
Geir Slupphaug

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5983586/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	UDPâ€glucose dehydrogenase expression is upregulated following EMT and differentially affects intracellular glycerophosphocholine and acetylaspartate levels in breast mesenchymal cell lines. Molecular Oncology, 2022, 16, 1816-1840.	4.6	4
2	RPA2 winged-helix domain facilitates UNG-mediated removal of uracil from ssDNA; implications for repair of mutagenic uracil at the replication fork. Nucleic Acids Research, 2021, 49, 3948-3966.	14.5	10
3	Genomic Uracil and Aberrant Profile of Demethylation Intermediates in Epigenetics and Hematologic Malignancies. International Journal of Molecular Sciences, 2021, 22, 4212.	4.1	7
4	Long-Term Exposure to Nanosized TiO2 Triggers Stress Responses and Cell Death Pathways in Pulmonary Epithelial Cells. International Journal of Molecular Sciences, 2021, 22, 5349.	4.1	5
5	Cancerâ€induced muscle atrophy is determined by intrinsic muscle oxidative capacity. FASEB Journal, 2021, 35, e21714.	0.5	10
6	ALKBH3 partner ASCC3 mediates P-body formation and selective clearance of MMS-induced 1-methyladenosine and 3-methylcytosine from mRNA. Journal of Translational Medicine, 2021, 19, 287.	4.4	13
7	NEIL1 and NEIL2 DNA glycosylases modulate anxiety and learning in a cooperative manner in mice. Communications Biology, 2021, 4, 1354.	4.4	8
8	The human methyltransferase ZCCHC4 catalyses N6-methyladenosine modification of 28S ribosomal RNA. Nucleic Acids Research, 2020, 48, 830-846.	14.5	88
9	RNA in DNA repair. DNA Repair, 2020, 95, 102927.	2.8	8
10	Impact of HIV-1 Vpr manipulation of the DNA repair enzyme UNG2 on B lymphocyte class switch recombination. Journal of Translational Medicine, 2020, 18, 310.	4.4	3
11	Exercise training reverses cancer-induced oxidative stress and decrease in muscle COPS2/TRIP15/ALIEN. Molecular Metabolism, 2020, 39, 101012.	6.5	25
12	HDACi mediate UNG2 depletion, dysregulated genomic uracil and altered expression of oncoproteins and tumor suppressors in B- and T-cell lines. Journal of Translational Medicine, 2020, 18, 159.	4.4	10
13	A targeted mass spectrometry immunoassay to quantify osteopontin in fresh-frozen breast tumors and adjacent normal breast tissues. Journal of Proteomics, 2019, 208, 103469.	2.4	14
14	Immunosuppressive adenosine - a novel treatment target for multiple myeloma. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, e137-e138.	0.4	0
15	SUMOylation coordinates BERosome assembly inÂactive DNA demethylation during cellÂdifferentiation. EMBO Journal, 2019, 38, .	7.8	28
16	Characterization of the proteome and lipidome profiles of human lung cells after low dose and chronic exposure to multiwalled carbon nanotubes. Nanotoxicology, 2018, 12, 138-152.	3.0	20
17	Backbone 1H, 13C and 15N chemical shift assignment of full-length human uracil DNA glycosylase UNG2. Biomolecular NMR Assignments, 2018, 12, 15-22.	0.8	10
18	Differential regulation of cysteine oxidative post-translational modifications in high and low aerobic capacity. Scientific Reports, 2018, 8, 17772.	3.3	18

#	Article	IF	CITATIONS
19	Routes to Uracil in DNA. , 2018, , 47-88.		1
20	Enzymology of Genomic Uracil Repair. , 2018, , 89-126.		2
21	Novel <i>UCHL1</i> mutations reveal new insights into ubiquitin processing. Human Molecular Genetics, 2017, 26, ddw391.	2.9	22
22	Pso p27, a SERPINB3/B4-derived protein, is most likely a common autoantigen in chronic inflammatory diseases. Clinical Immunology, 2017, 174, 10-17.	3.2	19
