List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5986034/publications.pdf Version: 2024-02-01

		20817	21540
110	14,227	60	114
papers	citations	h-index	g-index
117	117	117	14122
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Photothermal therapy and photoacoustic imaging <i>via</i> nanotheranostics in fighting cancer. Chemical Society Reviews, 2019, 48, 2053-2108.	38.1	2,033
2	Simultaneous Fentonâ€like Ion Delivery and Glutathione Depletion by MnO ₂ â€Based Nanoagent to Enhance Chemodynamic Therapy. Angewandte Chemie - International Edition, 2018, 57, 4902-4906.	13.8	1,068
3	Synthesis of Copper Peroxide Nanodots for H ₂ O ₂ Self-Supplying Chemodynamic Therapy. Journal of the American Chemical Society, 2019, 141, 9937-9945.	13.7	759
4	Glucoseâ€Responsive Sequential Generation of Hydrogen Peroxide and Nitric Oxide for Synergistic Cancer Starvingâ€Like/Gas Therapy. Angewandte Chemie - International Edition, 2017, 56, 1229-1233.	13.8	505
5	Fenton-Reaction-Acceleratable Magnetic Nanoparticles for Ferroptosis Therapy of Orthotopic Brain Tumors. ACS Nano, 2018, 12, 11355-11365.	14.6	449
6	Biomineralization-Inspired Synthesis of Copper Sulfide–Ferritin Nanocages as Cancer Theranostics. ACS Nano, 2016, 10, 3453-3460.	14.6	328
7	Self-Assembly of Inorganic Nanoparticle Vesicles and Tubules Driven by Tethered Linear Block Copolymers. Journal of the American Chemical Society, 2012, 134, 11342-11345.	13.7	286
8	Self-Assembly of Amphiphilic Plasmonic Micelle-Like Nanoparticles in Selective Solvents. Journal of the American Chemical Society, 2013, 135, 7974-7984.	13.7	251
9	Multifunctional Theranostic Nanoparticles Based on Exceedingly Small Magnetic Iron Oxide Nanoparticles for <i>T</i> ₁ -Weighted Magnetic Resonance Imaging and Chemotherapy. ACS Nano, 2017, 11, 10992-11004.	14.6	239
10	Supramolecular Polymer-Based Nanomedicine: High Therapeutic Performance and Negligible Long-Term Immunotoxicity. Journal of the American Chemical Society, 2018, 140, 8005-8019.	13.7	227
11	Tumorâ€5pecific Drug Release and Reactive Oxygen Species Generation for Cancer Chemo/Chemodynamic Combination Therapy. Advanced Science, 2019, 6, 1801986.	11.2	221
12	Nanotechnology-Enhanced No-Wash Biosensors for <i>in Vitro</i> Diagnostics of Cancer. ACS Nano, 2017, 11, 5238-5292.	14.6	208
13	Antitumor Activity of a Unique Polymer That Incorporates a Fluorescent Self-Assembled Metallacycle. Journal of the American Chemical Society, 2017, 139, 15940-15949.	13.7	203
14	Solvent-Assisted Self-Assembly of a Metal–Organic Framework Based Biocatalyst for Cascade Reaction Driven Photodynamic Therapy. Journal of the American Chemical Society, 2020, 142, 6822-6832.	13.7	201
15	A discrete organoplatinum(II) metallacage as a multimodality theranostic platform for cancer photochemotherapy. Nature Communications, 2018, 9, 4335.	12.8	197
16	Simultaneous Fentonâ€like Ion Delivery and Glutathione Depletion by MnO ₂ â€Based Nanoagent to Enhance Chemodynamic Therapy. Angewandte Chemie, 2018, 130, 4996-5000.	2.0	195
17	Intertwining DNA-RNA nanocapsules loaded with tumor neoantigens as synergistic nanovaccines for cancer immunotherapy. Nature Communications, 2017, 8, 1482.	12.8	193
18	Polyrotaxane-based supramolecular theranostics. Nature Communications, 2018, 9, 766.	12.8	191

#	Article	IF	CITATIONS
19	Core–Satellite Polydopamine–Gadoliniumâ€Metallofullerene Nanotheranostics for Multimodal Imaging Guided Combination Cancer Therapy. Advanced Materials, 2017, 29, 1701013.	21.0	185
20	Biodegradable Hollow Mesoporous Organosilica Nanotheranostics for Mild Hyperthermia-Induced Bubble-Enhanced Oxygen-Sensitized Radiotherapy. ACS Nano, 2018, 12, 1580-1591.	14.6	172
