
Robert G Parton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5981769/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanisms of Endocytosis II Non-Clathrin. , 2022, , .		Ο
2	βIII-Tubulin Structural Domains Regulate Mitochondrial Network Architecture in an Isotype-Specific Manner. Cells, 2022, 11, 776.	4.1	2
3	The structure of caveolin finally takes shape. Science Advances, 2022, 8, eabq6985.	10.3	6
4	Volume electron microscopy. Nature Reviews Methods Primers, 2022, 2, .	21.2	46
5	Nanoparticle entry into cells; the cell biology weak link. Advanced Drug Delivery Reviews, 2022, 188, 114403.	13.7	31
6	An inverted CAV1 (caveolin 1) topology defines novel autophagy-dependent exosome secretion from prostate cancer cells. Autophagy, 2021, 17, 2200-2216.	9.1	21
7	Growth Hormone Stops Excessive Inflammation After Partial Hepatectomy, Allowing Liver Regeneration and Survival Through Induction of H2â€Bl/HLAâ€G. Hepatology, 2021, 73, 759-775.	7.3	24
8	Caveolinâ€l influences epithelial collective cell migration via FMNL2 formin. Biology of the Cell, 2021, 113, 107-117.	2.0	5
9	Formation of retromer transport carriers is disrupted by the Parkinson diseaseâ€linked Vps35 <scp>D620N</scp> variant. Traffic, 2021, 22, 123-136.	2.7	21
10	Phosphorylation of PKCδ by FER tips the balance from EGFR degradation to recycling. Journal of Cell Biology, 2021, 220, .	5.2	14
11	Proximity Dependent Biotin Labelling in Zebrafish for Proteome and Interactome Profiling. Bio-protocol, 2021, 11, e4178.	0.4	4
12	Caveolin-1 and cavin1 act synergistically to generate a unique lipid environment in caveolae. Journal of Cell Biology, 2021, 220, .	5.2	37
13	Inner retinal injury in experimental glaucoma is prevented upon AAV mediated Shp2 silencing in a caveolin dependent manner. Theranostics, 2021, 11, 6154-6172.	10.0	12
14	Cavin1 intrinsically disordered domains are essential for fuzzy electrostatic interactions and caveola formation. Nature Communications, 2021, 12, 931.	12.8	24
15	In vivo proteomic mapping through GFP-directed proximity-dependent biotin labelling in zebrafish. ELife, 2021, 10, .	6.0	39
16	Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics. Nature Nanotechnology, 2021, 16, 266-276.	31.5	509
17	Mechanotransduction activates RhoA in the neighbors of apoptotic epithelial cells to engage apical extrusion. Current Biology, 2021, 31, 1326-1336.e5.	3.9	45
18	High intraluminal pressure promotes vascular inflammation via caveolin-1. Scientific Reports, 2021, 11, 5894.	3.3	6

#	Article	IF	CITATIONS
19	A robust method for particulate detection of a genetic tag for 3D electron microscopy. ELife, 2021, 10,	6.0	16
20	Caveolinâ€1â€driven membrane remodelling regulates hnRNPKâ€mediated exosomal microRNA sorting in cancer. Clinical and Translational Medicine, 2021, 11, e381.	4.0	19
21	Nicotinamide riboside attenuates age-associated metabolic and functional changes in hematopoietic stem cells. Nature Communications, 2021, 12, 2665.	12.8	45
22	Nanoscape, a data-driven 3D real-time interactive virtual cell environment. ELife, 2021, 10, .	6.0	5
23	Lipid droplets and the host–pathogen dynamic: FATal attraction?. Journal of Cell Biology, 2021, 220, .	5.2	31
24	Cavin3 released from caveolae interacts with BRCA1 to regulate the cellular stress response. ELife, 2021, 10, .	6.0	11
25	Key phases in the formation of caveolae. Current Opinion in Cell Biology, 2021, 71, 7-14.	5.4	36
26	Impaired endoplasmic reticulum-mitochondrial signaling in ataxia-telangiectasia. IScience, 2021, 24, 101972.	4.1	15
27	Frontline Science: LPS-inducible SLC30A1 drives human macrophage-mediated zinc toxicity against intracellular <i>Escherichia coli</i> . Journal of Leukocyte Biology, 2021, 109, 287-297.	3.3	13
28	An anaplerotic approach to correct the mitochondrial dysfunction in ataxia-telangiectasia (A-T). Molecular Metabolism, 2021, 54, 101354.	6.5	5
29	Cavin4 interacts with Bin1 to promote T-tubule formation and stability in developing skeletal muscle. Journal of Cell Biology, 2021, 220, .	5.2	15
30	Cargo-specific recruitment in clathrin- and dynamin-independent endocytosis. Nature Cell Biology, 2021, 23, 1073-1084.	10.3	34
31	Ryanodine receptor leak triggers fiber Ca ²⁺ redistribution to preserve force and elevate basal metabolism in skeletal muscle. Science Advances, 2021, 7, eabi7166.	10.3	20
32	De novo macrocyclic peptides for inhibiting, stabilizing, and probing the function of the retromer endosomal trafficking complex. Science Advances, 2021, 7, eabg4007.	10.3	11
33	ContactJ: Lipid droplets-mitochondria contacts characterization through fluorescence microscopy and image analysis. F1000Research, 2021, 10, 263.	1.6	2
34	Loss of YhcB results in dysregulation of coordinated peptidoglycan, LPS and phospholipid synthesis during Escherichia coli cell growth. PLoS Genetics, 2021, 17, e1009586.	3.5	16
35	Twenty years of traffic: A 2020 vision of cellular electron microscopy. Traffic, 2020, 21, 156-161.	2.7	2
		_	

3

2.7 65

#	Article	IF	CITATIONS
37	Ascidian caveolin induces membrane curvature and protects tissue integrity and morphology during embryogenesis. FASEB Journal, 2020, 34, 1345-1361.	0.5	23
38	Role for caveolin-mediated transcytosis in facilitating transport of large cargoes into the brain via ultrasound. Journal of Controlled Release, 2020, 327, 667-675.	9.9	41
39	Mammalian lipid droplets are innate immune hubs integrating cell metabolism and host defense. Science, 2020, 370, .	12.6	245
40	Modular transient nanoclustering of activated β2-adrenergic receptors revealed by single-molecule tracking of conformation-specific nanobodies. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30476-30487.	7.1	29
41	In vivo cell biological screening identifies an endocytic capture mechanism for T-tubule formation. Nature Communications, 2020, 11, 3711.	12.8	30
42	ORP5 localizes to ER–lipid droplet contacts and regulates the level of PI(4)P on lipid droplets. Journal of Cell Biology, 2020, 219, .	5.2	75
43	Src kinases relax adherens junctions between the neighbors of apoptotic cells to permit apical extrusion. Molecular Biology of the Cell, 2020, 31, 2557-2569.	2.1	22
44	Caveolae Control Contractile Tension for Epithelia to Eliminate Tumor Cells. Developmental Cell, 2020, 54, 75-91.e7.	7.0	48
45	Novel contact sites between lipid droplets, early endosomes, and the endoplasmic reticulum. Journal of Lipid Research, 2020, 61, 1364.	4.2	9
46	Non-caveolar caveolins $\hat{a} \in $ duties outside the caves. Journal of Cell Science, 2020, 133, .	2.0	35
47	Caveolin-1 Ablation Imparts Partial Protection Against Inner Retinal Injury in Experimental Glaucoma and Reduces Apoptotic Activation. Molecular Neurobiology, 2020, 57, 3759-3784.	4.0	14
48	Caveolae: Formation, dynamics, and function. Current Opinion in Cell Biology, 2020, 65, 8-16.	5.4	103
49	Lipid droplets, bioenergetic fluxes, and metabolic flexibility. Seminars in Cell and Developmental Biology, 2020, 108, 33-46.	5.0	37
50	Endocytosis Inhibition in Humans to Improve Responses to ADCC-Mediating Antibodies. Cell, 2020, 180, 895-914.e27.	28.9	127
51	A role for caveolaâ€forming proteins caveolinâ€1 and CAVIN1 in the proâ€invasive response of glioblastoma to osmotic and hydrostatic pressure. Journal of Cellular and Molecular Medicine, 2020, 24, 3724-3738.	3.6	9
52	Mapping Interactions among Cell-Free Expressed Zika Virus Proteins. Journal of Proteome Research, 2020, 19, 1522-1532.	3.7	11
53	Reactivation of Myc transcription in the mouse heart unlocks its proliferative capacity. Nature Communications, 2020, 11, 1827.	12.8	38
54	Live Confocal Imaging of Zebrafish Notochord Cells Under Mechanical Stress In Vivo. Methods in Molecular Biology, 2020, 2169, 175-187.	0.9	1

