
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5984296/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genetic and Ecogeographic Controls on Species Cohesion in Australia's Most Diverse Lizard Radiation. American Naturalist, 2022, 199, E57-E75.	2.1	6
2	No link between population isolation and speciation rate in squamate reptiles. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	13
3	Desert lizard diversity worldwide: Effects of environment, time, and evolutionary rate. Global Ecology and Biogeography, 2022, 31, 776-790.	5.8	11
4	Fast Likelihood Calculations for Automatic Identification of Macroevolutionary Rate Heterogeneity in Continuous and Discrete Traits. Systematic Biology, 2022, 71, 1307-1318.	5.6	0
5	Genetic variability and the ecology of geographic range: A test of the centralâ€marginal hypothesis in Australian scincid lizards. Molecular Ecology, 2022, 31, 4242-4253.	3.9	5
6	Detecting Lineage-Specific Shifts in Diversification: A Proper Likelihood Approach. Systematic Biology, 2021, 70, 389-407.	5.6	20
7	Congruence and Conflict in the Higher-Level Phylogenetics of Squamate Reptiles: An Expanded Phylogenomic Perspective. Systematic Biology, 2021, 70, 542-557.	5.6	35
8	A test for rateâ€coupling of trophic and cranial evolutionary dynamics in New World bats. Evolution; International Journal of Organic Evolution, 2021, 75, 861-875.	2.3	6
9	Ecological and biogeographic drivers of biodiversity cannot be resolved using clade age-richness data. Nature Communications, 2021, 12, 2945.	12.8	16
10	A return-on-investment approach for prioritization of rigorous taxonomic research needed to inform responses to the biodiversity crisis. PLoS Biology, 2021, 19, e3001210.	5.6	15
11	Macroevolutionary thermodynamics: Temperature and the tempo of evolution in the tropics. PLoS Biology, 2021, 19, e3001368.	5.6	2
12	Biodiversity across space and time in the fossil record. Current Biology, 2021, 31, R1225-R1236.	3.9	43
13	Rapid increase in snake dietary diversity and complexity following the end-Cretaceous mass extinction. PLoS Biology, 2021, 19, e3001414.	5.6	26
14	Estimating Diversification Rates on Incompletely Sampled Phylogenies: Theoretical Concerns and Practical Solutions. Systematic Biology, 2020, 69, 602-611.	5.6	66
15	What makes a fang? Phylogenetic and ecological controls on tooth evolution in rear-fanged snakes. BMC Evolutionary Biology, 2020, 20, 80.	3.2	22
16	Speciation rate and the diversity of fishes in freshwaters and the oceans. Journal of Biogeography, 2020, 47, 1207-1217.	3.0	39
17	Complex Ecological Phenotypes on Phylogenetic Trees: A Markov Process Model for Comparative Analysis of Multivariate Count Data. Systematic Biology, 2020, 69, 1200-1211.	5.6	15
18	Thermal physiological traits in tropical lowland amphibians: Vulnerability to climate warming and cooling. PLoS ONE, 2019, 14, e0219759.	2.5	39

#	Article	IF	CITATIONS
19	Beyond Reproductive Isolation: Demographic Controls on the Speciation Process. Annual Review of Ecology, Evolution, and Systematics, 2019, 50, 75-95.	8.3	66
20	Metabolically similar cohorts of bacteria exhibit strong cooccurrence patterns with diet items and eukaryotic microbes in lizard guts. Ecology and Evolution, 2019, 9, 12471-12481.	1.9	7
21	The Western Amazonian Richness Gradient for Squamate Reptiles: Are There Really Fewer Snakes and Lizards in Southwestern Amazonian Lowlands?. Diversity, 2019, 11, 199.	1.7	8
22	Tip rates, phylogenies and diversification: What are we estimating, and how good are the estimates?. Methods in Ecology and Evolution, 2019, 10, 821-834.	5.2	108
23	An <scp>r</scp> package and online resource for macroevolutionary studies using the rayâ€finned fish tree of life. Methods in Ecology and Evolution, 2019, 10, 1118-1124.	5.2	85
24	ls genomic diversity a useful proxy for census population size? Evidence from a speciesâ€rich community of desert lizards. Molecular Ecology, 2019, 28, 1664-1674.	3.9	18
