Robert G Parton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5981769/publications.pdf

Version: 2024-02-01

407 papers

60,709 citations

135 h-index 229 g-index

542 all docs 542 docs citations

542 times ranked

45909 citing authors

#	Article	IF	Citations
1	The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway. Cell, 1992, 70, 715-728.	28.9	1,280
2	The multiple faces of caveolae. Nature Reviews Molecular Cell Biology, 2007, 8, 185-194.	37.0	1,264
3	Rab11 regulates recycling through the pericentriolar recycling endosome Journal of Cell Biology, 1996, 135, 913-924.	5.2	1,217
4	Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature, 2015, 526, 564-568.	27.8	1,210
5	Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments. Cell, 1990, 62, 317-329.	28.9	1,122
6	Lipid droplets: a unified view of a dynamic organelle. Nature Reviews Molecular Cell Biology, 2006, 7, 373-378.	37.0	1,036
7	Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. EMBO Journal, 2000, 19, 4577-4588.	7.8	978
8	Cells Respond to Mechanical Stress by Rapid Disassembly of Caveolae. Cell, 2011, 144, 402-413.	28.9	791
9	Caveolae as plasma membrane sensors, protectors and organizers. Nature Reviews Molecular Cell Biology, 2013, 14, 98-112.	37.0	740
10	A lipid associated with the antiphospholipid syndrome regulates endosome structure and function. Nature, 1998, 392, 193-197.	27.8	727
11	Regulated internalization of caveolae Journal of Cell Biology, 1994, 127, 1199-1215.	5.2	717
12	Direct visualization of Ras proteins in spatially distinct cell surface microdomains. Journal of Cell Biology, 2003, 160, 165-170.	5.2	699
13	EEA1, an Early Endosome-Associated Protein Journal of Biological Chemistry, 1995, 270, 13503-13511.	3.4	647
14	PTRF-Cavin, a Conserved Cytoplasmic Protein Required for Caveola Formation and Function. Cell, 2008, 132, 113-124.	28.9	647
15	Biogenesis of phagolysosomes proceeds through a sequential series of interactions with the endocytic apparatus. Journal of Cell Biology, 1994, 124, 677-688.	5.2	628
16	Role of LBPA and Alix in Multivesicular Liposome Formation and Endosome Organization. Science, 2004, 303, 531-534.	12.6	608
17	GPI-Anchored Proteins Are Delivered to Recycling Endosomes via a Distinct cdc42-Regulated, Clathrin-Independent Pinocytic Pathway. Developmental Cell, 2002, 2, 411-423.	7.0	581
18	Late endosomal membranes rich in lysobisphosphatidic acid regulate cholesterol transport. Nature Cell Biology, 1999, 1, 113-118.	10.3	575

#	Article	IF	CITATIONS
19	De novo formation of caveolae in lymphocytes by expression of VIP21-caveolin Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 8655-8659.	7.1	555
20	Membrane microdomains and caveolae. Current Opinion in Cell Biology, 1999, 11, 424-431.	5.4	547
21	VIP21, a 21-kD membrane protein is an integral component of trans-Golgi-network-derived transport vesicles Journal of Cell Biology, 1992, 118, 1003-1014.	5.2	529
22	Caveolae and caveolins. Current Opinion in Cell Biology, 1996, 8, 542-548.	5.4	527
23	Lipid Rafts and Caveolae as Portals for Endocytosis: New Insights and Common Mechanisms. Traffic, 2003, 4, 724-738.	2.7	517
24	Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics. Nature Nanotechnology, 2021, 16, 266-276.	31.5	509
25	Ultrastructural localization of gangliosides; GM1 is concentrated in caveolae Journal of Histochemistry and Cytochemistry, 1994, 42, 155-166.	2.5	498
26	APPL Proteins Link Rab5 to Nuclear Signal Transduction via an Endosomal Compartment. Cell, 2004, 116, 445-456.	28.9	496
27	GTP-dependent segregation of H-ras from lipid rafts is required for biological activity. Nature Cell Biology, 2001, 3, 368-375.	10.3	492
28	Minimum information reporting in bio–nano experimental literature. Nature Nanotechnology, 2018, 13, 777-785.	31.5	455
29	Inhibition of rab5 GTPase activity stimulates membrane fusion in endocytosis. EMBO Journal, 1994, 13, 1287-96.	7.8	448
30	VIP21-caveolin, a membrane protein constituent of the caveolar coat, oligomerizes in vivo and in vitro Molecular Biology of the Cell, 1995, 6, 911-927.	2.1	444
31	Rab8, a small GTPase involved in vesicular traffic between the TGN and the basolateral plasma membrane Journal of Cell Biology, 1993, 123, 35-45.	5.2	428
32	H-ras, K-ras, and inner plasma membrane raft proteins operate in nanoclusters with differential dependence on the actin cytoskeleton. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15500-15505.	7.1	423
33	Detergent-insoluble glycolipid microdomains in lymphocytes in the absence of caveolae Journal of Biological Chemistry, 1994, 269, 30745-30748.	3.4	420
34	Dominant-negative caveolin inhibits H-Ras function by disrupting cholesterol-rich plasma membrane domains. Nature Cell Biology, 1999, 1, 98-105.	10.3	411
35	Fld1p, a functional homologue of human seipin, regulates the size of lipid droplets in yeast. Journal of Cell Biology, 2008, 180, 473-482.	5.2	411
36	H-ras but Not K-ras Traffics to the Plasma Membrane through the Exocytic Pathway. Molecular and Cellular Biology, 2000, 20, 2475-2487.	2.3	397

#	Article	IF	CITATIONS
37	Clathrin-Independent Pathways of Endocytosis. Cold Spring Harbor Perspectives in Biology, 2014, 6, a016758-a016758.	5.5	394
38	Biogenesis of the multifunctional lipid droplet: Lipids, proteins, and sites. Journal of Cell Biology, 2014, 204, 635-646.	5.2	386
39	Ultrastructural identification of uncoated caveolin-independent early endocytic vehicles. Journal of Cell Biology, 2005, 168, 465-476.	5.2	385
40	<i>Brucella abortus</i> Transits through the Autophagic Pathway and Replicates in the Endoplasmic Reticulum of Nonprofessional Phagocytes. Infection and Immunity, 1998, 66, 5711-5724.	2.2	379
41	Not Just Fat: The Structure and Function of the Lipid Droplet. Cold Spring Harbor Perspectives in Biology, 2011, 3, a004838-a004838.	5.5	374
42	Plasma membrane nanoswitches generate high-fidelity Ras signal transduction. Nature Cell Biology, 2007, 9, 905-914.	10.3	372
43	Detergent-insoluble glycolipid microdomains in lymphocytes in the absence of caveolae. Journal of Biological Chemistry, 1994, 269, 30745-8.	3.4	364
44	Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8372-E8381.	7.1	361
45	An endosomal beta COP is involved in the pH-dependent formation of transport vesicles destined for late endosomes Journal of Cell Biology, 1996, 133, 29-41.	5.2	345
46	Caveolin-3 Associates with Developing T-tubules during Muscle Differentiation. Journal of Cell Biology, 1997, 136, 137-154.	5.2	317
47	Digging into caveolae. Science, 1995, 269, 1398-1399.	12.6	312
48	Microtubule- and motor-dependent fusion in vitro between apical and basolateral endocytic vesicles from MDCK cells. Cell, 1990, 62, 719-731.	28.9	297
49	Myosin II isoforms identify distinct functional modules that support integrity of the epithelial zonula adherens. Nature Cell Biology, 2010, 12, 696-702.	10.3	296
50	A Caveolin Dominant Negative Mutant Associates with Lipid Bodies and Induces Intracellular Cholesterol Imbalance. Journal of Cell Biology, 2001, 152, 1057-1070.	5.2	294
51	Endosome-to-cytosol transport of viral nucleocapsids. Nature Cell Biology, 2005, 7, 653-664.	10.3	290
52	A Role for Phosphatidic Acid in the Formation of "Supersized―Lipid Droplets. PLoS Genetics, 2011, 7, e1002201.	3.5	290
53	Sequence-Dependent Sorting of Recycling Proteins by Actin-Stabilized Endosomal Microdomains. Cell, 2010, 143, 761-773.	28.9	289
54	The Recycling Endosome of Madin-Darby Canine Kidney Cells Is a Mildly Acidic Compartment Rich in Raft Components. Molecular Biology of the Cell, 2000, 11, 2775-2791.	2.1	287