#	Article	IF	CITATIONS
55	Caveolae and lipid sorting: Shaping the cellular response to stress. Journal of Cell Biology, 2020, 219, .	5.2	47
56	Identification of intracellular cavin target proteins reveals cavin-PP1alpha interactions regulate apoptosis. Nature Communications, 2019, 10, 3279.	12.8	53
57	The membrane environment of cadherin adhesion receptors: a working hypothesis. Biochemical Society Transactions, 2019, 47, 985-995.	3.4	6
58	Faceted polymersomes: a sphere-to-polyhedron shape transformation. Chemical Science, 2019, 10, 2725-2731.	7.4	29
59	Drugâ€induced increase in lysobisphosphatidic acid reduces the cholesterol overload in Niemann–Pick type C cells and mice. EMBO Reports, 2019, 20, e47055.	4.5	33
60	Correlation of the invasive potential of glioblastoma and expression of caveola-forming proteins caveolin-1 and CAVIN1. Journal of Neuro-Oncology, 2019, 143, 207-220.	2.9	8
61	Myosin Vb is required for correct trafficking of Nâ€cadherin and cardiac chamber ballooning. Developmental Dynamics, 2019, 248, 284-295.	1.8	6
62	Colocation of Tpm3.1 and myosin IIa heads defines a discrete subdomain in stress fibres. Journal of Cell Science, 2019, 132, .	2.0	15
63	An Abl-FBP17 mechanosensing system couples local plasma membrane curvature and stress fiber remodeling during mechanoadaptation. Nature Communications, 2019, 10, 5828.	12.8	50
64	Retromer has a selective function in cargo sorting via endosome transport carriers. Journal of Cell Biology, 2019, 218, 615-631.	5.2	118
65	ORP2 Delivers Cholesterol to the Plasma Membrane in Exchange for Phosphatidylinositol 4, 5-Bisphosphate (PI(4,5)P2). Molecular Cell, 2019, 73, 458-473.e7.	9.7	143
66	Membrane Curvature and Tension Control the Formation and Collapse of Caveolar Superstructures. Developmental Cell, 2019, 48, 523-538.e4.	7.0	53
67	Development of a human skeletal micro muscle platform with pacing capabilities. Biomaterials, 2019, 198, 217-227.	11.4	38
68	Caveolae. Current Biology, 2018, 28, R402-R405.	3.9	95
69	Rab18 promotes lipid droplet (LD) growth by tethering the ER to LDs through SNARE and NRZ interactions. Journal of Cell Biology, 2018, 217, 975-995.	5.2	164
70	Cell-free formation and interactome analysis of caveolae. Journal of Cell Biology, 2018, 217, 2141-2165.	5.2	48
71	Journey to the centre of the cell: Virtual reality immersion into scientific data. Traffic, 2018, 19, 105-110.	2.7	74
72	Caveolae: Structure, Function, and Relationship to Disease. Annual Review of Cell and Developmental Biology, 2018, 34, 111-136.	9.4	208

#	Article	IF	CITATIONS
73	Mechanochemical feedback control of dynamin independent endocytosis modulates membrane tension in adherent cells. Nature Communications, 2018, 9, 4217.	12.8	106
74	Minimum information reporting in bio–nano experimental literature. Nature Nanotechnology, 2018, 13, 777-785.	31.5	455
75	Ultrastructural localisation of protein interactions using conditionally stable nanobodies. PLoS Biology, 2018, 16, e2005473.	5.6	42
76	Rab5 and Alsin regulate stress-activated cytoprotective signaling on mitochondria. ELife, 2018, 7, .	6.0	65
77	A variable undecad repeat domain in cavin1 regulates caveola formation and stability. EMBO Reports, 2018, 19, .	4.5	23
78	Small GTPases and BAR domain proteins regulate branched actin polymerisation for clathrin and dynamin-independent endocytosis. Nature Communications, 2018, 9, 1835.	12.8	74
79	Development of a human cardiac organoid injury model reveals innate regenerative potential. Development (Cambridge), 2017, 144, 1118-1127.	2.5	127
80	A plasmid library of full-length zebrafish rab proteins for <i>in vivo</i> cell biology. Cellular Logistics, 2017, 7, e1301151.	0.9	6
81	Correlative light and electron microscopic detection of GFP-labeled proteins using modular APEX. Methods in Cell Biology, 2017, 140, 105-121.	1.1	13
82	Mammalian Diaphanous 1 Mediates a Pathway for E-cadherin to Stabilize Epithelial Barriers through Junctional Contractility. Cell Reports, 2017, 18, 2854-2867.	6.4	94
83	Cavin-1 deficiency modifies myocardial and coronary function, stretch responses and ischaemic tolerance: roles of NOS over-activity. Basic Research in Cardiology, 2017, 112, 24.	5.9	15
84	Laser-mediated rupture of chlamydial inclusions triggers pathogen egress and host cell necrosis. Nature Communications, 2017, 8, 14729.	12.8	17
85	ORP5 and ORP8 bind phosphatidylinositol-4, 5-biphosphate (PtdIns(4,5)P 2) and regulate its level at the plasma membrane. Nature Communications, 2017, 8, 757.	12.8	150
86	Tyrosine dephosphorylated cortactin downregulates contractility at the epithelial zonula adherens through SRGAP1. Nature Communications, 2017, 8, 790.	12.8	27
87	A kinetic view of GPCR allostery and biased agonism. Nature Chemical Biology, 2017, 13, 929-937.	8.0	126
88	A microtubule-organizing center directing intracellular transport in the early mouse embryo. Science, 2017, 357, 925-928.	12.6	101
89	Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8372-E8381.	7.1	361
90	Phosphatidylserine dictates the assembly and dynamics of caveolae in the plasma membrane. Journal of Biological Chemistry, 2017, 292, 14292-14307.	3.4	68

#	Article	IF	CITATIONS
91	Caveolin 1 restricts Group AStreptococcusinvasion of nonphagocytic host cells. Cellular Microbiology, 2017, 19, e12772.	2.1	11
92	Caveolae Protect Notochord Cells against Catastrophic Mechanical Failure during Development. Current Biology, 2017, 27, 1968-1981.e7.	3.9	74
93	A novel sphingomyelin/cholesterol domainâ€specific probe reveals the dynamics of the membrane domains during virus release and in Niemannâ€Pick type C. FASEB Journal, 2017, 31, 1301-1322.	0.5	34
94	A distinct plasma lipid signature associated with poor prognosis in castrationâ€resistant prostate cancer. International Journal of Cancer, 2017, 141, 2112-2120.	5.1	54
95	Parkinson Disease-linked Vps35 R524W Mutation Impairs the Endosomal Association of Retromer and Induces α-Synuclein Aggregation. Journal of Biological Chemistry, 2016, 291, 18283-18298.	3.4	68
96	Nanomolar oligomerization and selective co-aggregation of α-synuclein pathogenic mutants revealed by single-molecule fluorescence. Scientific Reports, 2016, 6, 37630.	3.3	29
97	Human immune cell targeting of protein nanoparticles – caveospheres. Nanoscale, 2016, 8, 8255-8265.	5.6	31
98	Coronin 1B Reorganizes the Architecture of F-Actin Networks for Contractility at Steady-State and Apoptotic Adherens Junctions. Developmental Cell, 2016, 37, 58-71.	7.0	103
99	Prolonged Intake of Dietary Lipids Alters Membrane Structure and T Cell Responses in LDLrâ^'/â^' Mice. Journal of Immunology, 2016, 196, 3993-4002.	0.8	21
100	Munc18-1 is a molecular chaperone for α-synuclein, controlling its self-replicating aggregation. Journal of Cell Biology, 2016, 214, 705-718.	5.2	56
101	Highâ€density lipoprotein inhibits human M1 macrophage polarization through redistribution of caveolinâ€1. British Journal of Pharmacology, 2016, 173, 741-751.	5.4	67
102	Functional role of T-cell receptor nanoclusters in signal initiation and antigen discrimination. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5454-63.	7.1	194
103	An endosomal tether undergoes an entropic collapse to bring vesicles together. Nature, 2016, 537, 107-111.	27.8	135
104	Unraveling the architecture of caveolae. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14170-14172.	7.1	22
105	Subdiffractional tracking of internalized molecules reveals heterogeneous motion states of synaptic vesicles. Journal of Cell Biology, 2016, 215, 277-292.	5.2	64
106	Interplay between hepatic mitochondria-associated membranes, lipid metabolism and caveolin-1 in mice. Scientific Reports, 2016, 6, 27351.	3.3	131
107	SEIPIN Regulates Lipid Droplet Expansion and Adipocyte Development by Modulating the Activity of Glycerol-3-phosphate Acyltransferase. Cell Reports, 2016, 17, 1546-1559.	6.4	148
108	Resolution of Novel Pancreatic Ductal Adenocarcinoma Subtypes by Global Phosphotyrosine Profiling. Molecular and Cellular Proteomics, 2016, 15, 2671-2685.	3.8	29

