
Teresa Balbi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5982285/publications.pdf Version: 2024-02-01

EDESA RA

#	Article	IF	CITATIONS
1	Physiological Roles of Serotonin in Bivalves: Possible Interference by Environmental Chemicals Resulting in Neuroendocrine Disruption. Frontiers in Endocrinology, 2022, 13, 792589.	3.5	12
2	Ceramide Aminoethylphosphonate as a New Molecular Target for Pore-Forming Aegerolysin-Based Protein Complexes. Frontiers in Molecular Biosciences, 2022, 9, .	3.5	6
3	Immunological Responses of Marine Bivalves to Contaminant Exposure: Contribution of the -Omics Approach. Frontiers in Immunology, 2021, 12, 618726.	4.8	33
4	A deepâ€sea bacterium related to coastal marine pathogens. Environmental Microbiology, 2021, 23, 5349-5363.	3.8	4
5	Tetrabromobisphenol A acts a neurodevelopmental disruptor in early larval stages of Mytilus galloprovincialis. Science of the Total Environment, 2021, 793, 148596.	8.0	7
6	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq0 0 0 rgBT /Overlock	10 Jf 50 5- 9.1	42 Td (editio 1,430
7	Comparison of Different Commercial Nanopolystyrenes: Behavior in Exposure Media, Effects on Immune Function and Early Larval Development in the Model Bivalve Mytilus galloprovincialis.	4.1	7

	Nanomaterials, 2021, 11, 3291.		
8	Conservation of Cell Communication Systems in Invertebrate Host–Defence Mechanisms: Possible Role in Immunity and Disease. Biology, 2020, 9, 234.	2.8	16
9	Impact of nanoplastics on hemolymph immune parameters and microbiota composition in Mytilus galloprovincialis. Marine Environmental Research, 2020, 159, 105017.	2.5	51
10	Shift in Immune Parameters After Repeated Exposure to Nanoplastics in the Marine Bivalve Mytilus. Frontiers in Immunology, 2020, 11, 426.	4.8	59
11	Phenotypical and molecular changes induced by carbamazepine and propranolol on larval stages of Mytilus galloprovincialis. Chemosphere, 2019, 234, 962-970.	8.2	16
12	Estrogenic compounds as exogenous modulators of physiological functions in molluscs: Signaling pathways and biological responses. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2019, 222, 135-144.	2.6	10
13	Characterization of the main steps in first shell formation in <i>Mytilus galloprovincialis</i> : possible role of tyrosinase. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20192043.	2.6	21
14	Responses of Mytilus galloprovincialis to challenge with the emerging marine pathogen Vibrio coralliilyticus. Fish and Shellfish Immunology, 2019, 84, 352-360.	3.6	29
15	Cytotoxicity of CeO2 nanoparticles using in vitro assay with Mytilus galloprovincialis hemocytes: Relevance of zeta potential, shape and biocorona formation. Aquatic Toxicology, 2018, 200, 13-20.	4.0	39
16	Autophagic processes in Mytilus galloprovincialis hemocytes: Effects of Vibrio tapetis. Fish and Shellfish Immunology, 2018, 73, 66-74.	3.6	29
17	Cationic polystyrene nanoparticle and the sea urchin immune system: biocorona formation, cell toxicity, and multixenobiotic resistance phenotype. Nanotoxicology, 2018, 12, 847-867.	3.0	64
18	Effects of nanosilver on Mytilus galloprovincialis hemocytes and early embryo development. Aquatic	4.0	32

Toxicology, 2018, 203, 107-116.