23	On-column trypsinization allows for re-use of matrix in modified multiplexed inhibitor beads assay. Analytical Biochemistry, 2017, 523, 10-16.	2.4	9
24	Changes in cellular signaling proteins in extracts from A549, H460, and U2OS cells treated with cisplatin or docetaxel. Data in Brief, 2017, 12, 18-21.	1.0	0
25	NEIL3-Dependent Regulation of Cardiac Fibroblast Proliferation Prevents Myocardial Rupture. Cell Reports, 2017, 18, 82-92.	6.4	45
26	A ubiquitin-dependent signalling axis specific for ALKBH-mediated DNA dealkylation repair. Nature, 2017, 551, 389-393.	27.8	83
27	Genomic Uracil — Dangers and Benefits in Processing. , 2017, , 13-62.		0
28	No cancer predisposition or increased spontaneous mutation frequencies in NEIL DNA glycosylases-deficient mice. Scientific Reports, 2017, 7, 4384.	3.3	37
29	Proteome alterations associated with transformation of multiple myeloma to secondary plasma cell leukemia. Oncotarget, 2017, 8, 19427-19442.	1.8	11
30	Enhanced base excision repair capacity in carotid atherosclerosis may protect nuclear DNA but not mitochondrial DNA. Free Radical Biology and Medicine, 2016, 97, 386-397.	2.9	3
31	Neil3-dependent base excision repair regulates lipid metabolism and prevents atherosclerosis in Apoe-deficient mice. Scientific Reports, 2016, 6, 28337.	3.3	26
32	Photodynamic treatment with hexyl-aminolevulinate mediates reversible thiol oxidation in core oxidative stress signaling proteins. Molecular BioSystems, 2016, 12, 796-805.	2.9	8
33	Modulation of Cell Metabolic Pathways and Oxidative Stress Signaling Contribute to Acquired Melphalan Resistance in Multiple Myeloma Cells. PLoS ONE, 2015, 10, e0119857.	2.5	51
34	Synergistic Actions of Ogg1 and Mutyh DNA Glycosylases Modulate Anxiety-like Behavior in Mice. Cell Reports, 2015, 13, 2671-2678.	6.4	39
35	Aerobic interval training reduces inducible ventricular arrhythmias in diabetic mice after myocardial infarction. Basic Research in Cardiology, 2015, 110, 44.	5.9	21
36	Cell cycle regulation of human DNA repair and chromatin remodeling genes. DNA Repair, 2015, 30, 53-67.	2.8	174

#	Article	IF	CITATIONS
37	AID expression in B-cell lymphomas causes accumulation of genomic uracil and a distinct AID mutational signature. DNA Repair, 2015, 25, 60-71.	2.8	59
38	Protein Phosphatase 2A Holoenzyme Is Targeted to Peroxisomes by Piggybacking and Positively Affects Peroxisomal β-Oxidation Â. Plant Physiology, 2015, 167, 493-506.	4.8	51
39	Psoriasis pathogenesis – Pso p27 constitutes a compact structure forming large aggregates. Biochemistry and Biophysics Reports, 2015, 2, 132-136.	1.3	4
40	Off-target responses in the HeLa proteome subsequent to transient plasmid-mediated transfection. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 84-90.	2.3	3
41	Psoriasis pathogenesis — Pso p27 is generated from SCCA1 with chymase. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 734-738.	3.8	9
42	Error-free versus mutagenic processing of genomic uracil—Relevance to cancer. DNA Repair, 2014, 19, 38-47.	2.8	55
43	PRL-3 Mediates Survival of Primary Myeloma Cells. Blood, 2014, 124, 2040-2040.	1.4	0
44	A Combined Nuclear and Nucleolar Localization Motif in Activation-Induced Cytidine Deaminase (AID) Controls Immunoglobulin Class Switching. Journal of Molecular Biology, 2013, 425, 424-443.	4.2	32
45	A robust, sensitive assay for genomic uracil determination by LC/MS/MS reveals lower levels than previously reported. DNA Repair, 2013, 12, 699-706.	2.8	46
46	Eating Behavior and Glucagon-Like Peptide-1-Producing Cells in Interposed lleum and Pancreatic Islets in Rats Subjected to Ileal Interposition Associated with Sleeve Gastrectomy. Obesity Surgery, 2013, 23, 39-49.	2.1	11