#	Article	IF	CITATIONS
109	Mechanoprotection by skeletal muscle caveolae. Bioarchitecture, 2016, 6, 22-27.	1.5	29
110	New Transgenic Lines for Localization of GFP-Tagged Proteins by Electron Microscopy. Zebrafish, 2016, 13, 232-233.	1.1	1
111	Annexin A6 regulates interleukinâ€2â€mediated Tâ€cell proliferation. Immunology and Cell Biology, 2016, 94, 543-553.	2.3	26
112	AarF Domain Containing Kinase 3 (ADCK3) Mutant Cells Display Signs of Oxidative Stress, Defects in Mitochondrial Homeostasis and Lysosomal Accumulation. PLoS ONE, 2016, 11, e0148213.	2.5	15
113	MURC/cavin-4 Is Co-Expressed with Caveolin-3 in Rhabdomyosarcoma Tumors and Its Silencing Prevents Myogenic Differentiation in the Human Embryonal RD Cell Line. PLoS ONE, 2015, 10, e0130287.	2.5	2
114	Detection of GFP-labeled Proteins by Electron Microscopy. Microscopy and Microanalysis, 2015, 21, 531-532.	0.4	0
115	AMPK activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation. Nature Communications, 2015, 6, 7176.	12.8	215
116	Oligomerization and endocytosis of Hedgehog is necessary for its efficient exovesicular secretion. Molecular Biology of the Cell, 2015, 26, 4700-4717.	2.1	33
117	An RPTPα/Src family kinase/Rap1 signaling module recruits myosin IIB to support contractile tension at apical E-cadherin junctions. Molecular Biology of the Cell, 2015, 26, 1249-1262.	2.1	39
118	Are caveolae a cellular entry route for non-viral therapeutic delivery systems?. Advanced Drug Delivery Reviews, 2015, 91, 92-108.	13.7	60
119	Discreet and distinct clustering of five model membrane proteins revealed by single molecule localization microscopy. Molecular Membrane Biology, 2015, 32, 11-18.	2.0	8
120	The Ether Lipid Precursor Hexadecylglycerol Stimulates the Release and Changes the Composition of Exosomes Derived from PC-3 Cells. Journal of Biological Chemistry, 2015, 290, 4225-4237.	3.4	102
121	Critical role of CAV1/caveolin-1 in cell stress responses in human breast cancer cells via modulation of lysosomal function and autophagy. Autophagy, 2015, 11, 769-784.	9.1	112
122	Cavin family proteins and the assembly of caveolae. Journal of Cell Science, 2015, 128, 1269-1278.	2.0	181
123	Building endocytic pits without clathrin. Nature Reviews Molecular Cell Biology, 2015, 16, 311-321.	37.0	175
124	A phosphoinositide-binding cluster in cavin1 acts as a molecular sensor for cavin1 degradation. Molecular Biology of the Cell, 2015, 26, 3561-3569.	2.1	26
125	Caveolae control the antiâ€inflammatory phenotype of senescent endothelial cells. Aging Cell, 2015, 14, 102-111.	6.7	36
126	Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature, 2015, 526, 564-568.	27.8	1,210

#	Article	IF	CITATIONS
127	Adherens Junctions Revisualized: Organizing Cadherins as Nanoassemblies. Developmental Cell, 2015, 35, 12-20.	7.0	100
128	Molecular Characterization of Caveolin-induced Membrane Curvature. Journal of Biological Chemistry, 2015, 290, 24875-24890.	3.4	85
129	APPL endosomes are not obligatory endocytic intermediates but act as stable cargo-sorting compartments. Journal of Cell Biology, 2015, 211, 123-144.	5.2	87
130	The caveolin–cavin system plays a conserved and critical role in mechanoprotection of skeletal muscle. Journal of Cell Biology, 2015, 210, 833-849.	5.2	133
131	Modular Detection of GFP-Labeled Proteins for Rapid Screening by Electron Microscopy in Cells and Organisms. Developmental Cell, 2015, 35, 513-525.	7.0	119
132	Visualization of the heterogeneous membrane distribution of sphingomyelin associated with cytokinesis, cell polarity, and sphingolipidosis. FASEB Journal, 2015, 29, 477-493.	0.5	76
133	Seeing and believing: recent advances in imaging cell-cell interactions. F1000Research, 2015, 4, 273.	1.6	5
134	Non-caveolar caveolin-1 expression in prostate cancer cells promotes lymphangiogenesis. Oncoscience, 2015, 2, 635-645.	2.2	22
135	Diet-induced hypercholesterolemia promotes androgen-independent prostate cancer metastasis via IQGAP1 and caveolin-1. Oncotarget, 2015, 6, 7438-7453.	1.8	41
136	Population Distribution Analyses Reveal a Hierarchy of Molecular Players Underlying Parallel Endocytic Pathways. PLoS ONE, 2014, 9, e100554.	2.5	17
137	Biogenesis of the multifunctional lipid droplet: Lipids, proteins, and sites. Journal of Cell Biology, 2014, 204, 635-646.	5.2	386
138	PTRF/cavin-1 neutralizes non-caveolar caveolin-1 microdomains in prostate cancer. Oncogene, 2014, 33, 3561-3570.	5.9	72
139	Caveolae regulate the nanoscale organization of the plasma membrane to remotely control Ras signaling. Journal of Cell Biology, 2014, 204, 777-792.	5.2	112
140	Endocytic Crosstalk: Cavins, Caveolins, and Caveolae Regulate Clathrin-Independent Endocytosis. PLoS Biology, 2014, 12, e1001832.	5.6	128
141	Pkd1 Regulates Lymphatic Vascular Morphogenesis during Development. Cell Reports, 2014, 7, 623-633.	6.4	77
142	Signal Integration by Lipid-Mediated Spatial Cross Talk between Ras Nanoclusters. Molecular and Cellular Biology, 2014, 34, 862-876.	2.3	119
143	Galectin-3 drives glycosphingolipid-dependent biogenesis of clathrin-independent carriers. Nature Cell Biology, 2014, 16, 592-603.	10.3	248
144	Cortical F-actin stabilization generates apical–lateral patterns of junctional contractility that integrate cells into epithelia. Nature Cell Biology, 2014, 16, 167-178.	10.3	199

#	Article	IF	CITATIONS
145	Structural Insights into the Organization of the Cavin Membrane Coat Complex. Developmental Cell, 2014, 31, 405-419.	7.0	79
146	Cortactin Scaffolds Arp2/3 and WAVE2 at the Epithelial Zonula Adherens. Journal of Biological Chemistry, 2014, 289, 7764-7775.	3.4	59
147	Clathrin-Independent Pathways of Endocytosis. Cold Spring Harbor Perspectives in Biology, 2014, 6, a016758-a016758.	5.5	394
148	Cavinâ€1/PTRF alters prostate cancer cellâ€derived extracellular vesicle content and internalization to attenuate extracellular vesicleâ€mediated osteoclastogenesis and osteoblast proliferation. Journal of Extracellular Vesicles, 2014, 3, .	12.2	86
149	Caveolae regulate the nanoscale organization of the plasma membrane to remotely control Ras signaling. Journal of General Physiology, 2014, 143, 1434OIA10.	1.9	0
150	SnapShot: Caveolae, Caveolins, and Cavins. Cell, 2013, 154, 704-704.e1.	28.9	45
151	Cell-to-Cell Heterogeneity in Lipid Droplets Suggests a Mechanism to Reduce Lipotoxicity. Current Biology, 2013, 23, 1489-1496.	3.9	152
152	RhoD participates in the regulation of cell-cycle progression and centrosome duplication. Oncogene, 2013, 32, 1831-1842.	5.9	22
153	Caveola-forming proteins caveolin-1 and PTRF in prostate cancer. Nature Reviews Urology, 2013, 10, 529-536.	3.8	48
154	Characterisation of the adiponectin receptors: The non-conserved N-terminal region of AdipoR2 prevents its expression at the cell-surface. Biochemical and Biophysical Research Communications, 2013, 432, 28-33.	2.1	14
155	Adaptor Proteins MiD49 and MiD51 Can Act Independently of Mff and Fis1 in Drp1 Recruitment and Are Specific for Mitochondrial Fission. Journal of Biological Chemistry, 2013, 288, 27584-27593.	3.4	240
156	Clucose principally regulates insulin secretion in mouse islets by controlling the numbers of granule fusion events per cell. Diabetologia, 2013, 56, 2629-2637.	6.3	40
157	Caveolae as plasma membrane sensors, protectors and organizers. Nature Reviews Molecular Cell Biology, 2013, 14, 98-112.	37.0	740
158	Caveolin-1 Is Necessary for Hepatic Oxidative Lipid Metabolism: Evidence for Crosstalk between Caveolin-1 and Bile Acid Signaling. Cell Reports, 2013, 4, 238-247.	6.4	56
159	PNPLA3/adiponutrin functions in lipid droplet formation. Biology of the Cell, 2013, 105, 219-233.	2.0	79
160	Examination of the Subsarcolemmal Tubular System of Mammalian Skeletal Muscle Fibers. Biophysical Journal, 2013, 104, L19-L21.	0.5	23
161	Rab18 Binds to Hepatitis C Virus NS5A and Promotes Interaction between Sites of Viral Replication and Lipid Droplets. PLoS Pathogens, 2013, 9, e1003513.	4.7	125
162	Fendiline Inhibits K-Ras Plasma Membrane Localization and Blocks K-Ras Signal Transmission. Molecular and Cellular Biology, 2013, 33, 237-251.	2.3	94