#	Article	IF	CITATIONS
55	Flotillin-1-enriched Lipid Raft Domains Accumulate on Maturing Phagosomes. Journal of Biological Chemistry, 2001, 276, 18507-18512.	3.4	275
56	Fsp27 promotes lipid droplet growth by lipid exchange and transfer at lipid droplet contact sites. Journal of Cell Biology, 2011, 195, 953-963.	5.2	273
57	Regulation of caveolin and caveolae by cholesterol in MDCK cells. Journal of Lipid Research, 1998, 39, 369-379.	4.2	273
58	A role for oxysterol-binding protein–related protein 5 in endosomal cholesterol trafficking. Journal of Cell Biology, 2011, 192, 121-135.	5.2	270
59	The Tetraspanin CD63/lamp3 Cycles between Endocytic and Secretory Compartments in Human Endothelial Cells. Molecular Biology of the Cell, 2000, 11, 1829-1843.	2.1	266
60	Axonal and dendritic endocytic pathways in cultured neurons Journal of Cell Biology, 1992, 119, 123-137.	5.2	264
61	Clathrin-independent carriers form a high capacity endocytic sorting system at the leading edge of migrating cells. Journal of Cell Biology, 2010, 190, 675-691.	5.2	263
62	Regulated Localization of Rab18 to Lipid Droplets. Journal of Biological Chemistry, 2005, 280, 42325-42335.	3.4	257
63	Acyl-CoA synthetase 3 promotes lipid droplet biogenesis in ER microdomains. Journal of Cell Biology, 2013, 203, 985-1001.	5.2	257
64	Cholesterol Manipulation by West Nile Virus Perturbs the Cellular Immune Response. Cell Host and Microbe, 2007, 2, 229-239.	11.0	255
65	Clathrin-independent endocytosis: New insights into caveolae and non-caveolar lipid raft carriers. Biochimica Et Biophysica Acta - Molecular Cell Research, 2005, 1745, 273-286.	4.1	253
66	Biogenesis of caveolae: a structural model for caveolin-induced domain formation. Journal of Cell Science, 2006, 119, 787-796.	2.0	253
67	Endocytosis in filter-grown Madin-Darby canine kidney cells Journal of Cell Biology, 1989, 109, 3243-3258.	5.2	250
68	High-resolution mapping reveals topologically distinct cellular pools of phosphatidylserine. Journal of Cell Biology, 2011, 194, 257-275.	5.2	249
69	Galectin-3 drives glycosphingolipid-dependent biogenesis of clathrin-independent carriers. Nature Cell Biology, 2014, 16, 592-603.	10.3	248
70	Selective Stimulation of Caveolar Endocytosis by Glycosphingolipids and Cholesterol. Molecular Biology of the Cell, 2004, 15, 3114-3122.	2.1	245
71	Mammalian lipid droplets are innate immune hubs integrating cell metabolism and host defense. Science, 2020, 370, .	12.6	245
72	MURC/Cavin-4 and cavin family members form tissue-specific caveolar complexes. Journal of Cell Biology, 2009, 185, 1259-1273.	5.2	243

#	Article	IF	Citations
73	Building a Better Dynasore: The Dyngo Compounds Potently Inhibit Dynamin and Endocytosis. Traffic, 2013, 14, 1272-1289.	2.7	243
74	Adaptor Proteins MiD49 and MiD51 Can Act Independently of Mff and Fis1 in Drp1 Recruitment and Are Specific for Mitochondrial Fission. Journal of Biological Chemistry, 2013, 288, 27584-27593.	3.4	240
75	Major histocompatibility complex class I molecules mediate association of SV40 with caveolae Molecular Biology of the Cell, 1997, 8, 47-57.	2.1	239
76	Polarized sorting of glypiated proteins in hippocampal neurons. Nature, 1991, 349, 158-161.	27.8	237
77	Caveolin-1 Is Essential for Liver Regeneration. Science, 2006, 313, 1628-1632.	12.6	235
78	Flotillins and the PHB Domain Protein Family: Rafts, Worms and Anaesthetics. Traffic, 2005, 6, 725-740.	2.7	233
79	Regulation of caveolin and caveolae by cholesterol in MDCK cells. Journal of Lipid Research, 1998, 39, 369-79.	4.2	223
80	Ras plasma membrane signalling platforms. Biochemical Journal, 2005, 389, 1-11.	3.7	219
81	Lipid droplet-organelle interactions; sharing the fats. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2009, 1791, 441-447.	2.4	218
82	AMPK activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation. Nature Communications, 2015, 6, 7176.	12.8	215
83	Association of Stomatin with Lipid Bodies. Journal of Biological Chemistry, 2004, 279, 23699-23709.	3.4	213
84	The GTPase-Activating Protein GRAF1 Regulates the CLIC/GEEC Endocytic Pathway. Current Biology, 2008, 18, 1802-1808.	3.9	213
85	A Pore-forming Toxin Interacts with a GPI-anchored Protein and Causes Vacuolation of the Endoplasmic Reticulum. Journal of Cell Biology, 1998, 140, 525-540.	5.2	211
86	Endosome dynamics regulated by a Rho protein. Nature, 1996, 384, 427-432.	27.8	209
87	Caveolae: Structure, Function, and Relationship to Disease. Annual Review of Cell and Developmental Biology, 2018, 34, 111-136.	9.4	208
88	Meeting of the apical and basolateral endocytic pathways of the Madin-Darby canine kidney cell in late endosomes Journal of Cell Biology, 1989, 109, 3259-3272.	5.2	207
89	Differential sorting and fate of endocytosed GPI-anchored proteins. EMBO Journal, 2002, 21, 3989-4000.	7.8	203
90	Specific release of membrane-bound annexin II and cortical cytoskeletal elements by sequestration of membrane cholesterol Molecular Biology of the Cell, 1997, 8, 533-545.	2.1	202

#	Article	IF	Citations
91	Flotillin-1/Reggie-2 Traffics to Surface Raft Domains via a Novel Golgi-independent Pathway. Journal of Biological Chemistry, 2002, 277, 48834-48841.	3.4	200
92	Cortical F-actin stabilization generates apical–lateral patterns of junctional contractility that integrate cells into epithelia. Nature Cell Biology, 2014, 16, 167-178.	10.3	199
93	Membrane insertion of anthrax protective antigen and cytoplasmic delivery of lethal factor occur at different stages of the endocytic pathway. Journal of Cell Biology, 2004, 166, 645-651.	5.2	197
94	Rab11, a small GTPase associated with both constitutive and regulated secretory pathways in PC12 cells. FEBS Letters, 1993, 334, 175-182.	2.8	195
95	Functional role of T-cell receptor nanoclusters in signal initiation and antigen discrimination. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5454-63.	7.1	194
96	The Rab5 Effector Rabankyrin-5 Regulates and Coordinates Different Endocytic Mechanisms. PLoS Biology, 2004, 2, e261.	5.6	192
97	A Novel 14-Kilodalton Protein Interacts with the Mitogen-Activated Protein Kinase Scaffold Mp1 on a Late Endosomal/Lysosomal Compartment. Journal of Cell Biology, 2001, 152, 765-776.	5.2	189
98	M-caveolin, a muscle-specific caveolin-related protein. FEBS Letters, 1995, 376, 108-112.	2.8	187
99	Individual Palmitoyl Residues Serve Distinct Roles in H-Ras Trafficking, Microlocalization, and Signaling. Molecular and Cellular Biology, 2005, 25, 6722-6733.	2.3	187
100	Dynamic and Regulated Association of Caveolin with Lipid Bodies: Modulation of Lipid Body Motility and Function by a Dominant Negative Mutant. Molecular Biology of the Cell, 2004, 15, 99-110.	2.1	185
101	Cholesterol and Fatty Acids Regulate Dynamic Caveolin Trafficking through the Golgi Complex and between the Cell Surface and Lipid Bodies. Molecular Biology of the Cell, 2005, 16, 2091-2105.	2.1	184
102	A novel switch region regulates H-ras membrane orientation and signal output. EMBO Journal, 2008, 27, 727-735.	7.8	182
103	Caveolae at a glance. Journal of Cell Science, 2010, 123, 3831-3836.	2.0	182
104	Annexin II regulates multivesicular endosome biogenesis in the degradation pathway of animal cells. EMBO Journal, 2003, 22, 3242-3253.	7.8	181
105	Cavin family proteins and the assembly of caveolae. Journal of Cell Science, 2015, 128, 1269-1278.	2.0	181
106	Lipid rafts and plasma membrane microorganization: insights from Ras. Trends in Cell Biology, 2004, 14, 141-147.	7.9	180
107	EEA1, a Tethering Protein of the Early Sorting Endosome, Shows a Polarized Distribution in Hippocampal Neurons, Epithelial Cells, and Fibroblasts. Molecular Biology of the Cell, 2000, 11, 2657-2671.	2.1	176
108	Building endocytic pits without clathrin. Nature Reviews Molecular Cell Biology, 2015, 16, 311-321.	37.0	175