25	Phylogenies and Diversification Rates: Variance Cannot Be Ignored. Systematic Biology, 2019, 68, 538-550.	5.6	17
26	Realâ€world conservation planning for evolutionary diversity in the Kimberley, Australia, sidesteps uncertain taxonomy. Conservation Letters, 2018, 11, e12438.	5.7	35
27	Continuous traits and speciation rates: Alternatives to stateâ€dependent diversification models. Methods in Ecology and Evolution, 2018, 9, 984-993.	5.2	59
28	Digitizing extant bat diversity: An open-access repository of 3D μCT-scanned skulls for research and education. PLoS ONE, 2018, 13, e0203022.	2.5	18
29	Ecomorphological and phylogenetic controls on sympatry across extant bats. Journal of Biogeography, 2018, 45, 1560-1570.	3.0	10
30	Inferring Diversification Rate Variation From Phylogenies With Fossils. Systematic Biology, 2018, 68, 1-18.	5.6	38
31	Speciation in the mountains and dispersal by rivers: Molecular phylogeny of <i>Eulamprus</i> water skinks and the biogeography of Eastern Australia. Journal of Biogeography, 2018, 45, 2040-2052.	3.0	7
32	An inverse latitudinal gradient in speciation rate for marine fishes. Nature, 2018, 559, 392-395.	27.8	579
33	Does Population Structure Predict the Rate of Speciation? A Comparative Test across Australia's Most Diverse Vertebrate Radiation. American Naturalist, 2018, 192, 432-447.	2.1	35
34	BAMM at the court of false equivalency: A response to Meyer and Wiens. Evolution; International Journal of Organic Evolution, 2018, 72, 2246-2256.	2.3	41
35	Evolutionary radiation of earless frogs in the Andes: molecular phylogenetics and habitat shifts in high-elevation terrestrial breeding frogs. PeerJ, 2018, 6, e4313.	2.0	16
36	Do Macrophylogenies Yield Stable Macroevolutionary Inferences? An Example from Squamate Reptiles. Systematic Biology, 2017, 66, syw102.	5.6	19

#	Article	IF	CITATIONS
37	Is BAMM Flawed? Theoretical and Practical Concerns in the Analysis of Multi-Rate Diversification Models. Systematic Biology, 2017, 66, 477-498.	5.6	227
38	Squamate Conserved Loci (Sq <scp>CL</scp>): A unified set of conserved loci for phylogenomics and population genetics of squamate reptiles. Molecular Ecology Resources, 2017, 17, e12-e24.	4.8	36
39	Genetic diversity is largely unpredictable but scales with museum occurrences in a species-rich clade of Australian lizards. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162588.	2.6	18
40	Trophic evolution in African citharinoid fishes (Teleostei: Characiformes) and the origin of intraordinal pterygophagy. Molecular Phylogenetics and Evolution, 2017, 113, 23-32.	2.7	7
41	Positive association between population genetic differentiation and speciation rates in New World birds. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6328-6333.	7.1	80
42	FiSSE: A simple nonparametric test for the effects of a binary character on lineage diversification rates. Evolution; International Journal of Organic Evolution, 2017, 71, 1432-1442.	2.3	82
43	Phylogenetic tests for evolutionary innovation: the problematic link between key innovations and exceptional diversification. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160417.	4.0	60
44	Bayesian model selection with BAMM: effects of the model prior on the inferred number of diversification shifts. Methods in Ecology and Evolution, 2017, 8, 37-46.	5.2	46
45	Lizards in pinstripes: morphological and genomic evidence for two new species of scincid lizards within Ctenotus piankai Storr and C. duricola Storr (Reptilia: Scincidae) in the Australian arid zone. Zootaxa, 2017, 4303, 1.	0.5	3
46	Stable isotope ecology of a hyper-diverse community of scincid lizards from arid Australia. PLoS ONE, 2017, 12, e0172879.	2.5	8
47	Reproductive isolation and the causes of speciation rate variation in nature. Biological Journal of the Linnean Society, 2016, 118, 13-25.	1.6	60
48	Coral snakes predict the evolution of mimicry across New World snakes. Nature Communications, 2016, 7, 11484.	12.8	126