#	Article	IF	CITATIONS
163	Acyl-CoA synthetase 3 promotes lipid droplet biogenesis in ER microdomains. Journal of Cell Biology, 2013, 203, 985-1001.	5.2	257
164	Patched1 is required in neural crest cells for the prevention of orofacial clefts. Human Molecular Genetics, 2013, 22, 5026-5035.	2.9	42
165	The HSP90 inhibitor geldanamycin perturbs endosomal structure and drives recycling ErbB2 and transferrin to modified MVBs/lysosomal compartments. Molecular Biology of the Cell, 2013, 24, 129-144.	2.1	44
166	The RhoD to centrosomal duplication. Small GTPases, 2013, 4, 116-122.	1.6	3
167	Building a Better Dynasore: The Dyngo Compounds Potently Inhibit Dynamin and Endocytosis. Traffic, 2013, 14, 1272-1289.	2.7	243
168	Single-molecule analysis reveals self assembly and nanoscale segregation of two distinct cavin subcomplexes on caveolae. ELife, 2013, 3, e01434.	6.0	114
169	PTRF/Cavin-1 decreases prostate cancer angiogenesis and lymphangiogenesis. Oncotarget, 2013, 4, 1844-1855.	1.8	42
170	Expression of PTRF in PC-3 Cells Modulates Cholesterol Dynamics and the Actin Cytoskeleton Impacting Secretion Pathways. Molecular and Cellular Proteomics, 2012, 11, M111.012245.	3.8	59
171	EHD2 regulates caveolar dynamics via ATP-driven targeting and oligomerization. Molecular Biology of the Cell, 2012, 23, 1316-1329.	2.1	165
172	Mutations in mouse Ift144 model the craniofacial, limb and rib defects in skeletal ciliopathies. Human Molecular Genetics, 2012, 21, 1808-1823.	2.9	70
173	Postlipolytic insulin-dependent remodeling of micro lipid droplets in adipocytes. Molecular Biology of the Cell, 2012, 23, 1826-1837.	2.1	59
174	Phosphocaveolin-1 is a mechanotransducer that induces caveola biogenesis via Egr1 transcriptional regulation. Journal of Cell Biology, 2012, 199, 425-435.	5.2	86
175	Staurosporines Disrupt Phosphatidylserine Trafficking and Mislocalize Ras Proteins. Journal of Biological Chemistry, 2012, 287, 43573-43584.	3.4	89
176	Constitutive Formation of Caveolae in a Bacterium. Cell, 2012, 150, 752-763.	28.9	126
177	Design and Application of InÂVivo FRET Biosensors to Identify Protein Prenylation and Nanoclustering Inhibitors. Chemistry and Biology, 2012, 19, 866-874.	6.0	30
178	Caveolin-1 Plays a Critical Role in the Differentiation of Monocytes into Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, e117-25.	2.4	57
179	Structure-Based Reassessment of the Caveolin Signaling Model: Do Caveolae Regulate Signaling through Caveolin-Protein Interactions?. Developmental Cell, 2012, 23, 11-20.	7.0	127
180	SNX12 Role in Endosome Membrane Transport. PLoS ONE, 2012, 7, e38949.	2.5	25

#	Article	IF	CITATIONS
181	Co-Regulation of Cell Polarization and Migration by Caveolar Proteins PTRF/Cavin-1 and Caveolin-1. PLoS ONE, 2012, 7, e43041.	2.5	49
182	Different Characteristics and Nucleotide Binding Properties of Inosine Monophosphate Dehydrogenase (IMPDH) Isoforms. PLoS ONE, 2012, 7, e51096.	2.5	71
183	Normalization of protein at different stages in SILAC subcellular proteomics affects functional analysis. Journal of Integrated OMICS, 2012, 2, .	0.5	3
184	Caveolin-1 orchestrates the balance between glucose and lipid-dependent energy metabolism: Implications for liver regeneration. Hepatology, 2012, 55, 1574-1584.	7.3	82
185	Caveolin-1 Deficiency Leads to Increased Susceptibility to Cell Death and Fibrosis in White Adipose Tissue: Characterization of a Lipodystrophic Model. PLoS ONE, 2012, 7, e46242.	2.5	45
186	Redistribution of caveolae during mitosis. Journal of Cell Science, 2011, 124, 1965-1972.	2.0	84
187	Quantitative Proteomic Analysis of the Adipocyte Plasma Membrane. Journal of Proteome Research, 2011, 10, 4970-4982.	3.7	29
188	Not Just Fat: The Structure and Function of the Lipid Droplet. Cold Spring Harbor Perspectives in Biology, 2011, 3, a004838-a004838.	5.5	374
189	Cells Respond to Mechanical Stress by Rapid Disassembly of Caveolae. Cell, 2011, 144, 402-413.	28.9	791
190	Role of SNX16 in the Dynamics of Tubulo-Cisternal Membrane Domains of Late Endosomes. PLoS ONE, 2011, 6, e21771.	2.5	26
191	High-Throughput Screening of Australian Marine Organism Extracts for Bioactive Molecules Affecting the Cellular Storage of Neutral Lipids. PLoS ONE, 2011, 6, e22868.	2.5	8
192	Pore-forming toxins induce multiple cellular responses promoting survival. Cellular Microbiology, 2011, 13, 1026-1043.	2.1	139
193	PTRF–cavin-1 expression decreases the migration of PC3 prostate cancer cells: Role of matrix metalloprotease 9. European Journal of Cell Biology, 2011, 90, 136-142.	3.6	69
194	Therapeutic Levels of the Hydroxmethylglutaryl-Coenzyme A Reductase Inhibitor Lovastatin Activate Ras Signaling via Phospholipase D2. Molecular and Cellular Biology, 2011, 31, 1110-1120.	2.3	36
195	A role for oxysterol-binding protein–related protein 5 in endosomal cholesterol trafficking. Journal of Cell Biology, 2011, 192, 121-135.	5.2	270
196	Role of AP1 and Gadkin in the traffic of secretory endo-lysosomes. Molecular Biology of the Cell, 2011, 22, 2068-2082.	2.1	55
197	The endocytic protein GRAF1 is directed to cell-matrix adhesion sites and regulates cell spreading. Molecular Biology of the Cell, 2011, 22, 4380-4389.	2.1	50
198	A Role for Phosphatidic Acid in the Formation of "Supersized―Lipid Droplets. PLoS Genetics, 2011, 7, e1002201.	3.5	290

