Sinem Coleri Ergen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5985482/publications.pdf

Version: 2024-02-01

236925 123424 4,980 116 25 61 citations h-index g-index papers 4227 116 116 116 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Channel estimation techniques based on pilot arrangement in OFDM systems. IEEE Transactions on Broadcasting, 2002, 48, 223-229.	3.2	1,205
2	Multihop-Cluster-Based IEEE 802.11p and LTE Hybrid Architecture for VANET Safety Message Dissemination. IEEE Transactions on Vehicular Technology, 2016, 65, 2621-2636.	6.3	389
3	Performance Analysis of Slotted Carrier Sense IEEE 802.15.4 Medium Access Layer. IEEE Transactions on Wireless Communications, 2008, 7, 3359-3371.	9.2	333
4	Wireless Network Design for Control Systems: A Survey. IEEE Communications Surveys and Tutorials, 2018, 20, 978-1013.	39.4	303
5	TDMA scheduling algorithms for wireless sensor networks. Wireless Networks, 2010, 16, 985-997.	3.0	296
6	Qos aware adaptive resource allocation techniques for fair scheduling in ofdma based broadband wireless access systems. IEEE Transactions on Broadcasting, 2003, 49, 362-370.	3.2	259
7	PEDAMACS: power efficient and delay aware medium access protocol for sensor networks. IEEE Transactions on Mobile Computing, 2006, 5, 920-930.	5.8	225
8	Vehicle Mobility and Communication Channel Models for Realistic and Efficient Highway VANET Simulation. IEEE Transactions on Vehicular Technology, 2015, 64, 248-262.	6.3	141
9	Traffic Measurement and Vehicle Classification with Single Magnetic Sensor. Transportation Research Record, 2005, 1917, 173-181.	1.9	103
10	IEEE 802.11p and Visible Light Hybrid Communication Based Secure Autonomous Platoon. IEEE Transactions on Vehicular Technology, 2018, 67, 8667-8681.	6.3	90
11	Energy efficient routing with delay guarantee for sensor networks. Wireless Networks, 2007, 13, 679-690.	3.0	85
12	Optimal Power Control, Rate Adaptation, and Scheduling for UWB-Based Intravehicular Wireless Sensor Networks. IEEE Transactions on Vehicular Technology, 2013, 62, 219-234.	6.3	82
13	RSSI-Fingerprinting-Based Mobile Phone Localization With Route Constraints. IEEE Transactions on Vehicular Technology, 2014, 63, 423-428.	6.3	79
14	The Tire as an Intelligent Sensor. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2009, 28, 941-955.	2.7	78
15	VMaSC: Vehicular multi-hop algorithm for stable clustering in Vehicular Ad Hoc Networks. , 2013, , .		67
16	Ultra-wideband Channel Model for Intra-vehicular Wireless Sensor Networks Beneath the Chassis: From Statistical Model to Simulations. IEEE Transactions on Vehicular Technology, 2013, 62, 14-25.	6.3	62
17	On multi-hop routing for energy efficiency. IEEE Communications Letters, 2005, 9, 880-881.	4.1	60
18	Optimal Placement of Relay Nodes for Energy Efficiency in Sensor Networks. , 2006, , .		51