49	Challenges in the estimation of extinction from molecular phylogenies: A response to Beaulieu and O'Meara. Evolution; International Journal of Organic Evolution, 2016, 70, 218-228.	2.3	89
50	Unlinked Mendelian inheritance of red and black pigmentation in snakes: Implications for Batesian mimicry. Evolution; International Journal of Organic Evolution, 2016, 70, 944-953.	2.3	14
51	A Robust Semi-Parametric Test for Detecting Trait-Dependent Diversification. Systematic Biology, 2016, 65, 181-193.	5.6	125
52	Sex-linked genomic variation and its relationship to avian plumage dichromatism and sexual selection. BMC Evolutionary Biology, 2015, 15, 199.	3.2	17
53	No substitute for real data: A cautionary note on the use of phylogenies from birth-death polytomy resolvers for downstream comparative analyses. Evolution; International Journal of Organic Evolution, 2015, 69, 3207-3216.	2.3	121
54	Minimal effects of latitude on present-day speciation rates in New World birds. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142889.	2.6	55

DANIEL L RABOSKY

#	Article	IF	CITATIONS
55	Model Inadequacy and Mistaken Inferences of Trait-Dependent Speciation. Systematic Biology, 2015, 64, 340-355.	5.6	431
56	Speciation dynamics during the global radiation of extant bats. Evolution; International Journal of Organic Evolution, 2015, 69, 1528-1545.	2.3	257
57	Species Richness at Continental Scales Is Dominated by Ecological Limits. American Naturalist, 2015, 185, 572-583.	2.1	227
58	On Age and Species Richness of Higher Taxa. American Naturalist, 2014, 184, 447-455.	2.1	44
59	<scp>BAMM</scp> tools: an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods in Ecology and Evolution, 2014, 5, 701-707.	5.2	751
60	Automatic Detection of Key Innovations, Rate Shifts, and Diversity-Dependence on Phylogenetic Trees. PLoS ONE, 2014, 9, e89543.	2.5	933
61	Molecular Phylogenetics and the Diversification of Hummingbirds. Current Biology, 2014, 24, 910-916.	3.9	341
62	Disentangling the influence of climatic and geological changes on species radiations. Journal of Biogeography, 2014, 41, 1313-1325.	3.0	30
63	Sexual Selection and Diversification: Reexamining the Correlation between Dichromatism and Speciation Rate in Birds. American Naturalist, 2014, 184, E101-E114.	2.1	56
64	Phenotypic Evolution in Fossil Species: Pattern and Process. Annual Review of Earth and Planetary Sciences, 2014, 42, 421-441.	11.0	58
65	Trophic divergence despite morphological convergence in a continental radiation of snakes. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140413.	2.6	29
66	Analysis and Visualization of Complex Macroevolutionary Dynamics: An Example from Australian Scincid Lizards. Systematic Biology, 2014, 63, 610-627.	5.6	242
67	Phylogenetic disassembly of species boundaries in a widespread group of Australian skinks (Scincidae:) Tj ETQq1	1 0.7843 2.7	14 rgBT /Ov
68	Macroevolutionary speciation rates are decoupled from the evolution of intrinsic reproductive isolation in <i>Drosophila</i> and birds. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15354-15359.	7.1	110
69	Diversity-Dependence, Ecological Speciation, and the Role of Competition in Macroevolution. Annual Review of Ecology, Evolution, and Systematics, 2013, 44, 481-502.	8.3	216
70	Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation. Nature Communications, 2013, 4, 1958.	12.8	531
71	Clade Age and Species Richness Are Decoupled Across the Eukaryotic Tree of Life. PLoS Biology, 2012, 10, e1001381.	5.6	170
72	Macroevolutionary Dynamics and Historical Biogeography of Primate Diversification Inferred from a Species Supermatrix. PLoS ONE, 2012, 7, e49521.	2.5	447

#	Article	IF	CITATIONS
73	RATES OF MORPHOLOGICAL EVOLUTION ARE CORRELATED WITH SPECIES RICHNESS IN SALAMANDERS. Evolution; International Journal of Organic Evolution, 2012, 66, 1807-1818.	2.3	108