#	Article	IF	CITATIONS
199	High-resolution mapping reveals topologically distinct cellular pools of phosphatidylserine. Journal of Cell Biology, 2011, 194, 257-275.	5.2	249
200	Fsp27 promotes lipid droplet growth by lipid exchange and transfer at lipid droplet contact sites. Journal of Cell Biology, 2011, 195, 953-963.	5.2	273
201	Caveolins/caveolae protect adipocytes from fatty acid-mediated lipotoxicity. Journal of Lipid Research, 2011, 52, 1526-1532.	4.2	21
202	Caveolae at a glance. Journal of Cell Science, 2010, 123, 3831-3836.	2.0	182
203	Human Miltons associate with mitochondria and induce microtubule-dependent remodeling of mitochondrial networks. Biochimica Et Biophysica Acta - Molecular Cell Research, 2010, 1803, 564-574.	4.1	64
204	Molecules, mechanisms, and cellular roles of clathrin-independent endocytosis. Current Opinion in Cell Biology, 2010, 22, 519-527.	5.4	171
205	Centrobin regulates the assembly of functional mitotic spindles. Oncogene, 2010, 29, 2649-2658.	5.9	35
206	Revisiting caveolin trafficking: the end of the caveosome. Journal of Cell Biology, 2010, 191, 439-441.	5.2	73
207	Clathrin-independent carriers form a high capacity endocytic sorting system at the leading edge of migrating cells. Journal of Cell Biology, 2010, 190, 675-691.	5.2	263
208	Reduced Plasma Membrane Expression of Dysferlin Mutants Is Attributed to Accelerated Endocytosis via a Syntaxin-4-associated Pathway. Journal of Biological Chemistry, 2010, 285, 28529-28539.	3.4	37
209	Epidermal Growth Factor Receptor Activation Remodels the Plasma Membrane Lipid Environment To Induce Nanocluster Formation. Molecular and Cellular Biology, 2010, 30, 3795-3804.	2.3	87
210	Uptake and Intracellular Fate of Disulfide-Bonded Polymer Hydrogel Capsules for Doxorubicin Delivery to Colorectal Cancer Cells. ACS Nano, 2010, 4, 2928-2936.	14.6	155
211	Mathematical Modeling of K-Ras Nanocluster Formation on the Plasma Membrane. Biophysical Journal, 2010, 99, 534-543.	0.5	43
212	Sequence-Dependent Sorting of Recycling Proteins by Actin-Stabilized Endosomal Microdomains. Cell, 2010, 143, 761-773.	28.9	289
213	Myosin II isoforms identify distinct functional modules that support integrity of the epithelial zonula adherens. Nature Cell Biology, 2010, 12, 696-702.	10.3	296
214	Heterofibrins: inhibitors of lipid droplet formation from a deep-water southern Australian marine sponge, Spongia (Heterofibria) sp Organic and Biomolecular Chemistry, 2010, 8, 3188.	2.8	22
215	Modern Approaches for Ultrastructural Analysis of the Zebrafish Embryo. Methods in Cell Biology, 2010, 96, 425-442.	1.1	25
216	α-Actinin-3 deficiency results in reduced glycogen phosphorylase activity and altered calcium handling in skeletal muscle. Human Molecular Genetics, 2010, 19, 1335-1346.	2.9	73

#	Article	IF	CITATIONS
217	Quantitative Analysis of Lipid Droplet Fusion: Inefficient Steady State Fusion but Rapid Stimulation by Chemical Fusogens. PLoS ONE, 2010, 5, e15030.	2.5	77
218	Spatiotemporal Regulation of Early Lipolytic Signaling in Adipocytes. Journal of Biological Chemistry, 2009, 284, 32097-32107.	3.4	34
219	Cytoskeletal Tropomyosin Tm5NM1 Is Required for Normal Excitation–Contraction Coupling in Skeletal Muscle. Molecular Biology of the Cell, 2009, 20, 400-409.	2.1	45
220	Vascular defects in a mouse model of hypotrichosis-lymphedema-telangiectasia syndrome indicate a role for SOX18 in blood vessel maturation. Human Molecular Genetics, 2009, 18, 2839-2850.	2.9	48
221	Nucleophosmin and Nucleolin Regulate K-Ras Plasma Membrane Interactions and MAPK Signal Transduction. Journal of Biological Chemistry, 2009, 284, 28410-28419.	3.4	61
222	Colony-stimulating factor-1 (CSF-1) delivers a proatherogenic signal to human macrophages. Journal of Leukocyte Biology, 2009, 85, 278-288.	3.3	69
223	MURC/Cavin-4 and cavin family members form tissue-specific caveolar complexes. Journal of Cell Biology, 2009, 185, 1259-1273.	5.2	243
224	A Single Method for Cryofixation and Correlative Light, Electron Microscopy and Tomography of Zebrafish Embryos. Traffic, 2009, 10, 131-136.	2.7	131
225	Hydrophobic and Basic Domains Target Proteins to Lipid Droplets. Traffic, 2009, 10, 1785-1801.	2.7	67
226	Annexin A2-Dependent Polymerization of Actin Mediates Endosome Biogenesis. Developmental Cell, 2009, 16, 445-457.	7.0	139
227	Lipid droplet-organelle interactions; sharing the fats. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2009, 1791, 441-447.	2.4	218
228	G.O.4 α-Actinin-3 regulates muscle glycogen phosphorylase: A potential mechanism for the metabolic consequences of the common human null allele of ACTN3. Neuromuscular Disorders, 2009, 19, 545-546.	0.6	1
229	Abnormal Nuclear Pore Formation Triggers Apoptosis in the Intestinal Epithelium of elys-Deficient Zebrafish. Gastroenterology, 2009, 136, 902-911.e7.	1.3	44
230	Highâ€Resolution 3D Quantitative Analysis of Caveolar Ultrastructure and Caveola–Cytoskeleton Interactions. Traffic, 2008, 9, 893-909.	2.7	156
231	A novel switch region regulates H-ras membrane orientation and signal output. EMBO Journal, 2008, 27, 727-735.	7.8	182
232	The GTPase-Activating Protein GRAF1 Regulates the CLIC/GEEC Endocytic Pathway. Current Biology, 2008, 18, 1802-1808.	3.9	213
233	Hrs and SNX3 Functions in Sorting and Membrane Invagination within Multivesicular Bodies. PLoS Biology, 2008, 6, e214.	5.6	87
234	Characterization of Rab18, a Lipid Droplet–Associated Small GTPase. Methods in Enzymology, 2008, 438, 109-129.	1.0	42

#	Article	IF	CITATIONS
235	PTRF-Cavin, a Conserved Cytoplasmic Protein Required for Caveola Formation and Function. Cell, 2008, 132, 113-124.	28.9	647
236	Activation of the MAPK Module from Different Spatial Locations Generates Distinct System Outputs. Molecular Biology of the Cell, 2008, 19, 4776-4784.	2.1	78
237	Ca ²⁺ -regulated Pool of Phosphatidylinositol-3-phosphate Produced by Phosphatidylinositol 3-Kinase C2α on Neurosecretory Vesicles. Molecular Biology of the Cell, 2008, 19, 5593-5603.	2.1	51
238	Evolutionary analysis and molecular dissection of caveola biogenesis. Journal of Cell Science, 2008, 121, 2075-2086.	2.0	110
239	Electrostatic Interactions Positively Regulate K-Ras Nanocluster Formation and Function. Molecular and Cellular Biology, 2008, 28, 4377-4385.	2.3	102
240	Caveolin Regulates Endocytosis of the Muscle Repair Protein, Dysferlin. Journal of Biological Chemistry, 2008, 283, 6476-6488.	3.4	80
241	Fld1p, a functional homologue of human seipin, regulates the size of lipid droplets in yeast. Journal of Cell Biology, 2008, 180, 473-482.	5.2	411
242	Lysobisphosphatidic Acid Controls Endosomal Cholesterol Levels. Journal of Biological Chemistry, 2008, 283, 27871-27880.	3.4	174
243	Caveolin-1 is required for lateral line neuromast and notochord development. Journal of Cell Science, 2007, 120, 2151-2161.	2.0	60
244	Late Endosomal Cholesterol Accumulation Leads to Impaired Intra-Endosomal Trafficking. PLoS ONE, 2007, 2, e851.	2.5	119
245	Cholesterol Manipulation by West Nile Virus Perturbs the Cellular Immune Response. Cell Host and Microbe, 2007, 2, 229-239.	11.0	255
246	Plasma membrane nanoswitches generate high-fidelity Ras signal transduction. Nature Cell Biology, 2007, 9, 905-914.	10.3	372
247	The multiple faces of caveolae. Nature Reviews Molecular Cell Biology, 2007, 8, 185-194.	37.0	1,264
248	A novel form of ataxia oculomotor apraxia characterized by oxidative stress and apoptosis resistance. Cell Death and Differentiation, 2007, 14, 1149-1161.	11.2	14
249	Cholesterolâ€Sensitive Cdc42 Activation Regulates Actin Polymerization for Endocytosis via the GEEC Pathway. Traffic, 2007, 8, 702-717.	2.7	166
250	Reassessing the Role of Phosphocaveolinâ€1 in Cell Adhesion and Migration. Traffic, 2007, 8, 1695-1705.	2.7	32
251	Diversity of Raft-Like Domains in Late Endosomes. PLoS ONE, 2007, 2, e391.	2.5	76
252	Hybrid organic-inorganic nanoparticles: controlled incorporation of gold nanoparticles into virus-like particles and application in surface-enhanced Raman spectroscopy. , 2006, 6413, 123.		0

