Andrew D B Leakey

List of Publications by Year

 in descending orderSource: https:|/exaly.com/author-pdf/598652/publications.pdf
Version: 2024-02-01

1	Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. Journal of Experimental Botany, 2009, 60, 2859-2876.	4.8	1,343
2	Food for Thought: Lower-Than-Expected Crop Yield Stimulation with Rising CO2 Concentrations. Science, 2006, 312, 1918-1921.	12.6	1,299
3	Increasing CO2 threatens human nutrition. Nature, 2014, 510, 139-142.	27.8	1,024
4	The Origins of C <sub〉4</sub> Grasslands: Integrating Evolutionary and Ecosystem Science. Science, 2010, 328, 587-591.	12.6	899
5	Herbivores and nutrients control grassland plant diversity via light limitation. Nature, 2014, 508, 517-520.	27.8	669
6	Photosynthesis, Productivity, and Yield of Maize Are Not Affected by Open-Air Elevation of CO2 Concentration in the Absence of Drought. Plant Physiology, 2006, 140, 779-790.	4.8	451
7	A roadmap for improving the representation of photosynthesis in Earth system models. New Phytologist, 2017, 213, 22-42.	7.3	365

9	Rising atmospheric carbon dioxide concentration and the future of C ₄ crops for food and fuel. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 2333-2343.	2.6	242
10	Intensifying drought eliminates the expected benefits of elevated carbon dioxide for soybean. Nature Plants, 2016, 2, 16132.	9.3	229
11	Global food insecurity. Treatment of major food crops with elevated carbon dioxide or ozone under large-scale fully open-air conditions suggests recent models may have overestimated future yields. Philosophical Transactions of the Royal Society B: Biological Sciences, 2005, 360, 2011-2020.	4.0	227
12	Will Elevated Carbon Dioxide Concentration Amplify the Benefits of Nitrogen Fixation in Legumes?. Plant Physiology, 2009, 151, 1009-1016.	4.8	220
13	High-Throughput Phenotyping of Maize Leaf Physiological and Biochemical Traits Using Hyperspectral Reflectance. Plant Physiology, 2017, 173, 614-626.	4.8	215

14 Genomic basis for stimulated respiration by plants growing under elevated carbon dioxide.

```
Will photosynthesis of maize (Zea mays ) in the US Corn Belt increase in future [CO2 ] rich
17 atmospheres? An analysis of diurnal courses of CO2 uptake under free-air concentration enrichment
(FACE). Global Change Biology, 2004, 10, 951-962.
```


Hourly and seasonal variation in photosynthesis and stomatal conductance of soybean grown at
20 future CO2and ozone concentrations for 3 years under fully open-air field conditions. Plant, Cell and 5.7
Environment, 2006, 29, 2077-2090.

21	<i>Arabidopsis</i> transcript and metabolite profiles: ecotypeâ€specific responses to openâ€air elevated [CO<sub>2<\|sub>]. Plant, Cell and Environment, 2008, 31, 1673-1687.	5.7	127
22	Impairment of C4 photosynthesis by drought is exacerbated by limiting nitrogen and ameliorated by elevated [CO2] in maize. Journal of Experimental Botany, 2011, 62, 3235-3246.	4.8	121
23	Long-term growth of soybean at elevated [CO2] does not cause acclimation of stomatal conductance under fully open-air conditions. Plant, Cell and Environment, 2006, 29, 1794-1800.	5.7	119
24	Tropical forest responses to increasing atmospheric CO2: current knowledge and opportunities for future research. Functional Plant Biology, 2013, 40, 531.	2.1	118
25	Physiological and ecological significance of sunflecks for dipterocarp seedlings. Journal of Experimental Botany, 2004, 56, 469-482.	4.8	112

Heat waves imposed during early pod development in soybean (<i><scp>C</scp>|ycine max</i>) cause
significant yield loss despite a rapid recovery from oxidative stress. Global Change Biology, 2015, 21,
$3114-3125$.