21	NIRâ€Responsive Onâ€Demand Release of CO from Metal Carbonyl aged Graphene Oxide Nanomedicine. Advanced Materials, 2015, 27, 6741-6746.	21.0	168
22	<i>In Situ</i> Dendritic Cell Vaccine for Effective Cancer Immunotherapy. ACS Nano, 2019, 13, 3083-3094.	14.6	164
23	Multiplexed NIRâ€II Probes for Lymph Nodeâ€Invaded Cancer Detection and Imagingâ€Guided Surgery. Advanced Materials, 2020, 32, e1907365.	21.0	163
24	Folding Up of Gold Nanoparticle Strings into Plasmonic Vesicles for Enhanced Photoacoustic Imaging. Angewandte Chemie - International Edition, 2015, 54, 15809-15812.	13.8	161
25	A Catalaseâ€Like Metalâ€Organic Framework Nanohybrid for O ₂ â€Evolving Synergistic Chemoradiotherapy. Angewandte Chemie - International Edition, 2019, 58, 8752-8756.	13.8	154
26	A bi-adjuvant nanovaccine that potentiates immunogenicity of neoantigen for combination immunotherapy of colorectal cancer. Science Advances, 2020, 6, eaaw6071.	10.3	152
27	An Enzyme-Free Signal Amplification Technique for Ultrasensitive Colorimetric Assay of Disease Biomarkers. ACS Nano, 2017, 11, 2052-2059.	14.6	150
28	Microneedle-array patches loaded with dual mineralized protein/peptide particles for type 2 diabetes therapy. Nature Communications, 2017, 8, 1777.	12.8	146
29	A novel self-assembled sandwich nanomedicine for NIR-responsive release of NO. Nanoscale, 2015, 7, 20055-20062.	5.6	142
30	Wet/Sono hemical Synthesis of Enzymatic Twoâ€Dimensional MnO ₂ Nanosheets for Synergistic Catalysisâ€Enhanced Phototheranostics. Advanced Materials, 2019, 31, e1900401.	21.0	139
31	Cooperative Assembly of Magneto-Nanovesicles with Tunable Wall Thickness and Permeability for MRI-Guided Drug Delivery. Journal of the American Chemical Society, 2018, 140, 4666-4677.	13.7	138
32	Nearâ€Infrared Semiconducting Polymer Brush and pH/GSHâ€Responsive Polyoxometalate Cluster Hybrid Platform for Enhanced Tumor‧pecific Phototheranostics. Angewandte Chemie - International Edition, 2018, 57, 14101-14105.	13.8	138
33	Enhanced Afterglow Performance of Persistent Luminescence Implants for Efficient Repeatable Photodynamic Therapy. ACS Nano, 2017, 11, 5864-5872.	14.6	136
34	Tri-stimuli-responsive biodegradable theranostics for mild hyperthermia enhanced chemotherapy. Biomaterials, 2017, 126, 39-48.	11.4	135
35	Rational Design of Branched Nanoporous Gold Nanoshells with Enhanced Physico-Optical Properties for Optical Imaging and Cancer Therapy. ACS Nano, 2017, 11, 6102-6113.	14.6	133
36	Glutathione-Responsive Self-Assembled Magnetic Gold Nanowreath for Enhanced Tumor Imaging and Imaging-Guided Photothermal Therapy. ACS Nano, 2018, 12, 8129-8137.	14.6	131

#	Article	IF	CITATIONS
37	Entropy-Driven Pattern Formation of Hybrid Vesicular Assemblies Made from Molecular and Nanoparticle Amphiphiles. Journal of the American Chemical Society, 2014, 136, 2602-2610.	13.7	126
38	Suppressing Nanoparticle-Mononuclear Phagocyte System Interactions of Two-Dimensional Gold Nanorings for Improved Tumor Accumulation and Photothermal Ablation of Tumors. ACS Nano, 2017, 11, 10539-10548.	14.6	117
39	Artificial local magnetic field inhomogeneity enhances T2 relaxivity. Nature Communications, 2017, 8, 15468.	12.8	114
40	Generic synthesis of small-sized hollow mesoporous organosilica nanoparticles for oxygen-independent X-ray-activated synergistic therapy. Nature Communications, 2019, 10, 1241.	12.8	112
41	Double‣ayered Plasmonic–Magnetic Vesicles by Selfâ€Assembly of Janus Amphiphilic Gold–Iron(II,III) Oxide Nanoparticles. Angewandte Chemie - International Edition, 2017, 56, 8110-8114.	13.8	107
42	Yolk–Shell Nanostructure: An Ideal Architecture to Achieve Harmonious Integration of Magnetic–Plasmonic Hybrid Theranostic Platform. Advanced Materials, 2017, 29, 1606681.	21.0	106