#	Article	IF	Citations
109	Identifying Optimal Lipid Raft Characteristics Required To Promote Nanoscale Protein-Protein Interactions on the Plasma Membrane. Molecular and Cellular Biology, 2006, 26, 313-323.	2.3	174
110	Lysobisphosphatidic Acid Controls Endosomal Cholesterol Levels. Journal of Biological Chemistry, 2008, 283, 27871-27880.	3.4	174
111	Molecules, mechanisms, and cellular roles of clathrin-independent endocytosis. Current Opinion in Cell Biology, 2010, 22, 519-527.	5.4	171
112	Dynamic microtubules regulate the local concentration of E-cadherin at cell-cell contacts. Journal of Cell Science, 2006, 119, 1801-1811.	2.0	167
113	Characterization of E-cadherin Endocytosis in Isolated MCF-7 and Chinese Hamster Ovary Cells. Journal of Biological Chemistry, 2003, 278, 21050-21057.	3.4	166
114	Cholesterolâ€Sensitive Cdc42 Activation Regulates Actin Polymerization for Endocytosis via the GEEC Pathway. Traffic, 2007, 8, 702-717.	2.7	166
115	EHD2 regulates caveolar dynamics via ATP-driven targeting and oligomerization. Molecular Biology of the Cell, 2012, 23, 1316-1329.	2.1	165
116	Rab18 promotes lipid droplet (LD) growth by tethering the ER to LDs through SNARE and NRZ interactions. Journal of Cell Biology, 2018, 217, 975-995.	5.2	164
117	Prohibitin, an antiproliferative protein, is localized to mitochondria. FEBS Letters, 1995, 358, 273-277.	2.8	163
118	Erratum to "Clathrin-independent endocytosis: New insights into caveolae and non-caveolar lipid raft carriers―[Biochim. Biophys. Acta 1744 (2005) 273–286]. Biochimica Et Biophysica Acta - Molecular Cell Research, 2005, 1746, 349.	4.1	163
119	Functional Dissection of COP-I Subunits in the Biogenesis of Multivesicular Endosomes. Journal of Cell Biology, 1997, 139, 1183-1195.	5.2	161
120	Caveolin, cholesterol, and lipid bodies. Seminars in Cell and Developmental Biology, 2005, 16, 163-174.	5.0	160
121	Cholesterol-Induced Caveolin Targeting to Lipid Droplets in Adipocytes: A Role for Caveolar Endocytosis. Traffic, 2006, 7, 549-561.	2.7	158
122	$ROR\hat{l}\pm$ Regulates the Expression of Genes Involved in Lipid Homeostasis in Skeletal Muscle Cells. Journal of Biological Chemistry, 2004, 279, 36828-36840.	3.4	157
123	Highâ€Resolution 3D Quantitative Analysis of Caveolar Ultrastructure and Caveola–Cytoskeleton Interactions. Traffic, 2008, 9, 893-909.	2.7	156
124	Uptake and Intracellular Fate of Disulfide-Bonded Polymer Hydrogel Capsules for Doxorubicin Delivery to Colorectal Cancer Cells. ACS Nano, 2010, 4, 2928-2936.	14.6	155
125	Cell-to-Cell Heterogeneity in Lipid Droplets Suggests a Mechanism to Reduce Lipotoxicity. Current Biology, 2013, 23, 1489-1496.	3.9	152
126	Caveolae and sorting in the trans-Golgi network of epithelial cells. EMBO Journal, 1993, 12, 1597-605.	7.8	152

#	Article	IF	CITATIONS
127	Three Separable Domains Regulate GTP-Dependent Association of H-ras with the Plasma Membrane. Molecular and Cellular Biology, 2004, 24, 6799-6810.	2.3	150
128	ORP5 and ORP8 bind phosphatidylinositol-4, 5-biphosphate (PtdIns(4,5)P 2) and regulate its level at the plasma membrane. Nature Communications, 2017, 8, 757.	12.8	150
129	Caveolae â€" from ultrastructure to molecular mechanisms. Nature Reviews Molecular Cell Biology, 2003, 4, 162-167.	37.0	149
130	Annexin XIIIb: a novel epithelial specific annexin is implicated in vesicular traffic to the apical plasma membrane Journal of Cell Biology, 1995, 128, 1043-1053.	5.2	148
131	SEIPIN Regulates Lipid Droplet Expansion and Adipocyte Development by Modulating the Activity of Glycerol-3-phosphate Acyltransferase. Cell Reports, 2016, 17, 1546-1559.	6.4	148
132	The organization of the endoplasmic reticulum and the intermediate compartment in cultured rat hippocampal neurons Molecular Biology of the Cell, 1995, 6, 1315-1332.	2.1	145
133	Involvement of the Transmembrane Protein p23 in Biosynthetic Protein Transport. Journal of Cell Biology, 1997, 139, 1119-1135.	5.2	144
134	Syntaxin 7 Is Localized to Late Endosome Compartments, Associates with Vamp 8, and Is Required for Late Endosome–Lysosome Fusion. Molecular Biology of the Cell, 2000, 11, 3137-3153.	2.1	144
135	ORP2 Delivers Cholesterol to the Plasma Membrane in Exchange for Phosphatidylinositol 4, 5-Bisphosphate (PI(4,5)P2). Molecular Cell, 2019, 73, 458-473.e7.	9.7	143
136	Rab23, a Negative Regulator of Hedgehog Signaling, Localizes to the Plasma Membrane and the Endocytic Pathway. Traffic, 2003, 4, 869-884.	2.7	141
137	The involvement of the small GTP-binding protein Rab5a in neuronal endocytosis. Neuron, 1994, 13, 11-22.	8.1	140
138	Arachidonic Acid Release from Mammalian Cells Transfected with Human Groups IIA and X Secreted Phospholipase A2 Occurs Predominantly during the Secretory Process and with the Involvement of Cytosolic Phospholipase A2-α. Journal of Biological Chemistry, 2004, 279, 25024-25038.	3.4	140
139	Annexin A2-Dependent Polymerization of Actin Mediates Endosome Biogenesis. Developmental Cell, 2009, 16, 445-457.	7.0	139
140	Pore-forming toxins induce multiple cellular responses promoting survival. Cellular Microbiology, 2011, 13, 1026-1043.	2.1	139
141	An endosomal tether undergoes an entropic collapse to bring vesicles together. Nature, 2016, 537, 107-111.	27.8	135
142	The caveolin–cavin system plays a conserved and critical role in mechanoprotection of skeletal muscle. Journal of Cell Biology, 2015, 210, 833-849.	5.2	133
143	Rab17, a novel small GTPase, is specific for epithelial cells and is induced during cell polarization Journal of Cell Biology, 1993, 121, 553-564.	5.2	132
144	Rab17 Regulates Membrane Trafficking through Apical Recycling Endosomes in Polarized Epithelial Cells. Journal of Cell Biology, 1998, 140, 1039-1053.	5.2	132

#	Article	IF	CITATIONS
145	A Single Method for Cryofixation and Correlative Light, Electron Microscopy and Tomography of Zebrafish Embryos. Traffic, 2009, 10, 131-136.	2.7	131
146	Interplay between hepatic mitochondria-associated membranes, lipid metabolism and caveolin-1 in mice. Scientific Reports, 2016, 6, 27351.	3.3	131
147	Endocytic Crosstalk: Cavins, Caveolins, and Caveolae Regulate Clathrin-Independent Endocytosis. PLoS Biology, 2014, 12, e1001832.	5.6	128
148	Structure-Based Reassessment of the Caveolin Signaling Model: Do Caveolae Regulate Signaling through Caveolin-Protein Interactions?. Developmental Cell, 2012, 23, 11-20.	7.0	127
149	Development of a human cardiac organoid injury model reveals innate regenerative potential. Development (Cambridge), 2017, 144, 1118-1127.	2.5	127
150	Endocytosis Inhibition in Humans to Improve Responses to ADCC-Mediating Antibodies. Cell, 2020, 180, 895-914.e27.	28.9	127
151	M-caveolin, a muscle-specific caveolin-related protein. FEBS Letters, 1996, 378, 108-112.	2.8	126
152	Constitutive Formation of Caveolae in a Bacterium. Cell, 2012, 150, 752-763.	28.9	126
153	A kinetic view of GPCR allostery and biased agonism. Nature Chemical Biology, 2017, 13, 929-937.	8.0	126
154	Visualisation of macropinosome maturation by the recruitment of sorting nexins. Journal of Cell Science, 2006, 119, 3967-3980.	2.0	125
155	Rab18 Binds to Hepatitis C Virus NS5A and Promotes Interaction between Sites of Viral Replication and Lipid Droplets. PLoS Pathogens, 2013, 9, e1003513.	4.7	125
156	Caveolins and Cellular Cholesterol Balance. Traffic, 2000, 1, 212-217.	2.7	122
157	Late Endosomal Cholesterol Accumulation Leads to Impaired Intra-Endosomal Trafficking. PLoS ONE, 2007, 2, e851.	2.5	119
158	Signal Integration by Lipid-Mediated Spatial Cross Talk between Ras Nanoclusters. Molecular and Cellular Biology, 2014, 34, 862-876.	2.3	119
159	Modular Detection of GFP-Labeled Proteins for Rapid Screening by Electron Microscopy in Cells and Organisms. Developmental Cell, 2015, 35, 513-525.	7.0	119
160	Clathrin-independent endocytosis: New insights into caveolae and non-caveolar lipid raft carriers. Biochimica Et Biophysica Acta - Molecular Cell Research, 2005, 1746, 350-363.	4.1	118
161	Retromer has a selective function in cargo sorting via endosome transport carriers. Journal of Cell Biology, 2019, 218, 615-631.	5.2	118
162	Single-molecule analysis reveals self assembly and nanoscale segregation of two distinct cavin subcomplexes on caveolae. ELife, 2013, 3, e01434.	6.0	114