#	Article	IF	CITATIONS
253	Cholesterol-Induced Caveolin Targeting to Lipid Droplets in Adipocytes: A Role for Caveolar Endocytosis. Traffic, 2006, 7, 549-561.	2.7	158
254	Lipid droplets: a unified view of a dynamic organelle. Nature Reviews Molecular Cell Biology, 2006, 7, 373-378.	37.0	1,036
255	Biogenesis of caveolae: a structural model for caveolin-induced domain formation. Journal of Cell Science, 2006, 119, 787-796.	2.0	253
256	Dynamic microtubules regulate the local concentration of E-cadherin at cell-cell contacts. Journal of Cell Science, 2006, 119, 1801-1811.	2.0	167
257	Arf6-independent GPI-anchored Protein-enriched Early Endosomal Compartments Fuse with Sorting Endosomes via a Rab5/Phosphatidylinositol-3′-Kinase–dependent Machinery. Molecular Biology of the Cell, 2006, 17, 3689-3704.	2.1	104
258	Identifying Optimal Lipid Raft Characteristics Required To Promote Nanoscale Protein-Protein Interactions on the Plasma Membrane. Molecular and Cellular Biology, 2006, 26, 313-323.	2.3	174
259	Regulation of Albumin Endocytosis by PSD95/Dlg/ZO-1 (PDZ) Scaffolds. Journal of Biological Chemistry, 2006, 281, 16068-16077.	3.4	53
260	Visualisation of macropinosome maturation by the recruitment of sorting nexins. Journal of Cell Science, 2006, 119, 3967-3980.	2.0	125
261	Aberrant dysferlin trafficking in cells lacking caveolin or expressing dystrophy mutants of caveolin-3. Human Molecular Genetics, 2006, 15, 129-142.	2.9	66
262	Mutant huntingtin inhibits clathrin-independent endocytosis and causes accumulation of cholesterol in vitro and in vivo. Human Molecular Genetics, 2006, 15, 3578-3591.	2.9	101
263	Caveolin-1 Is Essential for Liver Regeneration. Science, 2006, 313, 1628-1632.	12.6	235
264	Endosome-to-cytosol transport of viral nucleocapsids. Nature Cell Biology, 2005, 7, 653-664.	10.3	290
265	A Novel Hook-Related Protein Family and the Characterization of Hook-Related Protein 1. Traffic, 2005, 6, 442-458.	2.7	67
266	Flotillins and the PHB Domain Protein Family: Rafts, Worms and Anaesthetics. Traffic, 2005, 6, 725-740.	2.7	233
267	Clathrin-independent endocytosis: New insights into caveolae and non-caveolar lipid raft carriers. Biochimica Et Biophysica Acta - Molecular Cell Research, 2005, 1745, 273-286.	4.1	253
268	Erratum to "Clathrin-independent endocytosis: New insights into caveolae and non-caveolar lipid raft carriers―[Biochim. Biophys. Acta 1744 (2005) 273–286]. Biochimica Et Biophysica Acta - Molecular Cell Research, 2005, 1746, 349.	4.1	163
269	Clathrin-independent endocytosis: New insights into caveolae and non-caveolar lipid raft carriers. Biochimica Et Biophysica Acta - Molecular Cell Research, 2005, 1746, 350-363.	4.1	118
270	Characterization of Rab23, a Negative Regulator of Sonic Hedgehog Signaling. Methods in Enzymology, 2005, 403, 759-777.	1.0	23

#	Article	IF	CITATIONS
271	Ultrastructural identification of uncoated caveolin-independent early endocytic vehicles. Journal of Cell Biology, 2005, 168, 465-476.	5.2	385
272	Zebrafish as a model for caveolin-associated muscle disease; caveolin-3 is required for myofibril organization and muscle cell patterning. Human Molecular Genetics, 2005, 14, 1727-1743.	2.9	86
273	Cholesterol and Fatty Acids Regulate Dynamic Caveolin Trafficking through the Golgi Complex and between the Cell Surface and Lipid Bodies. Molecular Biology of the Cell, 2005, 16, 2091-2105.	2.1	184
274	Regulated Localization of Rab18 to Lipid Droplets. Journal of Biological Chemistry, 2005, 280, 42325-42335.	3.4	257
275	H-ras, K-ras, and inner plasma membrane raft proteins operate in nanoclusters with differential dependence on the actin cytoskeleton. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15500-15505.	7.1	423
276	Individual Palmitoyl Residues Serve Distinct Roles in H-Ras Trafficking, Microlocalization, and Signaling. Molecular and Cellular Biology, 2005, 25, 6722-6733.	2.3	187
277	Ras plasma membrane signalling platforms. Biochemical Journal, 2005, 389, 1-11.	3.7	219
278	Caveolin, cholesterol, and lipid bodies. Seminars in Cell and Developmental Biology, 2005, 16, 163-174.	5.0	160
279	Membrane insertion of anthrax protective antigen and cytoplasmic delivery of lethal factor occur at different stages of the endocytic pathway. Journal of Cell Biology, 2004, 166, 645-651.	5.2	197
280	Clathrin Isoform CHC22, a Component of Neuromuscular and Myotendinous Junctions, Binds Sorting Nexin 5 and Has Increased Expression during Myogenesis and Muscle Regeneration. Molecular Biology of the Cell, 2004, 15, 3181-3195.	2.1	49
281	Selective Stimulation of Caveolar Endocytosis by Glycosphingolipids and Cholesterol. Molecular Biology of the Cell, 2004, 15, 3114-3122.	2.1	245
282	Expression of Caveolin-1 Enhances Cholesterol Efflux in Hepatic Cells. Journal of Biological Chemistry, 2004, 279, 14140-14146.	3.4	93
283	Dynamic and Regulated Association of Caveolin with Lipid Bodies: Modulation of Lipid Body Motility and Function by a Dominant Negative Mutant. Molecular Biology of the Cell, 2004, 15, 99-110.	2.1	185
284	RORα Regulates the Expression of Genes Involved in Lipid Homeostasis in Skeletal Muscle Cells. Journal of Biological Chemistry, 2004, 279, 36828-36840.	3.4	157
285	Association of Stomatin with Lipid Bodies. Journal of Biological Chemistry, 2004, 279, 23699-23709.	3.4	213
286	Arachidonic Acid Release from Mammalian Cells Transfected with Human Groups IIA and X Secreted Phospholipase A2 Occurs Predominantly during the Secretory Process and with the Involvement of Cytosolic Phospholipase A2-α. Journal of Biological Chemistry, 2004, 279, 25024-25038.	3.4	140
287	Lipid rafts and plasma membrane microorganization: insights from Ras. Trends in Cell Biology, 2004, 14, 141-147.	7.9	180
288	Role of LBPA and Alix in Multivesicular Liposome Formation and Endosome Organization. Science, 2004, 303, 531-534.	12.6	608

#	Article	IF	CITATIONS
289	Three Separable Domains Regulate GTP-Dependent Association of H-ras with the Plasma Membrane. Molecular and Cellular Biology, 2004, 24, 6799-6810.	2.3	150
290	Caveolae Meet Endosomes. Developmental Cell, 2004, 7, 458-460.	7.0	31
291	APPL Proteins Link Rab5 to Nuclear Signal Transduction via an Endosomal Compartment. Cell, 2004, 116, 445-456.	28.9	496
292	The Rab5 Effector Rabankyrin-5 Regulates and Coordinates Different Endocytic Mechanisms. PLoS Biology, 2004, 2, e261.	5.6	192
293	Lipid Rafts and Caveolae as Portals for Endocytosis: New Insights and Common Mechanisms. Traffic, 2003, 4, 724-738.	2.7	517
294	Rab23, a Negative Regulator of Hedgehog Signaling, Localizes to the Plasma Membrane and the Endocytic Pathway. Traffic, 2003, 4, 869-884.	2.7	141
295	Caveolae — from ultrastructure to molecular mechanisms. Nature Reviews Molecular Cell Biology, 2003, 4, 162-167.	37.0	149
296	Annexin II regulates multivesicular endosome biogenesis in the degradation pathway of animal cells. EMBO Journal, 2003, 22, 3242-3253.	7.8	181
297	Involvement of caveolin-2 in caveolar biogenesis in MDCK cells. FEBS Letters, 2003, 538, 85-88.	2.8	62
298	Direct visualization of Ras proteins in spatially distinct cell surface microdomains. Journal of Cell Biology, 2003, 160, 165-170.	5.2	699
299	Caveolin Interacts with the Angiotensin II Type 1 Receptor during Exocytic Transport but Not at the Plasma Membrane. Journal of Biological Chemistry, 2003, 278, 23738-23746.	3.4	110
300	Observing Cell Surface Signaling Domains Using Electron Microscopy. Science Signaling, 2003, 2003, pl9-pl9.	3.6	58
301	Characterization of E-cadherin Endocytosis in Isolated MCF-7 and Chinese Hamster Ovary Cells. Journal of Biological Chemistry, 2003, 278, 21050-21057.	3.4	166
302	The trans-membrane protein p25 forms highly specialized domains that regulate membrane composition and dynamics. Journal of Cell Science, 2003, 116, 4821-4832.	2.0	38
303	Flotillin-1/Reggie-2 Traffics to Surface Raft Domains via a Novel Golgi-independent Pathway. Journal of Biological Chemistry, 2002, 277, 48834-48841.	3.4	200
304	Inhibitors of COP-mediated Transport and Cholera Toxin Action Inhibit Simian Virus 40 Infection. Molecular Biology of the Cell, 2002, 13, 1750-1764.	2.1	94
305	Inhibition of Lipid Raft-dependent Signaling by a Dystrophy-associated Mutant of Caveolin-3. Journal of Biological Chemistry, 2002, 277, 17944-17949.	3.4	43
306	Characterization of a Distinct Plasma Membrane Macrodomain in Differentiated Adipocytes. Journal of Biological Chemistry, 2002, 277, 46769-46778.	3.4	70