#	Article	IF	Citations
19	Federated Learning for Channel Estimation in Conventional and RIS-Assisted Massive MIMO. IEEE Transactions on Wireless Communications, 2022, 21, 4255-4268.	9.2	49
20	Scheduling in Single-Hop Multiple Access Wireless Networks with Successive Interference Cancellation. IEEE Wireless Communications Letters, 2014, 3, 197-200.	5.0	46
21	Minimum Energy Data Transmission for Wireless Networked Control Systems. IEEE Transactions on Wireless Communications, 2014, 13, 2163-2175.	9.2	45
22	Federated Learning for Hybrid Beamforming in mm-Wave Massive MIMO. IEEE Communications Letters, 2020, 24, 2795-2799.	4.1	43
23	Duty-cycle optimization for IEEE 802.15.4 wireless sensor networks. ACM Transactions on Sensor Networks, 2013, 10, 1-32.	3.6	35
24	Security vulnerabilities of IEEE 802.11p and visible light communication based platoon. , 2016, , .		32
25	Distributed Online Simultaneous Fault Detection for Multiple Sensors. , 2008, , .		31
26	Performance Analysis of Slotted Carrier Sense IEEE 802.15.4 Acknowledged Uplink Transmissions. , 2008, , .		31
27	Machine Learning Based Channel Modeling for Vehicular Visible Light Communication. IEEE Transactions on Vehicular Technology, 2021, 70, 9659-9672.	6.3	31
28	VANET topology characteristics under realistic mobility and channel models., 2013,,.		30
29	Engine Compartment UWB Channel Model for Intravehicular Wireless Sensor Networks. IEEE Transactions on Vehicular Technology, 2014, 63, 2497-2505.	6.3	29
30	Energy and Delay Constrained Maximum Adaptive Schedule for Wireless Networked Control Systems. IEEE Transactions on Wireless Communications, 2015, 14, 3738-3751.	9.2	29
31	Joint Optimization of Wireless Network Energy Consumption and Control System Performance in Wireless Networked Control Systems. IEEE Transactions on Wireless Communications, 2017, 16, 2235-2248.	9.2	28
32	Cooperative MIMO-OFDM based inter-vehicular visible light communication using brake lights. Computer Communications, 2018, 120, 138-146.	5.1	22
33	Scheduling of Energy Harvesting for MIMO Wireless Powered Communication Networks. IEEE Communications Letters, 2019, 23, 152-155.	4.1	22
34	Physical Layer Implementation of Standard Compliant Vehicular VLC., 2016,,.		20
35	Vehicular VLC Frequency Domain Channel Sounding and Characterization. , 2018, , .		20
36	Visible Light Communication Based Vehicle Localization for Collision Avoidance and Platooning. IEEE Transactions on Vehicular Technology, 2021, 70, 2167-2180.	6.3	20

#	Article	IF	Citations
37	Directional MAC protocol for IEEE 802.11ad based wireless local area networks. Ad Hoc Networks, 2018, 69, 49-64.	5.5	19
38	QoS-Constrained Semi-Persistent Scheduling of Machine-Type Communications in Cellular Networks. IEEE Transactions on Wireless Communications, 2019, 18, 2737-2750.	9.2	18
39	Minimum Length Scheduling With Packet Traffic Demands in Wireless <italic>Ad Hoc</italic> Networks. IEEE Transactions on Wireless Communications, 2014, 13, 3738-3751.	9.2	17
40	Data-driven abnormal behavior detection for autonomous platoon. , 2017, , .		17
41	Spatio-temporal characteristics of link quality in wireless sensor networks. , 2012, , .		16
42	Dual channel visible light communications for enhanced vehicular connectivity., 2015,,.		16
43	Relay Selection, Scheduling, and Power Control in Wireless-Powered Cooperative Communication Networks. IEEE Transactions on Wireless Communications, 2020, 19, 7181-7195.	9.2	16
44	Minimum Length Scheduling for Full Duplex Time-Critical Wireless Powered Communication Networks. IEEE Transactions on Wireless Communications, 2020, 19, 5993-6006.	9.2	16
45	Multi-Connectivity Based Uplink/Downlink Decoupled Energy Efficient User Association in 5G Heterogenous CRAN. IEEE Communications Letters, 2020, 24, 858-862.	4.1	16
46	Duty-Cycle Optimization in Unslotted 802.15.4 Wireless Sensor Networks. , 2008, , .		15
47	Distributed Medium Access Control Protocol for Successive Interference Cancellation-Based Wireless Ad Hoc Networks. IEEE Communications Letters, 2017, 21, 354-357.	4.1	15
48	Optimization of Full-Duplex Relaying System With Non-Linear Energy Harvester. IEEE Access, 2020, 8, 201566-201576.	4.2	14
49	Measurement Based Non-Line-of-Sight Vehicular Visible Light Communication Channel Characterization. IEEE Transactions on Vehicular Technology, 2022, 71, 10110-10114.	6.3	14
50	Ultra-Wideband channel model for intra-vehicular wireless sensor networks., 2012,,.		13
51	Scheduling in Successive Interference Cancellation Based Wireless Ad Hoc Networks. IEEE Communications Letters, 2015, 19, 1524-1527.	4.1	12
52	A Hybrid Architecture for Federated and Centralized Learning. IEEE Transactions on Cognitive Communications and Networking, 2022, 8, 1529-1542.	7.9	12
53	MAC Protocol Engine for Sensor Networks. , 2009, , .		10
54	Analysis of distributed algorithms for density estimation in VANETs (Poster)., 2012, , .		10