74	POSITIVE CORRELATION BETWEEN DIVERSIFICATION RATES AND PHENOTYPIC EVOLVABILITY CAN MIMIC PUNCTUATED EQUILIBRIUM ON MOLECULAR PHYLOGENIES. Evolution; International Journal of Organic Evolution, 2012, 66, 2622-2627.	2.3	32
75	Testing the timeâ€forâ€speciation effect in the assembly of regional biotas. Methods in Ecology and Evolution, 2012, 3, 224-233.	5.2	25
76	Species Interactions Mediate Phylogenetic Community Structure in a Hyperdiverse Lizard Assemblage from Arid Australia. American Naturalist, 2011, 178, 579-595.	2.1	48
77	Impacts of the Cretaceous Terrestrial Revolution and KPg Extinction on Mammal Diversification. Science, 2011, 334, 521-524.	12.6	1,264
78	EXTINCTION RATES SHOULD NOT BE ESTIMATED FROM MOLECULAR PHYLOGENIES. Evolution; International Journal of Organic Evolution, 2010, 64, 1816-1824.	2.3	492
79	Primary Controls on Species Richness in Higher Taxa. Systematic Biology, 2010, 59, 634-645.	5.6	58
80	Evolutionary Bangs and Whimpers: Methodological Advances and Conceptual Frameworks for Studying Exceptional Diversification. Systematic Biology, 2010, 59, 615-618.	5.6	10
81	Reinventing species selection with molecular phylogenies. Trends in Ecology and Evolution, 2010, 25, 68-74.	8.7	100
82	Equilibrium speciation dynamics in a model adaptive radiation of island lizards. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 22178-22183.	7.1	200
83	Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13410-13414.	7.1	756
84	Heritability of Extinction Rates Links Diversification Patterns in Molecular Phylogenies and Fossils. Systematic Biology, 2009, 58, 629-640.	5.6	75
85	Problems detecting density-dependent diversification on phylogenies: reply to Bokma. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 995-997.	2.6	20
86	Diversity dynamics of marine planktonic diatoms across the Cenozoic. Nature, 2009, 457, 183-186.	27.8	138
87	Ecological limits and diversification rate: alternative paradigms to explain the variation in species richness among clades and regions. Ecology Letters, 2009, 12, 735-743.	6.4	410
88	Speciation in Birds and More. Conservation Biology, 2009, 23, 506-508.	4.7	0
89	Molecular evidence for hybridization between two Australian desert skinks, Ctenotus leonhardii and Ctenotus quattuordecimlineatus (Scincidae: Squamata). Molecular Phylogenetics and Evolution, 2009, 53, 368-377.	2.7	24
90	Ecological Limits on Clade Diversification in Higher Taxa. American Naturalist, 2009, 173, 662-674.	2.1	165

#	Article	IF	CITATIONS
91	Radiation of Extant Cetaceans Driven by Restructuring of the Oceans. Systematic Biology, 2009, 58, 573-585.	5.6	315
92	EXPLOSIVE EVOLUTIONARY RADIATIONS: DECREASING SPECIATION OR INCREASING EXTINCTION THROUGH TIME?. Evolution; International Journal of Organic Evolution, 2008, 62, 1866-1875.	2.3	340
93	Density-dependent diversification in North American wood warblers. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 2363-2371.	2.6	323
94	Exceptional among-lineage variation in diversification rates during the radiation of Australia's most diverse vertebrate clade. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 2915-2923.	2.6	216
95	Overdispersion of body size in Australian desert lizard communities at local scales only: no evidence for the Narcissus effect. Oecologia, 2007, 154, 561-570.	2.0	36
96	LASER: a maximum likelihood toolkit for detecting temporal shifts in diversification rates from molecular phylogenies. Evolutionary Bioinformatics, 2007, 2, 273-6.	1.2	114
97	LASER: A Maximum Likelihood Toolkit for Detecting Temporal Shifts in Diversification Rates from Molecular Phylogenies. Evolutionary Bioinformatics, 2006, 2, 117693430600200.	1.2	266
98	Likelihood methods for detecting temporal shifts in diversification rates. Evolution; International Journal of Organic Evolution, 2006, 60, 1152-64.	2.3	87
99	Speciation. Auk, 2005, 122, 371-373.	1.4	0
100	Speciation. Auk, 2005, 122, 371.	1.4	0
101	Python phylogenetics: inference from morphology and mitochondrial DNA. Biological Journal of the Linnean Society, 0, 93, 603-619.	1.6	63