#	Article	IF	CITATIONS
163	Molecular Characterization of Caveolin Association with the Golgi Complex: Identification of a Cis-Golgi Targeting Domain in the Caveolin Molecule. Journal of Cell Biology, 1999, 145, 1443-1459.	5.2	113
164	Caveolae regulate the nanoscale organization of the plasma membrane to remotely control Ras signaling. Journal of Cell Biology, 2014, 204, 777-792.	5.2	112
165	Critical role of CAV1/caveolin-1 in cell stress responses in human breast cancer cells via modulation of lysosomal function and autophagy. Autophagy, 2015, 11, 769-784.	9.1	112
166	Caveolin Interacts with the Angiotensin II Type 1 Receptor during Exocytic Transport but Not at the Plasma Membrane. Journal of Biological Chemistry, 2003, 278, 23738-23746.	3.4	110
167	Evolutionary analysis and molecular dissection of caveola biogenesis. Journal of Cell Science, 2008, 121, 2075-2086.	2.0	110
168	pH-induced microtubule-dependent redistribution of late endosomes in neuronal and epithelial cells Journal of Cell Biology, 1991, 113, 261-274.	5.2	107
169	N4WBP5, a Potential Target for Ubiquitination by the Nedd4 Family of Proteins, Is a Novel Golgi-associated Protein. Journal of Biological Chemistry, 2002, 277, 9307-9317.	3.4	106
170	Mechanochemical feedback control of dynamin independent endocytosis modulates membrane tension in adherent cells. Nature Communications, 2018, 9, 4217.	12.8	106
171	Arf6-independent GPI-anchored Protein-enriched Early Endosomal Compartments Fuse with Sorting Endosomes via a Rab5/Phosphatidylinositol-3′-Kinase–dependent Machinery. Molecular Biology of the Cell, 2006, 17, 3689-3704.	2.1	104
172	Coronin 1B Reorganizes the Architecture of F-Actin Networks for Contractility at Steady-State and Apoptotic Adherens Junctions. Developmental Cell, 2016, 37, 58-71.	7.0	103
173	Caveolae: Formation, dynamics, and function. Current Opinion in Cell Biology, 2020, 65, 8-16.	5.4	103
174	Electrostatic Interactions Positively Regulate K-Ras Nanocluster Formation and Function. Molecular and Cellular Biology, 2008, 28, 4377-4385.	2.3	102
175	The Ether Lipid Precursor Hexadecylglycerol Stimulates the Release and Changes the Composition of Exosomes Derived from PC-3 Cells. Journal of Biological Chemistry, 2015, 290, 4225-4237.	3.4	102
176	Mutant huntingtin inhibits clathrin-independent endocytosis and causes accumulation of cholesterol in vitro and in vivo. Human Molecular Genetics, 2006, 15, 3578-3591.	2.9	101
177	A microtubule-organizing center directing intracellular transport in the early mouse embryo. Science, 2017, 357, 925-928.	12.6	101
178	Adherens Junctions Revisualized: Organizing Cadherins as Nanoassemblies. Developmental Cell, 2015, 35, 12-20.	7.0	100
179	Transcytosis in MDCK cells: identification of glycoproteins transported bidirectionally between both plasma membrane domains Journal of Cell Biology, 1990, 111, 2909-2921.	5.2	95
180	Caveolae. Current Biology, 2018, 28, R402-R405.	3.9	95

#	Article	IF	CITATIONS
181	Role of Cholesterol in Developing T-Tubules: Analogous Mechanisms for T-Tubule and Caveolae Biogenesis. Traffic, 2000, 1, 326-341.	2.7	94
182	Inhibitors of COP-mediated Transport and Cholera Toxin Action Inhibit Simian Virus 40 Infection. Molecular Biology of the Cell, 2002, 13, 1750-1764.	2.1	94
183	Fendiline Inhibits K-Ras Plasma Membrane Localization and Blocks K-Ras Signal Transmission. Molecular and Cellular Biology, 2013, 33, 237-251.	2.3	94
184	Mammalian Diaphanous 1 Mediates a Pathway for E-cadherin to Stabilize Epithelial Barriers through Junctional Contractility. Cell Reports, 2017, 18, 2854-2867.	6.4	94
185	Expression of Caveolin-1 Enhances Cholesterol Efflux in Hepatic Cells. Journal of Biological Chemistry, 2004, 279, 14140-14146.	3.4	93
186	Effect of the toxic milk mutation (tx) on the function and intracellular localization of Wnd, the murine homologue of the Wilson copper ATPase. Human Molecular Genetics, 2001, 10, 361-370.	2.9	92
187	Staurosporines Disrupt Phosphatidylserine Trafficking and Mislocalize Ras Proteins. Journal of Biological Chemistry, 2012, 287, 43573-43584.	3.4	89
188	Hrs and SNX3 Functions in Sorting and Membrane Invagination within Multivesicular Bodies. PLoS Biology, 2008, 6, e214.	5.6	87
189	Epidermal Growth Factor Receptor Activation Remodels the Plasma Membrane Lipid Environment To Induce Nanocluster Formation. Molecular and Cellular Biology, 2010, 30, 3795-3804.	2.3	87
190	APPL endosomes are not obligatory endocytic intermediates but act as stable cargo-sorting compartments. Journal of Cell Biology, 2015, 211, 123-144.	5. 2	87
191	Zebrafish as a model for caveolin-associated muscle disease; caveolin-3 is required for myofibril organization and muscle cell patterning. Human Molecular Genetics, 2005, 14, 1727-1743.	2.9	86
192	Phosphocaveolin-1 is a mechanotransducer that induces caveola biogenesis via Egr1 transcriptional regulation. Journal of Cell Biology, 2012, 199, 425-435.	5. 2	86
193	Cavinâ€1/PTRF alters prostate cancer cellâ€derived extracellular vesicle content and internalization to attenuate extracellular vesicleâ€mediated osteoclastogenesis and osteoblast proliferation. Journal of Extracellular Vesicles, 2014, 3, .	12.2	86
194	Molecular Characterization of Caveolin-induced Membrane Curvature. Journal of Biological Chemistry, 2015, 290, 24875-24890.	3 . 4	85
195	Functional analysis and intracellular localization of the human menkes protein (MNK) stably expressed from a cDNA construct in Chinese hamster ovary cells (CHO-K1). Human Molecular Genetics, 1998, 7, 1293-1300.	2.9	84
196	Redistribution of caveolae during mitosis. Journal of Cell Science, 2011, 124, 1965-1972.	2.0	84
197	Characterization of tetanus toxin binding to rat brain membranes. Evidence for a high-affinity proteinase-sensitive receptor. Biochemical Journal, 1986, 236, 845-852.	3.7	82
198	Caveolin-1 orchestrates the balance between glucose and lipid-dependent energy metabolism: Implications for liver regeneration. Hepatology, 2012, 55, 1574-1584.	7.3	82