26 significant yield loss despite a rapid recovery from oxidative stress. Global Change Biology, 2015, 21, 3114-3125.
Does greater leafâ€level photosynthesis explain the larger solar energy conversion efficiency of
Miscanthus relative to switchgrass?. Plant, Cell and Environment, 2009, 32, 1525-1537.
Does elevated atmospheric [CO2] alter diurnal C uptake and the balance of C and N metabolites in
growing and fully expanded soybean leaves?. Journal of Experimental Botany, 2006, 58, 579-591.
29 Urgent need for a common metric to make precipitation manipulation experiments comparable. New
Phytologist, 2012, 195, 518-522. 97Evolutionary context for understanding and manipulating plant responses to past, present and future4.093
Sciences, 2012, 367, 613-629.
31 Abundance of introduced species at home predicts abundance away in herbaceous communities. Ecology Letters, 2011, 14, 274-281.
6.4 88Increased protein carbonylation in leaves of Arabidopsis and soybean in response to elevated [CO2].
Greater antioxidant and respiratory metabolism in fieldâ€grown soybean exposed to elevated
$33 \mathrm{O}<$ sub $>3</$ sub $>$ under both ambient and elevated $\mathrm{CO}<$ sub $>2</$ sub>. Plant, Cell and Environment, 2012,

35, 169-184.5.7
Relative enhancement of photosynthesis and growth at elevated CO 2 is greater under sunflecks than

Future carbon dioxide concentration decreases canopy evapotranspiration and soil water depletion

Minirhizotron imaging reveals that nodulation of field-grown soybean is enhanced by free-air CO2
2.1

48 enrichment only when combined with drought stress. Functional Plant Biology, 2013, 40, 137.

49 Challenges in elevated CO2 experiments on forests. Trends in Plant Science, 2010, 15, 5-10.
$8.8 \quad 46$

Patterns of dynamic irradiance affect the photosynthetic capacity and growth of dipterocarp tree
2.0

45 seedlings. Oecologia, 2003, 135, 184-193.

51 Nutrient addition increases grassland sensitivity to droughts. Ecology, 2020, 101, e02981.
3.2

44

Machine learning-enabled phenotyping for GWAS and TWAS of WUE traits in 869 field-grown sorghum
accessions. Plant Physiology, 2021, 187, 1481-1500.

Transcriptional reprogramming and stimulation of leaf respiration by elevated
$53\langle$ Scp $\rangle\langle\mathrm{scp}\rangle \mathrm{CO}\langle$ sub $\rangle 2\langle |$ sub $\rangle\langle\mid \mathrm{scp}\rangle\langle\mid \mathrm{scp}\rangle$ concentration is diminished, but not eliminated, under
limiting nitrogen supply. Plant, Cell and Environment, 2014, 37, 886-898.
Elevated ozone reduces photosynthetic carbon gain by accelerating leaf senescence of inbred and
hybrid maize in a genotypeâ€specific manner. Plant, Cell and Environment, 2017, 40, 3088-3100.
Optical topometry and machine learning to rapidly phenotype stomatal patterning traits for maiz
mapping. Plant Physiology, 2021, 187, 1462-1480.
60 A physiological and biophysical model of coppice willow (<scp $\langle\langle\mathrm{i}\rangle \mathrm{S}\langle\mid \mathrm{i}\rangle\langle\mid \mathrm{scp}\rangle\langle\mathrm{i}\rangle$ alix $\langle\mid \mathrm{i}\rangle$ spp.)
production yields for the contiguous $\langle\mathrm{scp}\rangle$ USA $\langle/ \mathrm{scp}\rangle$ in current and future climate scenarios.Cell and Environment, 2015, 38, 1850-1865.
61 Photosynthesis in a CO2-Rich Atmosphere. Advances in Photosynthesis and Respiration, 2012, , 733-768. 1.0