#	Article	IF	CITATIONS
307	N4WBP5, a Potential Target for Ubiquitination by the Nedd4 Family of Proteins, Is a Novel Golgi-associated Protein. Journal of Biological Chemistry, 2002, 277, 9307-9317.	3.4	106
308	GPI-Anchored Proteins Are Delivered to Recycling Endosomes via a Distinct cdc42-Regulated, Clathrin-Independent Pinocytic Pathway. Developmental Cell, 2002, 2, 411-423.	7.0	581
309	Differential sorting and fate of endocytosed GPI-anchored proteins. EMBO Journal, 2002, 21, 3989-4000.	7.8	203
310	CELL BIOLOGY: Life Without Caveolae. Science, 2001, 293, 2404-2405.	12.6	59
311	Protein Targeting to the Plasma Membrane of Adult Skeletal Muscle Fiber: An Organized Mosaic of Functional Domains. Experimental Cell Research, 2001, 267, 61-72.	2.6	23
312	GTP-dependent segregation of H-ras from lipid rafts is required for biological activity. Nature Cell Biology, 2001, 3, 368-375.	10.3	492
313	Which Ras rides the raft? - Reply. Nature Cell Biology, 2001, 3, E172-E172.	10.3	4
314	Effect of the toxic milk mutation (tx) on the function and intracellular localization of Wnd, the murine homologue of the Wilson copper ATPase. Human Molecular Genetics, 2001, 10, 361-370.	2.9	92
315	Flotillin-1-enriched Lipid Raft Domains Accumulate on Maturing Phagosomes. Journal of Biological Chemistry, 2001, 276, 18507-18512.	3.4	275
316	Cross-talk between Caveolae and Glycosylphosphatidylinositol-rich Domains. Journal of Biological Chemistry, 2001, 276, 30729-30736.	3.4	81
317	A Caveolin Dominant Negative Mutant Associates with Lipid Bodies and Induces Intracellular Cholesterol Imbalance. Journal of Cell Biology, 2001, 152, 1057-1070.	5.2	294
318	A Novel 14-Kilodalton Protein Interacts with the Mitogen-Activated Protein Kinase Scaffold Mp1 on a Late Endosomal/Lysosomal Compartment. Journal of Cell Biology, 2001, 152, 765-776.	5.2	189
319	Caveolin and ras function. Methods in Enzymology, 2001, 333, 172-183.	1.0	24
320	Caveolins and Cellular Cholesterol Balance. Traffic, 2000, 1, 212-217.	2.7	122
321	Role of Cholesterol in Developing T-Tubules: Analogous Mechanisms for T-Tubule and Caveolae Biogenesis. Traffic, 2000, 1, 326-341.	2.7	94
322	Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. EMBO Journal, 2000, 19, 4577-4588.	7.8	978
323	Caves and labyrinths: caveolae and transverse tubules in skeletal muscle. Protoplasma, 2000, 212, 15-23.	2.1	4
324	The Tetraspanin CD63/lamp3 Cycles between Endocytic and Secretory Compartments in Human Endothelial Cells. Molecular Biology of the Cell, 2000, 11, 1829-1843.	2.1	266

#	Article	IF	CITATIONS
325	Syntaxin 7 Is Localized to Late Endosome Compartments, Associates with Vamp 8, and Is Required for Late Endosome–Lysosome Fusion. Molecular Biology of the Cell, 2000, 11, 3137-3153.	2.1	144
326	Interaction of Anti-Phospholipid Antibodies With Late Endosomes of Human Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 563-574.	2.4	63
327	EEA1, a Tethering Protein of the Early Sorting Endosome, Shows a Polarized Distribution in Hippocampal Neurons, Epithelial Cells, and Fibroblasts. Molecular Biology of the Cell, 2000, 11, 2657-2671.	2.1	176
328	The Recycling Endosome of Madin-Darby Canine Kidney Cells Is a Mildly Acidic Compartment Rich in Raft Components. Molecular Biology of the Cell, 2000, 11, 2775-2791.	2.1	287
329	The growth suppressinggas1product is a GPI-linked protein. FEBS Letters, 2000, 481, 152-158.	2.8	60
330	H-ras but Not K-ras Traffics to the Plasma Membrane through the Exocytic Pathway. Molecular and Cellular Biology, 2000, 20, 2475-2487.	2.3	397
331	Molecular Characterization of Caveolin Association with the Golgi Complex: Identification of a Cis-Golgi Targeting Domain in the Caveolin Molecule. Journal of Cell Biology, 1999, 145, 1443-1459.	5.2	113
332	Dominant-negative caveolin inhibits H-Ras function by disrupting cholesterol-rich plasma membrane domains. Nature Cell Biology, 1999, 1, 98-105.	10.3	411
333	Late endosomal membranes rich in lysobisphosphatidic acid regulate cholesterol transport. Nature Cell Biology, 1999, 1, 113-118.	10.3	575
334	Exploitation of major histocompatibility complex class I molecules and caveolae by simian virus 40. Immunological Reviews, 1999, 168, 23-31.	6.0	63
335	Membrane microdomains and caveolae. Current Opinion in Cell Biology, 1999, 11, 424-431.	5.4	547
336	Endocytosis in Skeletal Muscle Fibers. Experimental Cell Research, 1999, 253, 551-560.	2.6	36
337	A lipid associated with the antiphospholipid syndrome regulates endosome structure and function. Nature, 1998, 392, 193-197.	27.8	727
338	Involvement of the transmembrane protein p23 in biosynthetic protein transport. Biology of the Cell, 1998, 90, 122-122.	2.0	0
339	A Novel Synaptobrevin/VAMP Homologous Protein (VAMP5) Is Increased during In Vitro Myogenesis and Present in the Plasma Membrane. Molecular Biology of the Cell, 1998, 9, 2423-2437.	2.1	65
340	Rab17 Regulates Membrane Trafficking through Apical Recycling Endosomes in Polarized Epithelial Cells. Journal of Cell Biology, 1998, 140, 1039-1053.	5.2	132
341	Functional analysis and intracellular localization of the human menkes protein (MNK) stably expressed from a cDNA construct in Chinese hamster ovary cells (CHO-K1). Human Molecular Genetics, 1998, 7, 1293-1300.	2.9	84
342	A Pore-forming Toxin Interacts with a GPI-anchored Protein and Causes Vacuolation of the Endoplasmic Reticulum. Journal of Cell Biology, 1998, 140, 525-540.	5.2	211