#	Article	IF	Citations
199	Cross-talk between Caveolae and Glycosylphosphatidylinositol-rich Domains. Journal of Biological Chemistry, 2001, 276, 30729-30736.	3.4	81
200	Caveolin Regulates Endocytosis of the Muscle Repair Protein, Dysferlin. Journal of Biological Chemistry, 2008, 283, 6476-6488.	3.4	80
201	PNPLA3/adiponutrin functions in lipid droplet formation. Biology of the Cell, 2013, 105, 219-233.	2.0	79
202	Structural Insights into the Organization of the Cavin Membrane Coat Complex. Developmental Cell, 2014, 31, 405-419.	7.0	79
203	Activation of the MAPK Module from Different Spatial Locations Generates Distinct System Outputs. Molecular Biology of the Cell, 2008, 19, 4776-4784.	2.1	78
204	Pkd1 Regulates Lymphatic Vascular Morphogenesis during Development. Cell Reports, 2014, 7, 623-633.	6.4	77
205	Quantitative Analysis of Lipid Droplet Fusion: Inefficient Steady State Fusion but Rapid Stimulation by Chemical Fusogens. PLoS ONE, 2010, 5, e15030.	2.5	77
206	Visualization of the heterogeneous membrane distribution of sphingomyelin associated with cytokinesis, cell polarity, and sphingolipidosis. FASEB Journal, 2015, 29, 477-493.	0.5	76
207	Diversity of Raft-Like Domains in Late Endosomes. PLoS ONE, 2007, 2, e391.	2.5	76
208	ORP5 localizes to ER–lipid droplet contacts and regulates the level of PI(4)P on lipid droplets. Journal of Cell Biology, 2020, 219, .	5,2	75
209	Caveolae Protect Notochord Cells against Catastrophic Mechanical Failure during Development. Current Biology, 2017, 27, 1968-1981.e7.	3.9	74
210	Journey to the centre of the cell: Virtual reality immersion into scientific data. Traffic, 2018, 19, 105-110.	2.7	74
211	Small GTPases and BAR domain proteins regulate branched actin polymerisation for clathrin and dynamin-independent endocytosis. Nature Communications, 2018, 9, 1835.	12.8	74
212	Revisiting caveolin trafficking: the end of the caveosome. Journal of Cell Biology, 2010, 191, 439-441.	5,2	73
213	α-Actinin-3 deficiency results in reduced glycogen phosphorylase activity and altered calcium handling in skeletal muscle. Human Molecular Genetics, 2010, 19, 1335-1346.	2.9	73
214	The association of annexin I with early endosomes is regulated by Ca2+ and requires an intact N-terminal domain Molecular Biology of the Cell, 1996, 7, 1359-1374.	2.1	72
215	PTRF/cavin-1 neutralizes non-caveolar caveolin-1 microdomains in prostate cancer. Oncogene, 2014, 33, 3561-3570.	5.9	72
216	Different Characteristics and Nucleotide Binding Properties of Inosine Monophosphate Dehydrogenase (IMPDH) Isoforms. PLoS ONE, 2012, 7, e51096.	2.5	71

#	Article	IF	CITATIONS
217	Characterization of a Distinct Plasma Membrane Macrodomain in Differentiated Adipocytes. Journal of Biological Chemistry, 2002, 277, 46769-46778.	3.4	70
218	Mutations in mouse Ift144 model the craniofacial, limb and rib defects in skeletal ciliopathies. Human Molecular Genetics, 2012, 21, 1808-1823.	2.9	70
219	Colony-stimulating factor-1 (CSF-1) delivers a proatherogenic signal to human macrophages. Journal of Leukocyte Biology, 2009, 85, 278-288.	3.3	69
220	PTRFâ€"cavin-1 expression decreases the migration of PC3 prostate cancer cells: Role of matrix metalloprotease 9. European Journal of Cell Biology, 2011, 90, 136-142.	3.6	69
221	Cell biology of neuronal endocytosis. Journal of Neuroscience Research, 1993, 36, 1-9.	2.9	68
222	Parkinson Disease-linked Vps35 R524W Mutation Impairs the Endosomal Association of Retromer and Induces α-Synuclein Aggregation. Journal of Biological Chemistry, 2016, 291, 18283-18298.	3.4	68
223	Phosphatidylserine dictates the assembly and dynamics of caveolae in the plasma membrane. Journal of Biological Chemistry, 2017, 292, 14292-14307.	3.4	68
224	The immunofluorescent era of membrane traffic. Trends in Cell Biology, 1993, 3, 214-219.	7.9	67
225	A Novel Hook-Related Protein Family and the Characterization of Hook-Related Protein 1. Traffic, 2005, 6, 442-458.	2.7	67
226	Hydrophobic and Basic Domains Target Proteins to Lipid Droplets. Traffic, 2009, 10, 1785-1801.	2.7	67
227	Highâ€density lipoprotein inhibits human M1 macrophage polarization through redistribution of caveolinâ€1. British Journal of Pharmacology, 2016, 173, 741-751.	5 . 4	67
228	Aberrant dysferlin trafficking in cells lacking caveolin or expressing dystrophy mutants of caveolin-3. Human Molecular Genetics, 2006, 15, 129-142.	2.9	66
229	A Novel Synaptobrevin/VAMP Homologous Protein (VAMP5) Is Increased during In Vitro Myogenesis and Present in the Plasma Membrane. Molecular Biology of the Cell, 1998, 9, 2423-2437.	2.1	65
230	Rab5 and Alsin regulate stress-activated cytoprotective signaling on mitochondria. ELife, 2018, 7, .	6.0	65
231	Caveolae: The FAQs. Traffic, 2020, 21, 181-185.	2.7	65
232	Human Miltons associate with mitochondria and induce microtubule-dependent remodeling of mitochondrial networks. Biochimica Et Biophysica Acta - Molecular Cell Research, 2010, 1803, 564-574.	4.1	64
233	Subdiffractional tracking of internalized molecules reveals heterogeneous motion states of synaptic vesicles. Journal of Cell Biology, 2016, 215, 277-292.	5.2	64
234	Exploitation of major histocompatibility complex class I molecules and caveolae by simian virus 40. Immunological Reviews, 1999, 168, 23-31.	6.0	63

#	Article	IF	Citations
235	Interaction of Anti-Phospholipid Antibodies With Late Endosomes of Human Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 563-574.	2.4	63
236	Involvement of caveolin-2 in caveolar biogenesis in MDCK cells. FEBS Letters, 2003, 538, 85-88.	2.8	62
237	Nucleophosmin and Nucleolin Regulate K-Ras Plasma Membrane Interactions and MAPK Signal Transduction. Journal of Biological Chemistry, 2009, 284, 28410-28419.	3.4	61
238	VIP36, a novel component of glycolipid rafts and exocytic carrier vesicles in epithelial cells. EMBO Journal, 1994, 13, 1729-40.	7.8	61
239	The growth suppressinggas1product is a GPI-linked protein. FEBS Letters, 2000, 481, 152-158.	2.8	60
240	Caveolin-1 is required for lateral line neuromast and notochord development. Journal of Cell Science, 2007, 120, 2151-2161.	2.0	60
241	Are caveolae a cellular entry route for non-viral therapeutic delivery systems?. Advanced Drug Delivery Reviews, 2015, 91, 92-108.	13.7	60
242	CELL BIOLOGY: Life Without Caveolae. Science, 2001, 293, 2404-2405.	12.6	59
243	Expression of PTRF in PC-3 Cells Modulates Cholesterol Dynamics and the Actin Cytoskeleton Impacting Secretion Pathways. Molecular and Cellular Proteomics, 2012, 11, M111.012245.	3.8	59
244	Postlipolytic insulin-dependent remodeling of micro lipid droplets in adipocytes. Molecular Biology of the Cell, 2012, 23, 1826-1837.	2.1	59
245	Cortactin Scaffolds Arp2/3 and WAVE2 at the Epithelial Zonula Adherens. Journal of Biological Chemistry, 2014, 289, 7764-7775.	3.4	59
246	Observing Cell Surface Signaling Domains Using Electron Microscopy. Science Signaling, 2003, 2003, pl9-pl9.	3.6	58
247	Caveolin-1 Plays a Critical Role in the Differentiation of Monocytes into Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, e117-25.	2.4	57
248	Caveolin-1 Is Necessary for Hepatic Oxidative Lipid Metabolism: Evidence for Crosstalk between Caveolin-1 and Bile Acid Signaling. Cell Reports, 2013, 4, 238-247.	6.4	56
249	Munc $18\text{-}1$ is a molecular chaperone for $\hat{l}\pm$ -synuclein, controlling its self-replicating aggregation. Journal of Cell Biology, 2016, 214, 705-718.	5.2	56
250	A Study of the Mechanism of Internalisation of Tetanus Toxin by Primary Mouse Spinal Cord Cultures. Journal of Neurochemistry, 1987, 49, 1057-1068.	3.9	55
251	Role of AP1 and Gadkin in the traffic of secretory endo-lysosomes. Molecular Biology of the Cell, 2011, 22, 2068-2082.	2.1	55
252	A distinct plasma lipid signature associated with poor prognosis in castrationâ€resistant prostate cancer. International Journal of Cancer, 2017, 141, 2112-2120.	5.1	54