| 62 | Developmental stage specificity of transcriptional, biochemical and <scp><scp>CO<sub>2<\|sub><|scp></scp> efflux responses of leaf dark respiration to growth of <scp><i>A</i><\|scp><i> rabidopsis thaliana</i> at elevated [<scp><scp>CO₂</scp></scp Plant, Cell and Environment, 2014, 37, 2542-2552. |
| :---: | :---: |
| 63 | Effects of elevated CO2 and soil water content on phytohormone transcript induction in Glycine max after Popillia japonica feeding. Arthropod-Plant Interactions, 2012, 6, 439-447. |
| 64 | Novel Bayesian Networks for Genomic Prediction of Developmental Traits in Biomass Sorghum. G3: Genes, Genomes, Genetics, 2020, 10, 769-781. |
| 65 | Understanding Growth Dynamics and Yield Prediction of Sorghum Using High Temporal Resolution UAV Imagery Time Series and Machine Learning. Remote Sensing, 2021, 13, 1763. |

A reporting format for leaf-level gas exchange data and metadata. Ecological Informatics, 2021, 61,

Inconsistency of mesophyll conductance estimate causes the inconsistency for the estimates of maximum rate of Rubisco carboxylation among the linear, rectangular and non-rectangular hyperbola biochemical models of leaf photosynthesisâ $€$ " A case study of CO 2 enrichment and leaf aging effects in
73

> Correlation and co-localization of QTL for stomatal density, canopy temperature, and productivity
> with and without drought stress in<i>Setaria</i>. Journal of Experimental Botany, 2021, 72, 5024-5037.
4.8

13

Similar photosynthetic response to elevated carbon dioxide concentration in species with different
2.9

74 phloem loading strategies. Photosynthesis Research, 2018, 137, 453-464.
12

Highâ€fidelity detection of crop biomass quantitative trait loci from lowâ€cost imaging in the field. Plant
Direct, 2018, 2, e00041.
1.9

Elevated CO 2 and O 3 modify N turnover rates, but not N 2 O emissions in a soybean agroecosystem. Soil Biology and Biochemistry, 2012, 51, 104-114.
8.8

10
$77 \begin{aligned} & \text { Methamphetamine causes anorexia in \<; \> Drosophila melanogaster\&|t; /i\> exhausting metabolic } \\ & \text { reserves and contributing to mortality. Journal of Toxicological Sciences, 2012,37, 773-790. }\end{aligned}$
reserves and contributing to mortality. Journal of Toxicological Sciences, 2012, 37, 773-790.
$1.5 \quad 9$
 pollution. Plant Direct, 2021, 5, e00307.

An improved representation of the relationship between photosynthesis and stomatal conductance
79 leads to more stable estimation of conductance parameters and improves the goodnessâ€ofâ€fit across
$9.5 \quad 9$ diverse data sets. Global Change Biology, 2022, 28, 3537-3556.

80 Functional genomics and ecology â€" a tale of two scales. New Phytologist, 2007, 176, 735-739.
7.3

8
81 Installation and imaging of thousands of minirhizotrons to phenotype root systems of field-grownplants. Plant Methods, 2022, 18, 39.
Implementing Spatio-Temporal 3D-Convolution Neural Networks and UAV Time Series Imagery to Better Predict Lodging Damage in Sorghum. Remote Sensing, 2022, 14, 733.
4.0
6

Implementing Spatio-Temporal 3D-Convolution Neural Networks and UAV Time Series Imagery to Better	4.0	6

> 83 Detecting Carbon Dioxide Emissions in Soybeans by Aerial Thermal Infrared Imagery. Photogrammetric Engineering and Remote Sensing, 2010, 76, 735-741.
$0.6 \quad 5$

84 Photosynthesis and the environment. Photosynthesis Research, 2014, 119, 1-2.
2.9

5

85 Plasticity in stomatal behaviour across a gradient of water supply is consistent among fieldâ€grown
maize inbred lines with varying stomatal patterning. Plant, Cell and Environment, 2022, 45, 2324-2336.
$5.7 \quad 5$

86 Variation in leaf transcriptome responses to elevated ozone corresponds with physiological
2.9

1

87 Plants in Changing Environmental Conditions of the Anthropocene. , 2014, , 533-572.
0

