Paul C Mcintyre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5983824/publications.pdf

Version: 2024-02-01

110 5,141 39
papers citations h-index

39 70
h-index g-index

111 6532
times ranked citing authors

88630

111 all docs

111 docs citations

#	Article	IF	CITATIONS
1	CeO ₂ Doping of Hf _{0.5} Zr _{0.5} O ₂ Thin Films for High Endurance Ferroelectric Memories. Advanced Electronic Materials, 2022, 8, .	5.1	5
2	Link between Gas Phase Reaction Chemistry and the Electronic Conductivity of Atomic Layer Deposited Titanium Oxide Thin Films. Journal of Physical Chemistry Letters, 2021, 12, 3625-3632.	4.6	4
3	Bending and precipitate formation mechanisms in epitaxial Ge-core/GeSn-shell nanowires. Nanoscale, 2021, 13, 17547-17555.	5.6	6
4	Semiconductor nanowires: to grow or not to grow?. Materials Today Nano, 2020, 9, 100058.	4.6	89
5	Practical challenges in the development of photoelectrochemical solar fuels production. Sustainable Energy and Fuels, 2020, 4, 985-995.	4.9	58
6	Understanding the Mechanism of Electronic Defect Suppression Enabled by Nonidealities in Atomic Layer Deposition. Journal of the American Chemical Society, 2020, 142, 134-145.	13.7	6
7	Interfacing Lowâ€√emperature Atomic Layer Deposited TiO ₂ Electron Transport Layers with Metal Electrodes. Advanced Materials Interfaces, 2020, 7, 1902054.	3.7	6
8	Reversible Decay of Oxygen Evolution Activity of Iridium Catalysts. Journal of the Electrochemical Society, 2019, 166, H712-H717.	2.9	7
9	Effect of IrO ₂ Spatial Distribution on the Stability and Charge Distribution of Ti _{1â€"<i>x</i>} Ir _{<i>x</i>} O ₂ Alloys. Chemistry of Materials, 2019, 31, 8742-8751.	6.7	2
10	Strain and Sn distribution in Ge/Ge1â^xSnx Core-Shell Nanowires. Microscopy and Microanalysis, 2019, 25, 2146-2147.	0.4	O
11	>10% solar-to-hydrogen efficiency unassisted water splitting on ALD-protected silicon heterojunction solar cells. Sustainable Energy and Fuels, 2019, 3, 1490-1500.	4.9	25
12	Engineering High- <i>k</i> /SiGe Interface with ALD Oxide for Selective GeO <i></i> Reduction. ACS Applied Materials & Samp; Interfaces, 2019, 11, 15111-15121.	8.0	17
13	Atomic Layer Deposited TiO2–IrOx Alloys Enable Corrosion Resistant Water Oxidation on Silicon at High Photovoltage. Chemistry of Materials, 2019, 31, 90-100.	6.7	22
14	Bias temperature stress induced hydrogen depassivation from Al2O3/InGaAs interface defects. Journal of Applied Physics, 2018, 123, 025708.	2.5	2
15	Thermal Stability of Mixed Cation Metal Halide Perovskites in Air. ACS Applied Materials & Camp; Interfaces, 2018, 10, 5485-5491.	8.0	123
16	Silicon Photoanodes for Solar-Driven Oxidation of Brine: A Nanoscale, Photo-Active Analog of the Dimensionally-Stable Anode. Journal of the Electrochemical Society, 2018, 165, H1072-H1079.	2.9	3
17	The Role of Catalyst Adhesion in ALD-TiO ₂ Protection of Water Splitting Silicon Anodes. ACS Applied Materials & District Sciences, 2018, 10, 37103-37109.	8.0	15
18	Using Liquid Electrolytes in Dielectric Reliability Studies. , 2018, , .		0