#	Article	IF	Citations
253	Regulation of Albumin Endocytosis by PSD95/Dlg/ZO-1 (PDZ) Scaffolds. Journal of Biological Chemistry, 2006, 281, 16068-16077.	3.4	53
254	Identification of intracellular cavin target proteins reveals cavin-PP1alpha interactions regulate apoptosis. Nature Communications, 2019, 10, 3279.	12.8	53
255	Membrane Curvature and Tension Control the Formation and Collapse of Caveolar Superstructures. Developmental Cell, 2019, 48, 523-538.e4.	7.0	53
256	Ca $<$ sup $>2+<$ /sup $>$ -regulated Pool of Phosphatidylinositol-3-phosphate Produced by Phosphatidylinositol 3-Kinase C2Î \pm on Neurosecretory Vesicles. Molecular Biology of the Cell, 2008, 19, 5593-5603.	2.1	51
257	The endocytic protein GRAF1 is directed to cell-matrix adhesion sites and regulates cell spreading. Molecular Biology of the Cell, 2011, 22, 4380-4389.	2.1	50
258	An Abl-FBP17 mechanosensing system couples local plasma membrane curvature and stress fiber remodeling during mechanoadaptation. Nature Communications, 2019, 10, 5828.	12.8	50
259	Clathrin Isoform CHC22, a Component of Neuromuscular and Myotendinous Junctions, Binds Sorting Nexin 5 and Has Increased Expression during Myogenesis and Muscle Regeneration. Molecular Biology of the Cell, 2004, 15, 3181-3195.	2.1	49
260	Co-Regulation of Cell Polarization and Migration by Caveolar Proteins PTRF/Cavin-1 and Caveolin-1. PLoS ONE, 2012, 7, e43041.	2.5	49
261	Vascular defects in a mouse model of hypotrichosis-lymphedema-telangiectasia syndrome indicate a role for SOX18 in blood vessel maturation. Human Molecular Genetics, 2009, 18, 2839-2850.	2.9	48
262	Caveola-forming proteins caveolin-1 and PTRF in prostate cancer. Nature Reviews Urology, 2013, 10, 529-536.	3.8	48
263	Cell-free formation and interactome analysis of caveolae. Journal of Cell Biology, 2018, 217, 2141-2165.	5.2	48
264	Caveolae Control Contractile Tension for Epithelia to Eliminate Tumor Cells. Developmental Cell, 2020, 54, 75-91.e7.	7.0	48
265	Caveolae and lipid sorting: Shaping the cellular response to stress. Journal of Cell Biology, 2020, 219, .	5.2	47
266	Sphingolipid transport from the trans-Golgi network to the apical surface in permeabilized MDCK cells. FEBS Letters, 1992, 300, 227-231.	2.8	46
267	Volume electron microscopy. Nature Reviews Methods Primers, 2022, 2, .	21.2	46
268	Cytoskeletal Tropomyosin Tm5NM1 Is Required for Normal Excitation–Contraction Coupling in Skeletal Muscle. Molecular Biology of the Cell, 2009, 20, 400-409.	2.1	45
269	SnapShot: Caveolae, Caveolins, and Cavins. Cell, 2013, 154, 704-704.e1.	28.9	45
270	Mechanotransduction activates RhoA in the neighbors of apoptotic epithelial cells to engage apical extrusion. Current Biology, 2021, 31, 1326-1336.e5.	3.9	45

#	Article	IF	Citations
271	Nicotinamide riboside attenuates age-associated metabolic and functional changes in hematopoietic stem cells. Nature Communications, 2021, 12, 2665.	12.8	45
272	Caveolin-1 Deficiency Leads to Increased Susceptibility to Cell Death and Fibrosis in White Adipose Tissue: Characterization of a Lipodystrophic Model. PLoS ONE, 2012, 7, e46242.	2.5	45
273	Abnormal Nuclear Pore Formation Triggers Apoptosis in the Intestinal Epithelium of elys-Deficient Zebrafish. Gastroenterology, 2009, 136, 902-911.e7.	1.3	44
274	The HSP90 inhibitor geldanamycin perturbs endosomal structure and drives recycling ErbB2 and transferrin to modified MVBs/lysosomal compartments. Molecular Biology of the Cell, 2013, 24, 129-144.	2.1	44
275	Inhibition of Lipid Raft-dependent Signaling by a Dystrophy-associated Mutant of Caveolin-3. Journal of Biological Chemistry, 2002, 277, 17944-17949.	3.4	43
276	Mathematical Modeling of K-Ras Nanocluster Formation on the Plasma Membrane. Biophysical Journal, 2010, 99, 534-543.	0.5	43
277	Characterization of Rab18, a Lipid Droplet–Associated Small GTPase. Methods in Enzymology, 2008, 438, 109-129.	1.0	42
278	Patched1 is required in neural crest cells for the prevention of orofacial clefts. Human Molecular Genetics, 2013, 22, 5026-5035.	2.9	42
279	Ultrastructural localisation of protein interactions using conditionally stable nanobodies. PLoS Biology, 2018, 16, e2005473.	5.6	42
280	PTRF/Cavin-1 decreases prostate cancer angiogenesis and lymphangiogenesis. Oncotarget, 2013, 4, 1844-1855.	1.8	42
281	Tetanus toxin binding to mouse spinal cord cells: an evaluation of the role of gangliosides in toxin internalization. Brain Research, 1988, 475, 118-127.	2.2	41
282	Role for caveolin-mediated transcytosis in facilitating transport of large cargoes into the brain via ultrasound. Journal of Controlled Release, 2020, 327, 667-675.	9.9	41
283	Diet-induced hypercholesterolemia promotes androgen-independent prostate cancer metastasis via IQGAP1 and caveolin-1. Oncotarget, 2015, 6, 7438-7453.	1.8	41
284	[37] Localization of Rab family members in animal cells. Methods in Enzymology, 1992, 219, 398-407.	1.0	40
285	Glucose principally regulates insulin secretion in mouse islets by controlling the numbers of granule fusion events per cell. Diabetologia, 2013, 56, 2629-2637.	6.3	40
286	And still they are moving… Dynamic properties of caveolae. FEBS Letters, 1996, 389, 52-54.	2.8	39
287	An RPTP $\hat{I}\pm$ /Src family kinase/Rap1 signaling module recruits myosin IIB to support contractile tension at apical E-cadherin junctions. Molecular Biology of the Cell, 2015, 26, 1249-1262.	2.1	39
288	In vivo proteomic mapping through GFP-directed proximity-dependent biotin labelling in zebrafish. ELife, 2021, 10, .	6.0	39

#	Article	IF	Citations
289	The trans-membrane protein p25 forms highly specialized domains that regulate membrane composition and dynamics. Journal of Cell Science, 2003, 116, 4821-4832.	2.0	38
290	Development of a human skeletal micro muscle platform with pacing capabilities. Biomaterials, 2019, 198, 217-227.	11.4	38
291	Reactivation of Myc transcription in the mouse heart unlocks its proliferative capacity. Nature Communications, 2020, 11 , 1827 .	12.8	38
292	Cloning and subcellular localization of novel rab proteins reveals polarized and cell type-specific expression. Journal of Cell Science, 1994, 107 (Pt 12), 3437-48.	2.0	38
293	Reduced Plasma Membrane Expression of Dysferlin Mutants Is Attributed to Accelerated Endocytosis via a Syntaxin-4-associated Pathway. Journal of Biological Chemistry, 2010, 285, 28529-28539.	3.4	37
294	Lipid droplets, bioenergetic fluxes, and metabolic flexibility. Seminars in Cell and Developmental Biology, 2020, 108, 33-46.	5.0	37
295	Caveolin-1 and cavin1 act synergistically to generate a unique lipid environment in caveolae. Journal of Cell Biology, 2021, 220, .	5.2	37
296	Analysis of the role of p200-containing vesicles in post-Golgi traffic Molecular Biology of the Cell, 1996, 7, 961-974.	2.1	36
297	Endocytosis in Skeletal Muscle Fibers. Experimental Cell Research, 1999, 253, 551-560.	2.6	36
298	Therapeutic Levels of the Hydroxmethylglutaryl-Coenzyme A Reductase Inhibitor Lovastatin Activate Ras Signaling via Phospholipase D2. Molecular and Cellular Biology, 2011, 31, 1110-1120.	2.3	36
299	Caveolae control the antiâ€inflammatory phenotype of senescent endothelial cells. Aging Cell, 2015, 14, 102-111.	6.7	36
300	Key phases in the formation of caveolae. Current Opinion in Cell Biology, 2021, 71, 7-14.	5.4	36
301	Centrobin regulates the assembly of functional mitotic spindles. Oncogene, 2010, 29, 2649-2658.	5.9	35
302	Non-caveolar caveolins – duties outside the caves. Journal of Cell Science, 2020, 133, .	2.0	35
303	Spatiotemporal Regulation of Early Lipolytic Signaling in Adipocytes. Journal of Biological Chemistry, 2009, 284, 32097-32107.	3.4	34
304	A novel sphingomyelin/cholesterol domainâ€specific probe reveals the dynamics of the membrane domains during virus release and in Niemannâ€Pick type C. FASEB Journal, 2017, 31, 1301-1322.	0.5	34
305	Cargo-specific recruitment in clathrin- and dynamin-independent endocytosis. Nature Cell Biology, 2021, 23, 1073-1084.	10.3	34
306	Oligomerization and endocytosis of Hedgehog is necessary for its efficient exovesicular secretion. Molecular Biology of the Cell, 2015, 26, 4700-4717.	2.1	33