43	Hybrid Nanomedicine Fabricated from Photosensitizerâ€Terminated Metal–Organic Framework Nanoparticles for Photodynamic Therapy and Hypoxiaâ€Activated Cascade Chemotherapy. Small, 2019, 15, e1804131.	10.0	105
44	Magnetoâ€Plasmonic Janus Vesicles for Magnetic Fieldâ€Enhanced Photoacoustic and Magnetic Resonance Imaging of Tumors. Angewandte Chemie - International Edition, 2016, 55, 15297-15300.	13.8	102
45	Stimuli-Responsive Nanotheranostics for Real-Time Monitoring Drug Release by Photoacoustic Imaging. Theranostics, 2019, 9, 526-536.	10.0	98
46	Dotted Core–Shell Nanoparticles for <i>T</i> ₁ â€Weighted MRI of Tumors. Advanced Materials, 2018, 30, e1803163.	21.0	96
47	Cooperation of endogenous and exogenous reactive oxygen species induced by zinc peroxide nanoparticles to enhance oxidative stress-based cancer therapy. Theranostics, 2019, 9, 7200-7209.	10.0	96
48	Enzyme-induced in vivo assembly of gold nanoparticles for imaging-guided synergistic chemo-photothermal therapy of tumor. Biomaterials, 2019, 223, 119460.	11.4	90
49	Acidity/Reducibility Dual-Responsive Hollow Mesoporous Organosilica Nanoplatforms for Tumor-Specific Self-Assembly and Synergistic Therapy. ACS Nano, 2018, 12, 12269-12283.	14.6	86
50	Continuous Microfluidic Selfâ€Assembly of Hybrid Janus‣ike Vesicular Motors: Autonomous Propulsion and Controlled Release. Small, 2015, 11, 3762-3767.	10.0	80
51	Silver Nanocluster-Embedded Zein Films as Antimicrobial Coating Materials for Food Packaging. ACS Applied Materials & Interfaces, 2017, 9, 35297-35304.	8.0	80
52	In situ polymerization on nanoscale metal-organic frameworks for enhanced physiological stability and stimulus-responsive intracellular drug delivery. Biomaterials, 2019, 218, 119365.	11.4	80
53	Self-Assembly of Semiconducting-Plasmonic Gold Nanoparticles with Enhanced Optical Property for Photoacoustic Imaging and Photothermal Therapy. Theranostics, 2017, 7, 2177-2185.	10.0	79
54	Tumour microenvironment-responsive semiconducting polymer-based self-assembling nanotheranostics. Nanoscale Horizons, 2019, 4, 426-433.	8.0	75

#	Article	IF	CITATIONS
55	A General Approach to Synthesize Asymmetric Hybrid Nanoparticles by Interfacial Reactions. Journal of the American Chemical Society, 2012, 134, 3639-3642.	13.7	72
56	"Three-in-one―Nanohybrids as Synergistic Nanoquenchers to Enhance No-Wash Fluorescence Biosensors for Ratiometric Detection of Cancer Biomarkers. Theranostics, 2018, 8, 3461-3473.	10.0	72
57	Glucoseâ€Responsive Sequential Generation of Hydrogen Peroxide and Nitric Oxide for Synergistic Cancer Starvingâ€Like/Gas Therapy. Angewandte Chemie, 2017, 129, 1249-1253.	2.0	70
58	Organosilica-Based Hollow Mesoporous Bilirubin Nanoparticles for Antioxidation-Activated Self-Protection and Tumor-Specific Deoxygenation-Driven Synergistic Therapy. ACS Nano, 2019, 13, 8903-8916.	14.6	70
59	Catalytic Propulsion and Magnetic Steering of Soft, Patchy Microcapsules: Ability to Pick-Up and Drop-Off Microscale Cargo. ACS Applied Materials & Interfaces, 2016, 8, 15676-15683.	8.0	69
60	Cascade Reactions Catalyzed by Planar Metal–Organic Framework Hybrid Architecture for Combined Cancer Therapy. Small, 2020, 16, e2004016.	10.0	64
61	Concurrent self-assembly of amphiphiles into nanoarchitectures with increasing complexity. Nano Today, 2015, 10, 278-300.	11.9	62
62	Early stratification of radiotherapy response by activatable inflammation magnetic resonance imaging. Nature Communications, 2020, 11, 3032.	12.8	62
63	Small-sized gadolinium oxide based nanoparticles for high-efficiency theranostics of orthotopic glioblastoma. Biomaterials, 2020, 235, 119783.	11.4	61
