic changes induced by a water-storage reservoir. Global Ecology and Biogeography, 1998, 7, 241-257.	5.8	5
49	Vegetation Responses to Local Climatic Changes Induced by a Water-Storage Reservoir. Global Ecology and Biogeography Letters, 1998, 7, 241.	0.6	6
50	Effect of elevated CO2and nutrient status on growth, dry matter partitioning and nutrient content ofPoa alpinavar.viviparaL Journal of Experimental Botany, 1997, 48, 1477-1486.	4.8	40
51	The effect of elevated CO2 on the chemical composition and construction costs of leaves of 27 C3 species. Plant, Cell and Environment, 1997, 20, 472-482.	5.7	355
52	Effects of elevated CO2concentrations on three montane grass species. Journal of Experimental Botany, 1995, 46, 917-929.	4.8	30
53	Effects of elevated carbon dioxide on three montane grass species. Journal of Experimental Botany, 1994, 45, 305-315.	4.8	76
54	Effects of elevated carbon dioxide on three grass species from montane pasture II. Nutrient uptake, allocation and efficiency of use. Journal of Experimental Botany, 1994, 45, 1267-1278.	4.8	47

ROBERT BAXTER

#	Article	IF	CITATIONS
55	Effects of an experimentally applied increase in ammonium on growth and amino-acid metabolism of Sphagnum cuspidatum Ehrh. ex. Hoffm. from differently polluted areas. New Phytologist, 1992, 120, 265-274.	7.3	81
56	An inexpensive system for exposing plants in the field to elevated concentrations of CO2. Plant, Cell and Environment, 1992, 15, 365-372.	5.7	49
57	Short term effects of bisulphite on pollution-tolerant and pollution sensitive populations of Sphagnum cuspidatum Ehrh. (ex. Hoffm.). New Phytologist, 1991, 118, 425-431.	7.3	10
58	Transition metals and the ability of Sphagnum to withstand the phytotoxic effects of the bisulphite ion. New Phytologist, 1991, 118, 433-439.	7.3	4
59	Responses of Sphagnum species to atmospheric nitrogen and sulphur deposition. Botanical Journal of the Linnean Society, 1990, 104, 255-265.	1.6	22
60	Effects of the bisulphite ion on growth and photosynthesis in Sphagnum cuspidatum Hoffm New Phytologist, 1989, 111, 457-462.	7.3	16
61	The relationship between extracellular metal accumulation and bisulphite tolerance in Sphagnum cuspidatum Hoffm New Phytologist, 1989, 111, 463-472.	7.3	13