#	Article	IF	Citations
19	Atomic Layer Deposited TiO 2 –IrO x Alloy as a Hole Transport Material for Perovskite Solar Cells. Advanced Materials Interfaces, 2018, 5, 1800191.	3.7	15
20	Ultralow Defect Density at Sub-0.5 nm HfO ₂ /SiGe Interfaces via Selective Oxygen Scavenging. ACS Applied Materials & Scavenging. ACS ACS Applied Materials & Scavenging. ACS	8.0	31
21	Surface Defect Passivation of Silicon Micropillars. Advanced Materials Interfaces, 2018, 5, 1800865.	3.7	7
22	Coexistence of Grainâ€Boundariesâ€Assisted Bipolar and Threshold Resistive Switching in Multilayer Hexagonal Boron Nitride. Advanced Functional Materials, 2017, 27, 1604811.	14.9	229
23	Resistive Switching: Coexistence of Grainâ€Boundariesâ€Assisted Bipolar and Threshold Resistive Switching in Multilayer Hexagonal Boron Nitride (Adv. Funct. Mater. 10/2017). Advanced Functional Materials, 2017, 27, .	14.9	4
24	Interface engineering for high performance and stable MIS photosynthesis cells., 2017,,.		0
25	Distinguishing Oxygen Vacancy Electromigration and Conductive Filament Formation in TiO ₂ Resistance Switching Using Liquid Electrolyte Contacts. Nano Letters, 2017, 17, 4390-4399.	9.1	50
26	Low temperature thermal ALD of a SiNx interfacial diffusion barrier and interface passivation layer on SixGe1 \hat{a} ° x(001) and SixGe1 \hat{a} ° x(110). Journal of Chemical Physics, 2017, 146, 052820.	3.0	15
27	Ge Nanowires: Sn Catalysts and Ge/Ge1-xSnx Core-Shell Structures. Microscopy and Microanalysis, 2017, 23, 1730-1731.	0.4	1
28	Effects of H2 High-pressure Annealing on HfO2/Al2O3/In0.53Ga0.47As Capacitors: Chemical Composition and Electrical Characteristics. Scientific Reports, 2017, 7, 9769.	3.3	5
29	Resistive Random Access Memory Cells with a Bilayer TiO ₂ /SiO <i>_X</i> Insulating Stack for Simultaneous Filamentary and Distributed Resistive Switching. Advanced Functional Materials, 2017, 27, 1700384.	14.9	70
30	Atomic Layer Deposited Corrosion Protection: A Path to Stable and Efficient Photoelectrochemical Cells. Journal of Physical Chemistry Letters, 2016, 7, 2867-2878.	4.6	67
31	Characterization of the photocurrents generated by the laser of atomic force microscopes. Review of Scientific Instruments, 2016, 87, 083703.	1.3	4
32	Titanium Oxide Crystallization and Interface Defect Passivation for High Performance Insulator-Protected Schottky Junction MIS Photoanodes. ACS Applied Materials & Samp; Interfaces, 2016, 8, 14596-14603.	8.0	39
33	Engineering Interfacial Silicon Dioxide for Improved Metal–Insulator–Semiconductor Silicon Photoanode Water Splitting Performance. ACS Applied Materials & Interfaces, 2016, 8, 13140-13149.	8.0	28
34	Interface Engineering for Atomic Layer Deposited Alumina Gate Dielectric on SiGe Substrates. ACS Applied Materials & Dielectric on SiGe Substrates & Di	8.0	34
35	Temperature Dependent Border Trap Response Produced by a Defective Interfacial Oxide Layer in Al ₂ O ₃ /InGaAs Gate Stacks. ACS Applied Materials & Interfaces, 2016, 8, 30601-30607.	8.0	14
36	Core-Shell Germanium/Germanium–Tin Nanowires Exhibiting Room-Temperature Direct- and Indirect-Gap Photoluminescence. Nano Letters, 2016, 16, 7521-7529.	9.1	54