#	Article	IF	CITATIONS
343	Regulation of caveolin and caveolae by cholesterol in MDCK cells. Journal of Lipid Research, 1998, 39, 369-379.	4.2	273
344	<i>Brucella abortus</i> Transits through the Autophagic Pathway and Replicates in the Endoplasmic Reticulum of Nonprofessional Phagocytes. Infection and Immunity, 1998, 66, 5711-5724.	2.2	379
345	Regulation of caveolin and caveolae by cholesterol in MDCK cells. Journal of Lipid Research, 1998, 39, 369-79.	4.2	223
346	Specific release of membrane-bound annexin II and cortical cytoskeletal elements by sequestration of membrane cholesterol Molecular Biology of the Cell, 1997, 8, 533-545.	2.1	202
347	Involvement of the Transmembrane Protein p23 in Biosynthetic Protein Transport. Journal of Cell Biology, 1997, 139, 1119-1135.	5.2	144
348	Major histocompatibility complex class I molecules mediate association of SV40 with caveolae Molecular Biology of the Cell, 1997, 8, 47-57.	2.1	239
349	Caveolin-3 Associates with Developing T-tubules during Muscle Differentiation. Journal of Cell Biology, 1997, 136, 137-154.	5.2	317
350	Functional Dissection of COP-I Subunits in the Biogenesis of Multivesicular Endosomes. Journal of Cell Biology, 1997, 139, 1183-1195.	5.2	161
351	HSV infection of polarized epithelial cells on filter supports: implications for transport assays and protein localization. European Journal of Cell Biology, 1997, 72, 278-81.	3.6	3
352	And still they are movingâ \in Dynamic properties of caveolae. FEBS Letters, 1996, 389, 52-54.	2.8	39
353	M-caveolin, a muscle-specific caveolin-related protein. FEBS Letters, 1996, 378, 108-112.	2.8	126
354	Caveolae and caveolins. Current Opinion in Cell Biology, 1996, 8, 542-548.	5.4	527
355	Endosome dynamics regulated by a Rho protein. Nature, 1996, 384, 427-432.	27.8	209
356	Rab11 regulates recycling through the pericentriolar recycling endosome Journal of Cell Biology, 1996, 135, 913-924.	5.2	1,217
357	An endosomal beta COP is involved in the pH-dependent formation of transport vesicles destined for late endosomes Journal of Cell Biology, 1996, 133, 29-41.	5.2	345
358	Analysis of the role of p200-containing vesicles in post-Golgi traffic Molecular Biology of the Cell, 1996, 7, 961-974.	2.1	36
359	The association of annexin I with early endosomes is regulated by Ca2+ and requires an intact N-terminal domain Molecular Biology of the Cell, 1996, 7, 1359-1374.	2.1	72
360	De novo formation of caveolae in lymphocytes by expression of VIP21-caveolin Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 8655-8659.	7.1	555

#	Article	IF	CITATIONS
361	Rapid processing of filter-grown cells for Epon embedding Journal of Histochemistry and Cytochemistry, 1995, 43, 731-733.	2.5	11
362	Digging into caveolae. Science, 1995, 269, 1398-1399.	12.6	312
363	The organization of the endoplasmic reticulum and the intermediate compartment in cultured rat hippocampal neurons Molecular Biology of the Cell, 1995, 6, 1315-1332.	2.1	145
364	Annexin XIIIb: a novel epithelial specific annexin is implicated in vesicular traffic to the apical plasma membrane Journal of Cell Biology, 1995, 128, 1043-1053.	5.2	148
365	VIP21-caveolin, a membrane protein constituent of the caveolar coat, oligomerizes in vivo and in vitro Molecular Biology of the Cell, 1995, 6, 911-927.	2.1	444
366	Prohibitin, an antiproliferative protein, is localized to mitochondria. FEBS Letters, 1995, 358, 273-277.	2.8	163
367	M-caveolin, a muscle-specific caveolin-related protein. FEBS Letters, 1995, 376, 108-112.	2.8	187
368	EEA1, an Early Endosome-Associated Protein Journal of Biological Chemistry, 1995, 270, 13503-13511.	3.4	647
369	Biogenesis of phagolysosomes proceeds through a sequential series of interactions with the endocytic apparatus. Journal of Cell Biology, 1994, 124, 677-688.	5.2	628
370	Regulated internalization of caveolae Journal of Cell Biology, 1994, 127, 1199-1215.	5.2	717
371	Ultrastructural localization of gangliosides; GM1 is concentrated in caveolae Journal of Histochemistry and Cytochemistry, 1994, 42, 155-166.	2.5	498
372	The involvement of the small GTP-binding protein Rab5a in neuronal endocytosis. Neuron, 1994, 13, 11-22.	8.1	140
373	Detergent-insoluble glycolipid microdomains in lymphocytes in the absence of caveolae Journal of Biological Chemistry, 1994, 269, 30745-30748.	3.4	420
374	Inhibition of rab5 GTPase activity stimulates membrane fusion in endocytosis. EMBO Journal, 1994, 13, 1287-96.	7.8	448
375	VIP36, a novel component of glycolipid rafts and exocytic carrier vesicles in epithelial cells. EMBO Journal, 1994, 13, 1729-40.	7.8	61
376	Cloning and subcellular localization of novel rab proteins reveals polarized and cell type-specific expression. Journal of Cell Science, 1994, 107 (Pt 12), 3437-48.	2.0	38
377	Detergent-insoluble glycolipid microdomains in lymphocytes in the absence of caveolae. Journal of Biological Chemistry, 1994, 269, 30745-8.	3.4	364
378	Cell biology of neuronal endocytosis. Journal of Neuroscience Research, 1993, 36, 1-9.	2.9	68

#	Article	IF	CITATIONS
379	Transcytosis of the polymeric immunoglobulin receptor in cultured hippocampal neurons. Current Biology, 1993, 3, 635-644.	3.9	32
380	The immunofluorescent era of membrane traffic. Trends in Cell Biology, 1993, 3, 214-219.	7.9	67
381	Rab11, a small GTPase associated with both constitutive and regulated secretory pathways in PC12 cells. FEBS Letters, 1993, 334, 175-182.	2.8	195
382	Rab17, a novel small GTPase, is specific for epithelial cells and is induced during cell polarization Journal of Cell Biology, 1993, 121, 553-564.	5.2	132
383	Rab8, a small GTPase involved in vesicular traffic between the TGN and the basolateral plasma membrane Journal of Cell Biology, 1993, 123, 35-45.	5.2	428
384	Regulation of Endocytosis by the Small GTP-ASE RAB5. , 1993, , 377-385.		0
385	CLIP-170, a Cytoplasmic Linker Protein Mediating Interaction of Endosomes with Microtubules. , 1993, , 145-157.		1
386	Caveolae and sorting in the trans-Golgi network of epithelial cells. EMBO Journal, 1993, 12, 1597-605.	7.8	152
387	Axonal and dendritic endocytic pathways in cultured neurons Journal of Cell Biology, 1992, 119, 123-137.	5.2	264
388	VIP21, a 21-kD membrane protein is an integral component of trans-Golgi-network-derived transport vesicles Journal of Cell Biology, 1992, 118, 1003-1014.	5.2	529
389	[37] Localization of Rab family members in animal cells. Methods in Enzymology, 1992, 219, 398-407.	1.0	40
390	The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway. Cell, 1992, 70, 715-728.	28.9	1,280
391	Sphingolipid transport from the trans-Golgi network to the apical surface in permeabilized MDCK cells. FEBS Letters, 1992, 300, 227-231.	2.8	46
392	Axonal and dendritic endocytic pathways in cultured neurons. Micron and Microscopica Acta, 1992, 23, 113-114.	0.2	0
393	Plasticity of early endosomes. Journal of Cell Science, 1992, 103 (Pt 2), 335-48.	2.0	25
394	Polarized sorting of glypiated proteins in hippocampal neurons. Nature, 1991, 349, 158-161.	27.8	237
395	pH-induced microtubule-dependent redistribution of late endosomes in neuronal and epithelial cells Journal of Cell Biology, 1991, 113, 261-274.	5.2	107
396	Endocytosis in polarized cells. Seminars in Cell Biology, 1991, 2, 387-95.	3.4	16

#	ARTICLE	IF	CITATIONS
397	Endocytosis in the kidney: insights from the MDCK cell system. Seminars in Nephrology, 1991, 11, 440-52.	1.6	9
398	Transcytosis in MDCK cells: identification of glycoproteins transported bidirectionally between both plasma membrane domains Journal of Cell Biology, 1990, 111, 2909-2921.	5.2	95
399	Microtubule- and motor-dependent fusion in vitro between apical and basolateral endocytic vesicles from MDCK cells. Cell, 1990, 62, 719-731.	28.9	297
400	Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments. Cell, 1990, 62, 317-329.	28.9	1,122
401	Endocytosis in filter-grown Madin-Darby canine kidney cells Journal of Cell Biology, 1989, 109, 3243-3258.	5.2	250
402	Meeting of the apical and basolateral endocytic pathways of the Madin-Darby canine kidney cell in late endosomes Journal of Cell Biology, 1989, 109, 3259-3272.	5.2	207
403	Comparison of the binding characteristics of two different preparations of tetanus toxin to rat brain membranes. Toxicon, 1989, 27, 127-135.	1.6	9
404	Tetanus toxin binding to mouse spinal cord cells: an evaluation of the role of gangliosides in toxin internalization. Brain Research, 1988, 475, 118-127.	2.2	41
405	A Study of the Mechanism of Internalisation of Tetanus Toxin by Primary Mouse Spinal Cord Cultures. Journal of Neurochemistry, 1987, 49, 1057-1068.	3.9	55
406	Characterization of tetanus toxin binding to rat brain membranes. Evidence for a high-affinity proteinase-sensitive receptor. Biochemical Journal, 1986, 236, 845-852.	3.7	82
407	ContactJ: Characterization of lipid droplet-mitochondrial contacts using fluorescence microscopy and image analysis. F1000Research, 0, 10, 263.	1.6	1