64	A supramolecular hybrid material constructed from graphene oxide and a pillar[6]arene-based host–guest complex as an ultrasound and photoacoustic signal nanoamplifier. Materials Horizons, 2018, 5, 429-435.	12.2	59
65	Synchronous Chemoradiation Nanovesicles by Xâ€Ray Triggered Cascade of Drug Release. Angewandte Chemie - International Edition, 2018, 57, 8463-8467.	13.8	59
66	Near-infrared light-responsive vesicles of Au nanoflowers. Chemical Communications, 2013, 49, 576-578.	4.1	57
67	Advanced nanocarrier- and microneedle-based transdermal drug delivery strategies for skin diseases treatment. Theranostics, 2022, 12, 3372-3406.	10.0	57
68	DNA–inorganic hybrid nanovaccine for cancer immunotherapy. Nanoscale, 2016, 8, 6684-6692.	5.6	54
69	Core-shell metal-organic frameworks with fluorescence switch to trigger an enhanced photodynamic therapy. Theranostics, 2019, 9, 2791-2799.	10.0	53
70	Xâ€ray ontrolled Bilayer Permeability of Bionic Nanocapsules Stabilized by Nucleobase Pairing Interactions for Pulsatile Drug Delivery. Advanced Materials, 2019, 31, e1903443.	21.0	51
71	Inorganic Nanoparticles Applied as Functional Therapeutics. Advanced Functional Materials, 2021, 31, 2008171.	14.9	51
72	Asymmetric organic/metal(oxide) hybrid nanoparticles: synthesis and applications. Nanoscale, 2013, 5, 5151.	5.6	50

#	Article	IF	CITATIONS
73	One-pot facile synthesis of Janus particles with tailored shape and functionality. Chemical Communications, 2011, 47, 12450.	4.1	49
74	Synthesis of Platinum Nanotubes and Nanorings via Simultaneous Metal Alloying and Etching. Journal of the American Chemical Society, 2016, 138, 6332-6335.	13.7	49
75	Tumor Microenvironment-Activated Ultrasensitive Nanoprobes for Specific Detection of Intratumoral Glutathione by Ratiometric Photoacoustic Imaging. ACS Applied Materials & Interfaces, 2019, 11, 27558-27567.	8.0	46
76	Wet hemical Synthesis of Amphiphilic Rodlike Silica Particles and their Molecular Mimetic Assembly in Selective Solvents. Angewandte Chemie - International Edition, 2012, 51, 3628-3633.	13.8	45
77	Selfâ€Assembly of Amphiphilic Block Copolymerâ€Tethered Nanoparticles: a New Approach to Nanoscale Design of Functional Materials. Macromolecular Rapid Communications, 2015, 36, 711-725.	3.9	44
78	Development of Sialic Acid-coated Nanoparticles for Targeting Cancer and Efficient Evasion of the Immune System. Theranostics, 2017, 7, 962-973.	10.0	42
79	Exceedingly Small Gadolinium Oxide Nanoparticles with Remarkable Relaxivities for Magnetic Resonance Imaging of Tumors. Small, 2019, 15, e1903422.	10.0	40
80	A pH-responsive Pickering Nanoemulsion for specified spatial delivery of Immune Checkpoint Inhibitor and Chemotherapy agent to Tumors. Theranostics, 2020, 10, 9956-9969.	10.0	40
81	Surface engineering of magnetic iron oxide nanoparticles by polymer grafting: synthesis progress and biomedical applications. Nanoscale, 2020, 12, 14957-14975.	5.6	39
82	Biodegradable hollow manganese/cobalt oxide nanoparticles for tumor theranostics. Nanoscale, 2019, 11, 23021-23026.	5.6	35
83	Gadolinium Metallofullereneâ€Based Activatable Contrast Agent for Tumor Signal Amplification and Monitoring of Drug Release. Small, 2019, 15, 1900691.	10.0	34
84	A Catalaseâ€Like Metalâ€Organic Framework Nanohybrid for O ₂ â€Evolving Synergistic Chemoradiotherapy. Angewandte Chemie, 2019, 131, 8844-8848.	2.0	33
85	Hierarchical Assembly of Bioactive Amphiphilic Molecule Pairs into Supramolecular Nanofibril Self-Supportive Scaffolds for Stem Cell Differentiation. Journal of the American Chemical Society, 2016, 138, 15027-15034.	13.7	32
86	Collapsed polymer-directed synthesis of multicomponent coaxial-like nanostructures. Nature Communications, 2016, 7, 12147.	12.8	32