3

#	Article	IF	CITATIONS
37	Effects of Titanium Layer Oxygen Scavenging on the High- <i>k</i> /InGaAs Interface. ACS Applied Materials & Samp; Interfaces, 2016, 8, 16979-16984.	8.0	20
38	Spontaneous, Defect-Free Kinking via Capillary Instability during Vapor–Liquid–Solid Nanowire Growth. Nano Letters, 2016, 16, 1713-1718.	9.1	15
39	From Twinning to Pure Zincblende Catalyst-Free InAs(Sb) Nanowires. Nano Letters, 2016, 16, 637-643.	9.1	56
40	Design principles for maximizing photovoltageÂinÂmetal-oxide-protected water-splittingÂphotoanodes. Nature Materials, 2016, 15, 99-105.	27.5	217
41	The influence of surface preparation on low temperature HfO2 ALD on InGaAs (001) and (110) surfaces. Journal of Chemical Physics, 2015, 143, 164711.	3.0	15
42	Interface Trap Density Reduction for Al ₂ O ₃ /GaN (0001) Interfaces by Oxidizing Surface Preparation prior to Atomic Layer Deposition. ACS Applied Materials & Samp; Interfaces, 2015, 7, 12774-12780.	8.0	37
43	Effects of catalyst material and atomic layer deposited TiO2 oxide thickness on the water oxidation performance of metal–insulator–silicon anodes. Energy and Environmental Science, 2013, 6, 2487.	30.8	163
44	Comparison of Bulk-Oxide Trap Models: Lumped Versus Distributed Circuit. IEEE Transactions on Electron Devices, 2013, 60, 3920-3924.	3.0	17
45	New method for determining flat-band voltage in high mobility semiconductors. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2013, 31, .	1.2	93
46	ALD-TiO ₂ Preparation and Characterization for Metal-Insulator-Silicon Photoelectrochemical Applications. ECS Transactions, 2013, 58, 75-86.	0.5	14
47	Effects of surface oxide formation on germanium nanowire band-edge photoluminescence. Applied Physics Letters, 2013, 102, .	3.3	19
48	Arsenic decapping and pre-atomic layer deposition trimethylaluminum passivation of Al2O3/InGaAs(100) interfaces. Applied Physics Letters, 2013, 103, .	3.3	40
49	Kinetics of germanium nanowire growth by the vapor-solid-solid mechanism with a Ni-based catalyst. APL Materials, $2013,1,$.	5.1	20
50	Nucleation and growth kinetics during metal-induced layer exchange crystallization of Ge thin films at low temperatures. Journal of Applied Physics, 2012, 111, .	2.5	27
51	Interface-State Modeling of \$hbox{Al}_{2}hbox{O}_{3}\$ –InGaAs MOS From Depletion to Inversion. IEEE Transactions on Electron Devices, 2012, 59, 2383-2389.	3.0	70
52	Surface Preparation and Deposited Gate Oxides for Gallium Nitride Based Metal Oxide Semiconductor Devices. Materials, 2012, 5, 1297-1335.	2.9	86
53	Direct-gap photoluminescence from germanium nanowires. Physical Review B, 2012, 86, .	3.2	18
54	A Distributed Bulk-Oxide Trap Model for $\frac{Al}{2} hbox{O}_{3}\$ InGaAs MOS Devices. IEEE Transactions on Electron Devices, 2012, 59, 2100-2106.	3.0	134

#	Article	IF	Citations
55	Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation. Nature Materials, 2011, 10, 539-544.	27.5	669
56	A Distributed Model for Border Traps in $\frac{Al}_{2} \hbox{O}_{3}-\hbox{InGaAs}\$ MOS Devices. IEEE Electron Device Letters, 2011, 32, 485-487.	3.9	162
57	Titania/alumina bilayer gate insulators for InGaAs metal-oxide-semiconductor devices. Applied Physics Letters, 2011, 99, 232902.	3.3	29
58	Mobile Ferroelastic Domain Walls in Nanocrystalline PZT Films: the Direct Piezoelectric Effect. Advanced Functional Materials, 2011, 21, 3104-3110.	14.9	26
59	Ultrathin ALD-Al2O3 layers for Ge(001) gate stacks: Local composition evolution and dielectric properties. Journal of Applied Physics, 2011, 110, .	2.5	56
60	Inelastic electron tunneling study of crystallization effects and defect energies in hafnium oxide gate dielectrics. Applied Physics Letters, 2011, 98, .	3.3	9
61	Strain relaxation mechanisms in compressively strained thin SiGe-on-insulator films grown by selective Si oxidation. Journal of Applied Physics, 2011, 109, 014324.	2.5	10
62	Design and growth of III–V nanowire solar cell arrays on low cost substrates. , 2010, , .		7
63	Interface-controlled layer exchange in metal-induced crystallization of germanium thin films. Applied Physics Letters, 2010, 97, .	3.3	64
64	Border traps in Al2O3/In0.53Ga0.47As (100) gate stacks and their passivation by hydrogen anneals. Applied Physics Letters, 2010, 96, .	3.3	172
65	High temperature electrical conduction in nanoscale hafnia films under varying oxygen partial pressure. Applied Physics Letters, 2010, 97, 082102.	3.3	10
66	Bilayer metal oxide gate insulators for scaled Ge-channel metal-oxide-semiconductor devices. Applied Physics Letters, 2010, 96, .	3.3	64
67	Origin and passivation of fixed charge in atomic layer deposited aluminum oxide gate insulators on chemically treated InGaAs substrates. Applied Physics Letters, 2010, 96, .	3.3	148
68	III-V MOSFETs: Scaling laws, scaling limits, fabrication processes. , 2010, , .		6
69	Arsenic decapping and half cycle reactions during atomic layer deposition of Al2O3 on In0.53Ga0.47As(001). Applied Physics Letters, 2010, 96, .	3.3	33
70	Growth of germanium crystals from electrodeposited gold in local crucibles. Applied Physics Letters, 2009, 94, .	3.3	1
71	Oxidant prepulsing of Ge (100) prior to atomic layer deposition of Al2O3: <i>In situ</i> surface characterization. Applied Physics Letters, 2009, 95, .	3.3	36
72	Size-dependent polymorphism in HfO2 nanotubes and nanoscale thin films. Journal of Applied Physics, 2009, 106, .	2.5	68