#	Article	IF	Citations
55	ARIMA-based time variation model for beneath the chassis UWB channel. Eurasip Journal on Wireless Communications and Networking, 2016, 2016, .	2.4	10
56	Dimming support for visible light communication in intelligent transportation and traffic system. , 2016, , .		9
57	Uplink/downlink decoupled energy efficient user association in heterogeneous cloud radio access networks. Ad Hoc Networks, 2020, 97, 102016.	5.5	9
58	Hybrid Federated and Centralized Learning., 2021,,.		9
59	VeSCA: Vehicular stable cluster-based data aggregation. , 2014, , .		8
60	Optimal Power Control and Rate Adaptation for Ultra-Reliable M2M Control Applications. , 2015, , .		8
61	Efficient network level beamforming training for IEEE 802.11ad WLANs. , 2015, , .		8
62	On the Performance of MIMO OFDM-Based Intra-Vehicular VLC Networks. , 2016, , .		8
63	Intravehicular Energy-Harvesting Wireless Networks: Reducing Costs and Emissions. IEEE Vehicular Technology Magazine, 2017, 12, 77-85.	3.4	8
64	Visible Light Communications in Industrial Internet of Things (IIoT). Computer Communications and Networks, 2019, , 163-191.	0.8	8
65	Wireless Channel Modeling Based on Extreme Value Theory for Ultra-Reliable Communications. IEEE Transactions on Wireless Communications, 2022, 21, 1064-1076.	9.2	8
66	Energy efficient robust scheduling of periodic sensor packets for discrete rate based wireless networked control systems. Ad Hoc Networks, 2020, 106, 102203.	5.5	7
67	Broadcasting brake lights with MIMO-OFDM based vehicular VLC. , 2016, , .		6
68	Minimum Length Scheduling for Power Constrained Harvest-then-Transmit Communication Networks. , 2019, , .		6
69	Joint Optimization of Energy Transfer Scheduling and Power Control in MIMO Wireless Powered Communication Networks. IEEE Communications Letters, 2020, 24, 593-597.	4.1	6
70	Throughput Maximization for Full Duplex Wireless Powered Communication Networks. , 2020, , .		6
71	Empirical Feasibility Analysis for Energy Harvesting Intravehicular Wireless Sensor Networks. IEEE Internet of Things Journal, 2021, 8, 179-186.	8.7	6
72	Minimum Length Scheduling for Discrete-Rate Full-Duplex Wireless Powered Communication Networks. IEEE Transactions on Wireless Communications, 2022, 21, 135-148.	9.2	6

#	Article	IF	CITATIONS
73	Optimal Power Control, Scheduling, and Energy Harvesting for Wireless Networked Control Systems. IEEE Transactions on Communications, 2021, 69, 1789-1801.	7.8	6
74	Analysis and optimization of duty-cycle in preamble-based random access networks. Wireless Networks, 2013, 19, 1691-1707.	3.0	5
75	Poster: On-board camera video transmission over vehicular VLC., 2016,,.		5
76	Vehicular Visible Light Positioning with a Single Receiver. , 2019, , .		5
77	Non-Stationary Wireless Channel Modeling Approach Based on Extreme Value Theory for Ultra-Reliable Communications. IEEE Transactions on Vehicular Technology, 2021, 70, 8264-8268.	6.3	5
78	Minimum Length Scheduling for Discrete Rate Based Full Duplex Wireless Powered Communication Networks. Lecture Notes in Computer Science, 2019, , 343-354.	1.3	5
79	Joint optimization of communication and controller components of wireless networked control systems., 2015,,.		4
80	Visible light communication in vehicular ad-hoc networks. , 2016, , .		4
81	Multiplicity Estimating Random Access Protocol for Resource Efficiency in Contention based NOMA. , 2018, , .		4
82	Visible Light and mmWave Propagation Channel Comparison for Vehicular Communications. , 2019, , .		4
83	Distributed Deep Reinforcement Learning with Wideband Sensing for Dynamic Spectrum Access. , 2020,		4
84	mmWave channel model for intra-vehicular wireless sensor networks. Ad Hoc Networks, 2022, 135, 102932.	5.5	4
85	Fast Scheduling for Delay Minimization in UWB Wireless Networks. IEEE Communications Letters, 2012, 16, 1400-1403.	4.1	3
86	Towards ultra-reliable M2M communication: Scheduling policies in fading channels., 2016,,.		3
87	Security vulnerabilities of autonomous platoons. , 2017, , .		3
88	SC-FDE Based MIMO Uplink Transmission Over Infrared Communication Channels. , 2018, , .		3
89	Location-Aware Adaptive Physical Layer Design for Vehicular Visible Light Communication. , 2019, , .		3
90	Power Efficient Communication Interface Selection in Cellular Vehicle to Everything Networks. , 2019, , .		3