47	An Inverse Switch in DNA Base Excision and Strand Break Repair Contributes to Melphalan Resistance in Multiple Myeloma Cells. PLoS ONE, 2013, 8, e55493.	2.5	24
48	Atrial Myocyte Function and Ca2+ Handling Is Associated with Inborn Aerobic Capacity. PLoS ONE, 2013, 8, e76568.	2.5	10
49	Combining H/D exchange mass spectroscopy and computational docking reveals extended DNA-binding surface on uracil-DNA glycosylase. Nucleic Acids Research, 2012, 40, 6070-6081.	14.5	28
50	mtSSB may sequester UNG1 at mitochondrial ssDNA and delay uracil processing until the dsDNA conformation is restored. DNA Repair, 2012, 11, 82-91.	2.8	16
51	Strikingly different properties of uracil-DNA glycosylases UNG2 and SMUG1 may explain divergent roles in processing of genomic uracil. DNA Repair, 2012, 11, 587-593.	2.8	35
52	The UNG2 Arg88Cys variant abrogates RPA-mediated recruitment of UNG2 to single-stranded DNA. DNA Repair, 2012, 11, 559-569.	2.8	20
53	Photodynamic therapy with hexyl aminolevulinate induces carbonylation, posttranslational modifications and changed expression of proteins in cell survival and cell death pathways. Photochemical and Photobiological Sciences, 2011, 10, 1137.	2.9	18
54	Uracil DNA N-Glycosylase Promotes Assembly of Human Centromere Protein A. PLoS ONE, 2011, 6, e17151.	2.5	19

#	Article	IF	CITATIONS
55	Antibody cross-linking and target elution protocols used for immunoprecipitation significantly modulate signal-to noise ratio in downstream 2D-PAGE analysis. Proteome Science, 2011, 9, 45.	1.7	27
56	XRCC1 coordinates disparate responses and multiprotein repair complexes depending on the nature and context of the DNA damage. Environmental and Molecular Mutagenesis, 2011, 52, 623-635.	2.2	56
57	Uracil-DNA Glycosylase in Base Excision Repair and Adaptive Immunity. Journal of Biological Chemistry, 2011, 286, 16669-16680.	3.4	41
58	UNG-initiated base excision repair is the major repair route for 5-fluorouracil in DNA, but 5-fluorouracil cytotoxicity depends mainly on RNA incorporation. Nucleic Acids Research, 2011, 39, 8430-8444.	14.5	93
59	Partial characterisation of gelatinolytic activities in herring (Clupea harengus) and sardine (Sardina) Tj ETQq1 1 0 675-683.	.784314 r 8.2	gBT /Overloc 18
60	Identification of a Novel in Vivo Virus-targeted Phosphorylation Site in Interferon Regulatory Factor-3 (IRF3). Journal of Biological Chemistry, 2010, 285, 24904-24914.	3.4	26
61	Divergent β-hairpins determine double-strand versus single-strand substrate recognition of human AlkB-homologues 2 and 3. Nucleic Acids Research, 2010, 38, 6447-6455.	14.5	34
62	Human Immunodeficiency Virus Type 1 Vpr Modulates Cellular Expression of UNG2 via a Negative Transcriptional Effect. Journal of Virology, 2009, 83, 10256-10263.	3.4	31
63	Identification of a novel, widespread, and functionally important PCNA-binding motif. Journal of Cell Biology, 2009, 186, 645-654.	5.2	153
64	Uracil in DNA and its processing by different DNA glycosylases. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 563-568.	4.0	102
65	Opposite-base dependent excision of 5-formyluracil from DNA by hSMUG1. International Journal of Radiation Biology, 2009, 85, 413-420.	1.8	13
66	Cell cycle-specific UNG2 phosphorylations regulate protein turnover, activity and association with RPA. EMBO Journal, 2008, 27, 51-61.	7.8	115
67	The rate of base excision repair of uracil is controlled by the initiating glycosylase. DNA Repair, 2008, 7, 1869-1881.	2.8	38
68	AlkB demethylases flip out in different ways. DNA Repair, 2008, 7, 1916-1923.	2.8	42