#	Article	IF	CITATIONS
73	Hafnium oxide/germanium oxynitride gate stacks on germanium: Capacitance scaling and interface state density. Applied Physics Letters, 2009, 94, .	3.3	50
74	Atomically abrupt and unpinned Al2O3/In0.53Ga0.47As interfaces: Experiment and simulation. Journal of Applied Physics, 2009, 106 , .	2.5	81
75	Enhancement mode In0.53Ga0.47As MOSFET with self-aligned epitaxial source/drain regrowth. , 2009, , .		4
76	0.37 mS/ \hat{l}_4 m In _{0.53} Ga _{0.47} As MOSFET with 5 nm channel and self-aligned epitaxial raised source/drain., 2009, , .		0
77	Ge-Interface Engineering With Ozone Oxidation for Low Interface-State Density. IEEE Electron Device Letters, 2008, 29, 328-330.	3.9	172
78	Pre-atomic layer deposition surface cleaning and chemical passivation of (100) In0.2Ga0.8As and deposition of ultrathin Al2O3 gate insulators. Applied Physics Letters, 2008, 93, .	3.3	60
79	(Paper CH011) effect of strain, microstructure, and interfaces on tunability and relaxor-like dielectric behavior in barium strontium titanate thin-films. , 2008, , .		0
80	Lead zirconate titanate ferroelectric thin film capacitors: Effects of surface treatments on ferroelectric properties. Applied Physics Letters, 2007, 91, .	3.3	15
81	Electrical properties of germanium/metal-oxide gate stacks with atomic layer deposition grown hafnium-dioxide and plasma-synthesized interface layers. Applied Physics Letters, 2007, 90, 112912.	3.3	50
82	High temperature phase transformation of tantalum nitride films deposited by plasma enhanced atomic layer deposition for gate electrode applications. Applied Physics Letters, 2007, 90, 102101.	3.3	30
83	Oxidation-enhanced interdiffusion in Si1â^'xGexâ^•Si1â^'yGey superlattices. Applied Physics Letters, 2007, 90, 082109.	3.3	11
84	Effects of chemical stability of platinum/lead zirconate titanate and iridium oxide/lead zirconate titanate interfaces on ferroelectric thin film switching reliability. Applied Physics Letters, 2007, 91, .	3.3	15
85	Influences of Plasma Processed Interface Layers on Germanium MOS Devices with ALD Grown HfO2. Materials Research Society Symposia Proceedings, 2007, 996, 1.	0.1	0
86	Chemical states and electrical properties of a high-k metal oxide/silicon interface with oxygen-gettering titanium-metal-overlayer. Applied Physics Letters, 2006, 89, 142912.	3.3	40
87	Physical and electrical properties of plasma nitrided germanium oxynitride. Journal of Vacuum Science & Technology B, 2006, 24, 2449.	1.3	7
88	Area Selective Atomic Layer Deposition by Soft Lithography. Materials Research Society Symposia Proceedings, 2006, 917, 1.	0.1	1
89	Effects of Nitrogen Reactive Species on Germanium Plasma Nitridation Processes. Materials Research Society Symposia Proceedings, 2006, 917, 1.	0.1	1
90	Ge on Si by novel heteroepitaxy for high efficiency near infrared photodetection. , 2006, , .		6