#	Article	IF	CITATIONS
307	Drugâ€induced increase in lysobisphosphatidic acid reduces the cholesterol overload in Niemann–Pick type C cells and mice. EMBO Reports, 2019, 20, e47055.	4.5	33
308	Transcytosis of the polymeric immunoglobulin receptor in cultured hippocampal neurons. Current Biology, 1993, 3, 635-644.	3.9	32
309	Reassessing the Role of Phosphocaveolinâ€1 in Cell Adhesion and Migration. Traffic, 2007, 8, 1695-1705.	2.7	32
310	Caveolae Meet Endosomes. Developmental Cell, 2004, 7, 458-460.	7.0	31
311	Human immune cell targeting of protein nanoparticles – caveospheres. Nanoscale, 2016, 8, 8255-8265.	5.6	31
312	Lipid droplets and the host–pathogen dynamic: FATal attraction?. Journal of Cell Biology, 2021, 220, .	5.2	31
313	Nanoparticle entry into cells; the cell biology weak link. Advanced Drug Delivery Reviews, 2022, 188, 114403.	13.7	31
314	Design and Application of InÂVivo FRET Biosensors to Identify Protein Prenylation and Nanoclustering Inhibitors. Chemistry and Biology, 2012, 19, 866-874.	6.0	30
315	In vivo cell biological screening identifies an endocytic capture mechanism for T-tubule formation. Nature Communications, 2020, $11,3711.$	12.8	30
316	Quantitative Proteomic Analysis of the Adipocyte Plasma Membrane. Journal of Proteome Research, 2011, 10, 4970-4982.	3.7	29
317	Nanomolar oligomerization and selective co-aggregation of $\hat{l}\pm$ -synuclein pathogenic mutants revealed by single-molecule fluorescence. Scientific Reports, 2016, 6, 37630.	3.3	29
318	Resolution of Novel Pancreatic Ductal Adenocarcinoma Subtypes by Global Phosphotyrosine Profiling. Molecular and Cellular Proteomics, 2016, 15, 2671-2685.	3.8	29
319	Mechanoprotection by skeletal muscle caveolae. Bioarchitecture, 2016, 6, 22-27.	1.5	29
320	Faceted polymersomes: a sphere-to-polyhedron shape transformation. Chemical Science, 2019, 10, 2725-2731.	7.4	29
321	Modular transient nanoclustering of activated \hat{l}^2 2-adrenergic receptors revealed by single-molecule tracking of conformation-specific nanobodies. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30476-30487.	7.1	29
322	Tyrosine dephosphorylated cortactin downregulates contractility at the epithelial zonula adherens through SRGAP1. Nature Communications, 2017, 8, 790.	12.8	27
323	Role of SNX16 in the Dynamics of Tubulo-Cisternal Membrane Domains of Late Endosomes. PLoS ONE, 2011, 6, e21771.	2.5	26
324	A phosphoinositide-binding cluster in cavin1 acts as a molecular sensor for cavin1 degradation. Molecular Biology of the Cell, 2015, 26, 3561-3569.	2.1	26

#	Article	IF	Citations
325	Annexin A6 regulates interleukinâ€2â€mediated Tâ€cell proliferation. Immunology and Cell Biology, 2016, 94, 543-553.	2.3	26
326	Modern Approaches for Ultrastructural Analysis of the Zebrafish Embryo. Methods in Cell Biology, 2010, 96, 425-442.	1.1	25
327	SNX12 Role in Endosome Membrane Transport. PLoS ONE, 2012, 7, e38949.	2.5	25
328	Plasticity of early endosomes. Journal of Cell Science, 1992, 103 (Pt 2), 335-48.	2.0	25
329	Caveolin and ras function. Methods in Enzymology, 2001, 333, 172-183.	1.0	24
330	Growth Hormone Stops Excessive Inflammation After Partial Hepatectomy, Allowing Liver Regeneration and Survival Through Induction of H2 $\hat{a}\in B$ I/HLA $\hat{a}\in G$. Hepatology, 2021, 73, 759-775.	7.3	24
331	Cavin1 intrinsically disordered domains are essential for fuzzy electrostatic interactions and caveola formation. Nature Communications, 2021, 12, 931.	12.8	24
332	Protein Targeting to the Plasma Membrane of Adult Skeletal Muscle Fiber: An Organized Mosaic of Functional Domains. Experimental Cell Research, 2001, 267, 61-72.	2.6	23
333	Characterization of Rab23, a Negative Regulator of Sonic Hedgehog Signaling. Methods in Enzymology, 2005, 403, 759-777.	1.0	23
334	Examination of the Subsarcolemmal Tubular System of Mammalian Skeletal Muscle Fibers. Biophysical Journal, 2013, 104, L19-L21.	0.5	23
335	A variable undecad repeat domain in cavin 1 regulates caveola formation and stability. EMBO Reports, 2018, 19, .	4.5	23
336	Ascidian caveolin induces membrane curvature and protects tissue integrity and morphology during embryogenesis. FASEB Journal, 2020, 34, 1345-1361.	0.5	23
337	Heterofibrins: inhibitors of lipid droplet formation from a deep-water southern Australian marine sponge, Spongia (Heterofibria) sp Organic and Biomolecular Chemistry, 2010, 8, 3188.	2.8	22
338	RhoD participates in the regulation of cell-cycle progression and centrosome duplication. Oncogene, 2013, 32, 1831-1842.	5.9	22
339	Unraveling the architecture of caveolae. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14170-14172.	7.1	22
340	Src kinases relax adherens junctions between the neighbors of apoptotic cells to permit apical extrusion. Molecular Biology of the Cell, 2020, 31, 2557-2569.	2.1	22
341	Non-caveolar caveolin-1 expression in prostate cancer cells promotes lymphangiogenesis. Oncoscience, 2015, 2, 635-645.	2.2	22
342	Caveolins/caveolae protect adipocytes from fatty acid-mediated lipotoxicity. Journal of Lipid Research, 2011, 52, 1526-1532.	4.2	21

#	Article	IF	Citations
343	Prolonged Intake of Dietary Lipids Alters Membrane Structure and T Cell Responses in LDLrâ^'/â^' Mice. Journal of Immunology, 2016, 196, 3993-4002.	0.8	21
344	An inverted CAV1 (caveolin 1) topology defines novel autophagy-dependent exosome secretion from prostate cancer cells. Autophagy, 2021, 17, 2200-2216.	9.1	21
345	Formation of retromer transport carriers is disrupted by the Parkinson diseaseâ€linked Vps35 <scp>D620N</scp> variant. Traffic, 2021, 22, 123-136.	2.7	21
346	Ryanodine receptor leak triggers fiber Ca ²⁺ redistribution to preserve force and elevate basal metabolism in skeletal muscle. Science Advances, 2021, 7, eabi7166.	10.3	20
347	Caveolinâ€1â€driven membrane remodelling regulates hnRNPKâ€mediated exosomal microRNA sorting in cancer. Clinical and Translational Medicine, 2021, 11, e381.	4.0	19
348	Population Distribution Analyses Reveal a Hierarchy of Molecular Players Underlying Parallel Endocytic Pathways. PLoS ONE, 2014, 9, e100554.	2.5	17
349	Laser-mediated rupture of chlamydial inclusions triggers pathogen egress and host cell necrosis. Nature Communications, 2017, 8, 14729.	12.8	17
350	A robust method for particulate detection of a genetic tag for 3D electron microscopy. ELife, 2021, 10,	6.0	16
351	Endocytosis in polarized cells. Seminars in Cell Biology, 1991, 2, 387-95.	3.4	16
352	Loss of YhcB results in dysregulation of coordinated peptidoglycan, LPS and phospholipid synthesis during Escherichia coli cell growth. PLoS Genetics, 2021, 17, e1009586.	3.5	16
353	Cavin-1 deficiency modifies myocardial and coronary function, stretch responses and ischaemic tolerance: roles of NOS over-activity. Basic Research in Cardiology, 2017, 112, 24.	5.9	15
354	Colocation of Tpm3.1 and myosin IIa heads defines a discrete subdomain in stress fibres. Journal of Cell Science, 2019, 132, .	2.0	15
355	Impaired endoplasmic reticulum-mitochondrial signaling in ataxia-telangiectasia. IScience, 2021, 24, 101972.	4.1	15
356	AarF Domain Containing Kinase 3 (ADCK3) Mutant Cells Display Signs of Oxidative Stress, Defects in Mitochondrial Homeostasis and Lysosomal Accumulation. PLoS ONE, 2016, 11, e0148213.	2.5	15
357	Cavin4 interacts with Bin1 to promote T-tubule formation and stability in developing skeletal muscle. Journal of Cell Biology, 2021, 220, .	5.2	15
358	A novel form of ataxia oculomotor apraxia characterized by oxidative stress and apoptosis resistance. Cell Death and Differentiation, 2007, 14, 1149-1161.	11.2	14
359	Characterisation of the adiponectin receptors: The non-conserved N-terminal region of AdipoR2 prevents its expression at the cell-surface. Biochemical and Biophysical Research Communications, 2013, 432, 28-33.	2.1	14
360	Caveolin-1 Ablation Imparts Partial Protection Against Inner Retinal Injury in Experimental Glaucoma and Reduces Apoptotic Activation. Molecular Neurobiology, 2020, 57, 3759-3784.	4.0	14