87	Gadolinium Metallofullerene-Polypyrrole Nanoparticles for Activatable Dual-Modal Imaging-Guided Photothermal Therapy. ACS Applied Materials & Interfaces, 2018, 10, 28382-28389.	8.0	32
88	Nearâ€Infrared Semiconducting Polymer Brush and pH/GSHâ€Responsive Polyoxometalate Cluster Hybrid Platform for Enhanced Tumorâ€6pecific Phototheranostics. Angewandte Chemie, 2018, 130, 14297-14301.	2.0	29
89	Pyridyl‣ubstituted Corrole Isomers: Synthesis and their Regulation to Gâ€quadruplex Structures. Chemistry - an Asian Journal, 2010, 5, 114-122.	3.3	25
90	Double‣ayered Plasmonic–Magnetic Vesicles by Selfâ€Assembly of Janus Amphiphilic Gold–Iron(II,III) Oxide Nanoparticles. Angewandte Chemie, 2017, 129, 8222-8226.	2.0	25

#	Article	IF	CITATIONS
91	Controllable self-assembled plasmonic vesicle-based three-dimensional SERS platform for picomolar detection of hydrophobic contaminants. Nanoscale, 2018, 10, 13202-13211.	5.6	25
92	Reprogrammable ultra-fast shape-transformation of macroporous composite hydrogel sheets. Journal of Materials Chemistry B, 2017, 5, 2883-2887.	5.8	23
93	Giant soft-memory in liquid crystal nanocomposites. Applied Physics Letters, 2016, 108, .	3.3	20
94	Converting Red Blood Cells to Efficient Microreactors for Blood Detoxification. Advanced Materials, 2017, 29, 1603673.	21.0	15
95	Formation of hybrid core–shell microgels induced by autonomous unidirectional migration of nanoparticles. Materials Horizons, 2016, 3, 78-82.	12.2	14
96	A shape-shifting composite hydrogel sheet with spatially patterned plasmonic nanoparticles. Journal of Materials Chemistry B, 2019, 7, 1679-1683.	5.8	13
97	A photothermally responsive nanoprobe for bioimaging based on Edman degradation. Nanoscale, 2016, 8, 10553-10557.	5.6	12
98	Magnetoâ€Plasmonic Janus Vesicles for Magnetic Fieldâ€Enhanced Photoacoustic and Magnetic Resonance Imaging of Tumors. Angewandte Chemie, 2016, 128, 15523-15526.	2.0	12
99	Synthesis of biocompatible polymeric nanomaterial dually loaded with paclitaxel and nitric oxide for anti-MDR cancer therapy. RSC Advances, 2016, 6, 105871-105877.	3.6	11
100	Temporal-spatially transformed synthesis and formation mechanism of gold bellflowers. Nanoscale, 2016, 8, 7430-7434.	5.6	9
101	Efficient screening of spherical nucleic acids. Nature Biomedical Engineering, 2019, 3, 257-258.	22.5	9
102	Hyaluronidase-Functionalized Silica Nanocarrier for Enhanced Chemo-Immunotherapy through Inducing Immunogenic Cell Death. ACS Applied Bio Materials, 2020, 3, 3378-3389.	4.6	9
103	Entropy-driven segregation and budding in hybrid vesicles of binary nanoparticle amphiphiles. Giant, 2020, 1, 100010.	5.1	8
104	In Vivo Imaging: Multiplexed NIRâ€II Probes for Lymph Nodeâ€Invaded Cancer Detection and Imagingâ€Guided Surgery (Adv. Mater. 11/2020). Advanced Materials, 2020, 32, 2070086.	21.0	6
105	Biphasic synthesis of biodegradable urchin-like mesoporous organosilica nanoparticles for enhanced cellular internalization and precision cascaded therapy. Biomaterials Science, 2021, 9, 2584-2597.	5.4	6
106	Synchronous Chemoradiation Nanovesicles by Xâ€Ray Triggered Cascade of Drug Release. Angewandte Chemie, 2018, 130, 8599-8603.	2.0	4
107	Alkynyl silver modified chitosan and its potential applications in food area. Carbohydrate Polymers, 2021, 254, 117416.	10.2	4
108	Rücktitelbild: Glucoseâ€Responsive Sequential Generation of Hydrogen Peroxide and Nitric Oxide for Synergistic Cancer Starving‣ike/Gas Therapy (Angew. Chem. 5/2017). Angewandte Chemie, 2017, 129, 1446-1446.	2.0	2

#	Article	IF	CITATIONS
109	Synthesis, Self-Assembly, and Applications of Amphiphilic Janus and Triblock Janus Nanoparticle Analogs. , 2017, , 233-275.		о
110	Editorial: Enzyme-Based Smart Materials. Frontiers in Chemistry, 2021, 9, 815071.	3.6	0