#	Article	IF	CITATIONS
91	O18 tracer diffusion in Pb(Zr,Ti)O3 thin films: A probe of local oxygen vacancy concentration. Journal of Applied Physics, 2005, 97, 023508.	2.5	51
92	Comparative Study on Electrical and Microstructural Characteristics of ZrO2 and HfO2 Grown by Atomic Layer Deposition. Journal of Materials Research, 2005, 20, 3125-3132.	2.6	32
93	Investigation of Self-Assembled Monolayer Resists for Hafnium Dioxide Atomic Layer Deposition. Chemistry of Materials, 2005, 17, 536-544.	6.7	141
94	Zirconia grown by ultraviolet ozone oxidation on germanium (100) substrates. Journal of Applied Physics, 2004, 96, 813-819.	2.5	40
95	Film and interface layer properties of ultraviolet-ozone oxidized hafnia and zirconia gate dielectrics on silicon substrates. Applied Physics Letters, 2004, 85, 4699-4701.	3.3	25
96	Y-Doping Effects on the Dielectric Behavior of RF-Sputtered BST Thin Films. Materials Research Society Symposia Proceedings, 2004, 833, 51.	0.1	3
97	Microstructural evolution of ZrO2–HfO2 nanolaminate structures grown by atomic layer deposition. Journal of Materials Research, 2004, 19, 643-650.	2.6	40
98	Oxygen Permeability of Ferroelectric Thin Film Top Electrodes and Its Effect on Detectable Fatigue Cycling-Induced Oxygen Isotope Motion. Journal of Materials Research, 2004, 19, 1265-1272.	2.6	6
99	Structural analysis of coexisting tetragonal and rhombohedral phases in polycrystalline Pb(Zr _{0.35} Ti _{0.65})O ₃ thin films. Journal of Materials Research, 2003, 18, 173-179.	2.6	14
100	Polarization recovery of fatigued Pb(Zr,Ti)O3 thin films: Switching current studies. Journal of Applied Physics, 2003, 93, 1743-1747.	2.5	13
101	Point defect distributions and their electrical effects on (Ba,Sr)TiO3/Pt thin films. Journal of Applied Physics, 2003, 94, 1926-1933.	2.5	13
102	Local epitaxial growth of ZrO2 on Ge (100) substrates by atomic layer epitaxy. Applied Physics Letters, 2003, 83, 2647-2649.	3.3	126
103	Electrical properties of thin film zirconia grown by ultraviolet ozone oxidation. Journal of Applied Physics, 2002, 91, 4521-4527.	2.5	79
104	Ultrathin zirconia/SiO2 dielectric stacks grown by ultraviolet–ozone oxidation. Applied Physics Letters, 2002, 80, 3793-3795.	3.3	34
105	Microstructural study of epitaxial platinum and Permalloy/platinum films grown on (0001) sapphire. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2001, 81, 2073-2094.	0.6	27
106	Point defect equilibrium in strontium titanate thin films. Journal of Applied Physics, 2001, 89, 8074-8084.	2.5	16
107	Growth and characterization of ultrathin zirconia dielectrics grown by ultraviolet ozone oxidation. Applied Physics Letters, 2001, 79, 2621-2623.	3.3	60
108	Effect of oxygen stoichiometry on the electrical properties of zirconia gate dielectrics. Applied Physics Letters, 2001, 79, 3311-3313.	3.3	64

#	Article	lF	CITATIONS
109	Equilibrium Point Defect and Electronic Carrier Distributions near Interfaces in Acceptorâ€Doped Strontium Titanate. Journal of the American Ceramic Society, 2000, 83, 1129-1136.	3.8	48
110	Heteroepitaxial growth of chemically derived <i>ex situ</i> Ba ₂ YCu ₃ O _{7â^'<i>x</i>} thin films. Journal of Materials Research, 1994, 9, 2219-2230.	2.6	78