69	Human AlkB Homolog 1 Is a Mitochondrial Protein That Demethylates 3-Methylcytosine in DNA and RNA. Journal of Biological Chemistry, 2008, 283, 25046-25056.	3.4	160
70	RNA Base Damage and Repair. Current Pharmaceutical Biotechnology, 2007, 8, 326-331.	1.6	22
71	Uracil–DNA glycosylases SMUG1 and UNG2 coordinate the initial steps of base excision repair by distinct mechanisms. Nucleic Acids Research, 2007, 35, 3879-3892.	14.5	91
72	Characterization of the Uracil-DNA Glycosylase Activity of Epstein-Barr Virus BKRF3 and Its Role in Lytic Viral DNA Replication. Journal of Virology, 2007, 81, 1195-1208.	3.4	35

#	Article	IF	CITATIONS
73	DNA-uracil and human pathology. Molecular Aspects of Medicine, 2007, 28, 276-306.	6.4	111
74	NEIL1 Is the Major DNA Glycosylase that Processes 5-Hydroxyuracil in the Proximity of a DNA Single-Strand Break. Biochemistry, 2007, 46, 4158-4163.	2.5	27
75	Uracil in DNA—General mutagen, but normal intermediate in acquired immunity. DNA Repair, 2007, 6, 505-516.	2.8	157
76	Genomic uracil and human disease. Experimental Cell Research, 2006, 312, 2666-2672.	2.6	37
77	Human ABH3 structure and key residues for oxidative demethylation to reverse DNA/RNA damage. EMBO Journal, 2006, 25, 3389-3397.	7.8	157
78	B cells from hyper-IgM patients carrying UNG mutations lack ability to remove uracil from ssDNA and have elevated genomic uracil. Journal of Experimental Medicine, 2005, 201, 2011-2021.	8.5	103
79	Xenopus CENP-A assembly into chromatin requires base excision repair proteins. DNA Repair, 2005, 4, 760-772.	2.8	30
80	Monoclonal B-cell hyperplasia and leukocyte imbalance precede development of B-cell malignancies in uracil-DNA glycosylase deficient mice. DNA Repair, 2005, 4, 1432-1441.	2.8	38
81	Repair of U/G and U/A in DNA by UNG2-associated repair complexes takes place predominantly by short-patch repair both in proliferating and growth-arrested cells. Nucleic Acids Research, 2004, 32, 5486-5498.	14.5	92
82	Novel aspects of macromolecular repair and relationship to human disease. Journal of Molecular Medicine, 2004, 82, 280-297.	3.9	29
83	Alkylation damage in DNA and RNA—repair mechanisms and medical significance. DNA Repair, 2004, 3, 1389-1407.	2.8	541
84	Trypanosoma cruzi Contains a Single Detectable Uracil-DNA Glycosylase and Repairs Uracil Exclusively Via Short Patch Base Excision Repair. Journal of Molecular Biology, 2004, 342, 787-799.	4.2	16
85	The interacting pathways for prevention and repair of oxidative DNA damage. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2003, 531, 231-251.	1.0	458
86	Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA. Nature, 2003, 421, 859-863.	27.8	558
87	Human uracil–DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination. Nature Immunology, 2003, 4, 1023-1028.	14.5	573
88	hUNG2 Is the Major Repair Enzyme for Removal of Uracil from U:A Matches, U:G Mismatches, and U in Single-stranded DNA, with hSMUG1 as a Broad Specificity Backup. Journal of Biological Chemistry, 2002, 277, 39926-39936.	3.4	289
89	Uracil in DNA – occurrence, consequences and repair. Oncogene, 2002, 21, 8935-8948.	5.9	423
90	Properties and functions of human uracil-DNA glycosylase from the UNG gene. Progress in Molecular Biology and Translational Science, 2001, 68, 365-386.	1.9	80

#	Article	IF	CITATIONS
91	Uracil-DNA glycosylase-DNA substrate and product structures: Conformational strain promotes catalytic efficiency by coupled stereoelectronic effects. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 5083-5088.	7.1	251