#	Article	IF	Citations
91	Optimal On-Off Transmission Schemes for Full Duplex Wireless Powered Communication Networks. , 2020, , .		3
92	Total Transmission Time Minimization Through Relay Selection for Full-Duplex Wireless Powered Cooperative Communication Networks. Lecture Notes in Computer Science, 2020, , 257-268.	1.3	3
93	Vehicular Visible Light Communications Noise Analysis and Autoencoder Based Denoising. , 2022, , .		3
94	Visible light communication assisted safety message dissemination in multiplatoon., 2017,,.		2
95	Pilot-Aided Channel Estimation on SC-PAM Based Visible Light Communications. , 2018, , .		2
96	Guest Editorial Special Issue on Toward Securing Internet of Connected Vehicles (IoV) From Virtual Vehicle Hijacking. IEEE Internet of Things Journal, 2019, 6, 5866-5869.	8.7	2
97	A Low-SWaP, Low-Cost Transceiver for Physically Secure UAV Communication with Visible Light. Lecture Notes in Networks and Systems, 2020, , 355-364.	0.7	2
98	Throughput maximization in discrete rate based full duplex wireless powered communication networks ^{â€} . Internet Technology Letters, 2021, 4, e206.	1.9	2
99	Relay Selection and Throughput Maximization for Full Duplex Wireless Powered Cooperative Communication Networks., 2021,,.		2
100	Minimum Length Scheduling for Multi-Cell Full Duplex Wireless Powered Communication Networks. Sensors, 2021, 21, 6599.	3.8	2
101	Extreme Value Theory Based Rate Selection for Ultra-Reliable Communications. IEEE Transactions on Vehicular Technology, 2022, 71, 6727-6731.	6.3	2
102	Effects of A-D conversion nonidealities on distributed sampling in dense sensor networks., 2006,,.		1
103	Poster: Vehicular VLC Experimental Modulation Performance Comparison. , 2018, , .		1
104	Power Efficient Beam-Forming Algorithm for Ultra-Reliable Low Latency Millimeter-Wave Communications. , $2019, , .$		1
105	Optimal Power Control and Scheduling for Energy Harvesting Wireless Networked Control Systems. , 2019, , .		1
106	Minimum Length Scheduling for Multi-Cell Wireless Powered Communication Networks. , 2020, , .		1
107	Index-Based Channel Hopping for Multi-Rendezvous Multi-Channel MAC. IEEE Communications Letters, 2020, 24, 1231-1235.	4.1	1
108	Federated Dropout Learning for Hybrid Beamforming with Spatial Path Index Modulation in Multi-User Mmwave-Mimo Systems. , 2021, , .		1

#	Article	IF	CITATIONS
109	Scheduling and Relay Selection for Full-Duplex Wireless Powered Cooperative Communication Networks. , 2020, , .		1
110	Deep Neural Network based Minimum Length Scheduling in Wireless Powered Communication Networks. , 2021, , .		1
111	Delay constrained energy minimization in UWB wireless networks. , 2013, , .		0
112	Data-driven anomaly detection in autonomous platoon. , 2018, , .		0
113	Effect of Downlink Energy Transfer Scheduling on SDMA and TDMA Uplink Transmission. , 2021, , .		O
114	Minimum Length Scheduling for Wireless Powered Communication Networks with Discrete Rates. , 2020, , .		0
115	A Performance Comparison of Single-Radio Multi-Channel Medium Access Control Protocols. , 2020, , .		O
116	Incorporation of Confidence Interval into Rate Selection Based on the Extreme Value Theory for Ultra-Reliable Communications. , 2022, , .		0