Teresa Balbi

#	Article	IF	CITATIONS
19	Diclofenac affects early embryo development in the marine bivalve Mytilus galloprovincialis. Science of the Total Environment, 2018, 642, 601-609.	8.0	42
20	Seasonal variability of different biomarkers in mussels (Mytilus galloprovincialis) farmed at different sites of the Gulf of La Spezia, Ligurian sea, Italy. Marine Pollution Bulletin, 2017, 116, 348-356.	5.0	38
21	Photocatalytic Fe-doped n-TiO 2 : From synthesis to utilization of in vitro cell models for screening human and environmental nanosafety. Resource-efficient Technologies, 2017, 3, 158-165.	0.1	4
22	Biomolecular coronas in invertebrate species: Implications in the environmental impact of nanoparticles. NanoImpact, 2017, 8, 89-98.	4.5	69
23	Impact of cationic polystyrene nanoparticles (PS-NH2) on early embryo development of Mytilus galloprovincialis: Effects on shell formation. Chemosphere, 2017, 186, 1-9.	8.2	93
24	Facile synthesis of NIR and Visible luminescent Sm 3+ doped lutetium oxide nanoparticles. Materials Research Bulletin, 2017, 86, 220-227.	5.2	8
25	Utilization of Mytilus digestive gland cells for the in vitro screening of potential metabolic disruptors in aquatic invertebrates. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2017, 191, 26-35.	2.6	17
26	Invertebrate Models for Investigating the Impact of Nanomaterials on Innate Immunity: The Example of the Marine Mussel Mytilus spp Current Bionanotechnology, 2017, 2, 77-83.	0.6	21
27	Killing of Vibrio cholerae and Escherichia coli Strains Carrying D-mannose-sensitive Ligands by Mytilus Hemocytes is Promoted by a Multifunctional Hemolymph Serum Protein. Microbial Ecology, 2016, 72, 759-762.	2.8	14
28	Different sol–gel preparations of iron-doped TiO2 nanoparticles: characterization, photocatalytic activity and cytotoxicity. Journal of Sol-Gel Science and Technology, 2016, 80, 152-159.	2.4	25
29	Impact of bisphenol A (BPA) on early embryo development in the marine mussel Mytilus galloprovincialis: Effects on gene transcription. Environmental Pollution, 2016, 218, 996-1004.	7.5	69
30	Interactions of cationic polystyrene nanoparticles with marine bivalve hemocytes in a physiological environment: Role of soluble hemolymph proteins. Environmental Research, 2016, 150, 73-81.	7.5	144
31	Combined effects of n-TiO2 and 2,3,7,8-TCDD in Mytilus galloprovincialis digestive gland: A transcriptomic and immunohistochemical study. Environmental Research, 2016, 145, 135-144.	7.5	57
32	Interactive effects of nanoparticles with other contaminants in aquatic organisms: Friend or foe?. Marine Environmental Research, 2015, 111, 128-134.	2.5	74
33	Titanium dioxide nanoparticles modulate the toxicological response to cadmium in the gills of Mytilus galloprovincialis. Journal of Hazardous Materials, 2015, 297, 92-100.	12.4	114
34	Co-exposure to n-TiO2 and Cd2+ results in interactive effects on biomarker responses but not in in increased toxicity in the marine bivalve M. galloprovincialis. Science of the Total Environment, 2014, 493, 355-364.	8.0	88
35	Interactive effects of n-TiO2 and 2,3,7,8-TCDD on the marine bivalve Mytilus galloprovincialis. Aquatic Toxicology, 2014, 153, 53-65.	4.0	130
36	Adaptation of the bivalve embryotoxicity assay for the high throughput screening of emerging contaminants in Mytilus galloprovincialis. Marine Environmental Research, 2014, 99, 1-8.	2.5	90

#	Article	IF	CITATIONS
37	In vivo effects of n-TiO2 on digestive gland and immune function of the marine bivalve Mytilus galloprovincialis. Aquatic Toxicology, 2013, 132-133, 9-18.	4.0	161
38	Interactions between Mytilus galloprovincialis hemocytes and the bivalve pathogens Vibrio aestuarianus 01/032 and Vibrio splendidus I GP32. Fish and Shellfish Immunology, 2013, 35, 1906-1915	3.6	41

aestuarianus 01/032 and Vibrio splendidus LGP32. Fish and Shellfish Immunology, 2013, 35, 1906-1915. 38