92	Analysis of uracil-DNA glycosylases from the murine Ung gene reveals differential expression in tissues and in embryonic development and a subcellular sorting pattern that differs from the human homologues. Nucleic Acids Research, 2000, 28, 2277-2285.	14.5	31
93	Uracil-DNA Glycosylase (UNG)-Deficient Mice Reveal a Primary Role of the Enzyme during DNA Replication. Molecular Cell, 2000, 5, 1059-1065.	9.7	300
94	Base excision repair of DNA in mammalian cells. FEBS Letters, 2000, 476, 73-77.	2.8	324
95	Post-replicative base excision repair in replication foci. EMBO Journal, 1999, 18, 3834-3844.	7.8	305
96	Human Uracil-DNA Glycosylase. , 1999, , 221-236.		0
97	Base excision repair initiation revealed by crystal structures and binding kinetics of human uracil-DNA glycosylase with DNA. EMBO Journal, 1998, 17, 5214-5226.	7.8	434
98	Human mitochondrial uracil-DNA glycosylase preform (UNG1) is processed to two forms one of which is resistant to inhibition by AP sites. Nucleic Acids Research, 1998, 26, 4953-4959.	14.5	48
99	Nuclear and mitochondrial splice forms of human uracil-DNA glycosylase contain a complex nuclear localisation signal and a strong classical mitochondrial localisation signal, respectively. Nucleic Acids Research, 1998, 26, 4611-4617.	14.5	103
100	DNA glycosylases in the base excision repair of DNA. Biochemical Journal, 1997, 325, 1-16.	3.7	774
101	Fading correction for fluorescence quantitation in confocal microscopy. Cytometry, 1996, 23, 187-195.	1.8	13
102	A nucleotide-flipping mechanism from the structure of human uracil–DNA glycosylase bound to DNA. Nature, 1996, 384, 87-92.	27.8	520
103	Fading correction for fluorescence quantitation in confocal microscopy. Cytometry, 1996, 23, 187-195.	1.8	1
104	Properties of a Recombinant Human Uracil-DNA Glycosylase from the UNG Gene and Evidence that UNG Encodes the Major Uracil-DNA Glycosylase. Biochemistry, 1995, 34, 128-138.	2.5	260
105	Crystal structure and mutational analysis of human uracil-DNA glycosylase: Structural basis for specificity and catalysis. Cell, 1995, 80, 869-878.	28.9	361
106	Crystal structure of human uracil-DNA glycosylase in complex with a protein inhibitor: Protein mimicry of DNA. Cell, 1995, 82, 701-708.	28.9	253
107	Cell Cycle Regulation and Subcellular Localization of the Major Human Uracil-DNA Glycosylase. Experimental Cell Research, 1995, 220, 292-297.	2.6	38
108	Low Incorporation of dUMP by Some Thermostable DNA Polymerases May Limit Their Use in PCR Amplifications. Analytical Biochemistry, 1993, 211, 164-169.	2.4	26

#	Article	IF	CITATIONS
109	Nuclear and mitochondrial forms of human uracil-DNA glycosylase are encoded by the same gene. Nucleic Acids Research, 1993, 21, 2579-2584.	14.5	131
110	Consensus sequences for good and poor removal of uracil from double stranded DNA by uracil-DNA glycosylase. Nucleic Acids Research, 1993, 21, 2095-2101.	14.5	76
111	Expression of O6-methylguanine-DNA methyltransferase and uracil-DNA glycosylase in human placentae from smokers and non-smokers. Carcinogenesis, 1992, 13, 1769-1773.	2.8	15
112	Cell cycle regulation andin vitrohybrid arrest analysis of the major human uracil-DNA glycosylase. Nucleic Acids Research, 1991, 19, 5131-5137.	14.5	74
113	Immunocytochemical localization of myrosinase in Brassica napus L Planta, 1990, 180, 245-8.	3.2	69
114	Glucocorticoids inhibit the production of IL 6 from monocytes, endothelial cells and fibroblasts. European Journal of Immunology, 1990, 20, 2439-2443.	2.9	217
115	Purification, Characterization and Partial Amino Acid Sequencing of β-thioglucosidase from Brassica napus L Journal of Plant Physiology, 1989, 134, 722-729.	3.5	53