#	Article	IF	Citations
361	Phosphorylation of PKCδ by FER tips the balance from EGFR degradation to recycling. Journal of Cell Biology, 2021, 220, .	5.2	14
362	Correlative light and electron microscopic detection of GFP-labeled proteins using modular APEX. Methods in Cell Biology, 2017, 140, 105-121.	1.1	13
363	Frontline Science: LPS-inducible SLC30A1 drives human macrophage-mediated zinc toxicity against intracellular <i>Escherichia coli</i> Journal of Leukocyte Biology, 2021, 109, 287-297.	3.3	13
364	Inner retinal injury in experimental glaucoma is prevented upon AAV mediated Shp2 silencing in a caveolin dependent manner. Theranostics, 2021, 11, 6154-6172.	10.0	12
365	Rapid processing of filter-grown cells for Epon embedding Journal of Histochemistry and Cytochemistry, 1995, 43, 731-733.	2.5	11
366	Caveolin 1 restricts Group AStreptococcusinvasion of nonphagocytic host cells. Cellular Microbiology, 2017, 19, e12772.	2.1	11
367	Mapping Interactions among Cell-Free Expressed Zika Virus Proteins. Journal of Proteome Research, 2020, 19, 1522-1532.	3.7	11
368	Cavin3 released from caveolae interacts with BRCA1 to regulate the cellular stress response. ELife, 2021, 10, .	6.0	11
369	De novo macrocyclic peptides for inhibiting, stabilizing, and probing the function of the retromer endosomal trafficking complex. Science Advances, 2021, 7, eabg4007.	10.3	11
370	Comparison of the binding characteristics of two different preparations of tetanus toxin to rat brain membranes. Toxicon, 1989, 27, 127-135.	1.6	9
371	Novel contact sites between lipid droplets, early endosomes, and the endoplasmic reticulum. Journal of Lipid Research, 2020, 61, 1364.	4.2	9
372	A role for caveolaâ€forming proteins caveolinâ€1 and CAVIN1 in the proâ€invasive response of glioblastoma to osmotic and hydrostatic pressure. Journal of Cellular and Molecular Medicine, 2020, 24, 3724-3738.	3.6	9
373	Endocytosis in the kidney: insights from the MDCK cell system. Seminars in Nephrology, 1991, 11, 440-52.	1.6	9
374	High-Throughput Screening of Australian Marine Organism Extracts for Bioactive Molecules Affecting the Cellular Storage of Neutral Lipids. PLoS ONE, 2011, 6, e22868.	2.5	8
375	Discreet and distinct clustering of five model membrane proteins revealed by single molecule localization microscopy. Molecular Membrane Biology, 2015, 32, 11-18.	2.0	8
376	Correlation of the invasive potential of glioblastoma and expression of caveola-forming proteins caveolin-1 and CAVIN1. Journal of Neuro-Oncology, 2019, 143, 207-220.	2.9	8
377	A plasmid library of full-length zebrafish rab proteins for <i>in vivo</i> cell biology. Cellular Logistics, 2017, 7, e1301151.	0.9	6
378	The membrane environment of cadherin adhesion receptors: a working hypothesis. Biochemical Society Transactions, 2019, 47, 985-995.	3.4	6

#	Article	IF	CITATIONS
379	Myosin Vb is required for correct trafficking of Nâ€cadherin and cardiac chamber ballooning. Developmental Dynamics, 2019, 248, 284-295.	1.8	6
380	High intraluminal pressure promotes vascular inflammation via caveolin-1. Scientific Reports, 2021, 11, 5894.	3.3	6
381	The structure of caveolin finally takes shape. Science Advances, 2022, 8, eabq6985.	10.3	6
382	Caveolin†influences epithelial collective cell migration via FMNL2 formin. Biology of the Cell, 2021, 113, 107-117.	2.0	5
383	Nanoscape, a data-driven 3D real-time interactive virtual cell environment. ELife, 2021, 10, .	6.0	5
384	Seeing and believing: recent advances in imaging cell-cell interactions. F1000Research, 2015, 4, 273.	1.6	5
385	An anaplerotic approach to correct the mitochondrial dysfunction in ataxia-telangiectasia (A-T). Molecular Metabolism, 2021, 54, 101354.	6.5	5
386	Caves and labyrinths: caveolae and transverse tubules in skeletal muscle. Protoplasma, 2000, 212, 15-23.	2.1	4
387	Which Ras rides the raft? - Reply. Nature Cell Biology, 2001, 3, E172-E172.	10.3	4
388	Proximity Dependent Biotin Labelling in Zebrafish for Proteome and Interactome Profiling. Bio-protocol, 2021, 11, e4178.	0.4	4
389	Normalization of protein at different stages in SILAC subcellular proteomics affects functional analysis. Journal of Integrated OMICS, 2012, 2, .	0.5	3
390	The RhoD to centrosomal duplication. Small GTPases, 2013, 4, 116-122.	1.6	3
391	HSV infection of polarized epithelial cells on filter supports: implications for transport assays and protein localization. European Journal of Cell Biology, 1997, 72, 278-81.	3.6	3
392	MURC/cavin-4 Is Co-Expressed with Caveolin-3 in Rhabdomyosarcoma Tumors and Its Silencing Prevents Myogenic Differentiation in the Human Embryonal RD Cell Line. PLoS ONE, 2015, 10, e0130287.	2.5	2
393	Twenty years of traffic: A 2020 vision of cellular electron microscopy. Traffic, 2020, 21, 156-161.	2.7	2
394	ContactJ: Lipid droplets-mitochondria contacts characterization through fluorescence microscopy and image analysis. F1000Research, 2021, 10, 263.	1.6	2
395	\hat{l}^2 III-Tubulin Structural Domains Regulate Mitochondrial Network Architecture in an Isotype-Specific Manner. Cells, 2022, 11, 776.	4.1	2
396	G.O.4 α-Actinin-3 regulates muscle glycogen phosphorylase: A potential mechanism for the metabolic consequences of the common human null allele of ACTN3. Neuromuscular Disorders, 2009, 19, 545-546.	0.6	1

#	Article	IF	CITATIONS
397	New Transgenic Lines for Localization of GFP-Tagged Proteins by Electron Microscopy. Zebrafish, 2016, 13, 232-233.	1.1	1
398	Live Confocal Imaging of Zebrafish Notochord Cells Under Mechanical Stress In Vivo. Methods in Molecular Biology, 2020, 2169, 175-187.	0.9	1
399	CLIP-170, a Cytoplasmic Linker Protein Mediating Interaction of Endosomes with Microtubules. , 1993, , 145-157.		1
400	ContactJ: Characterization of lipid droplet-mitochondrial contacts using fluorescence microscopy and image analysis. F1000Research, 0, 10, 263.	1.6	1
401	Axonal and dendritic endocytic pathways in cultured neurons. Micron and Microscopica Acta, 1992, 23, 113-114.	0.2	O
402	Involvement of the transmembrane protein p23 in biosynthetic protein transport. Biology of the Cell, 1998, 90, 122-122.	2.0	0
403	Hybrid organic-inorganic nanoparticles: controlled incorporation of gold nanoparticles into virus-like particles and application in surface-enhanced Raman spectroscopy., 2006, 6413, 123.		O
404	Detection of GFP-labeled Proteins by Electron Microscopy. Microscopy and Microanalysis, 2015, 21, 531-532.	0.4	0
405	Caveolae regulate the nanoscale organization of the plasma membrane to remotely control Ras signaling. Journal of General Physiology, 2014, 143, 1434OIA10.	1.9	0
406	Regulation of Endocytosis by the Small GTP-ASE RAB5. , 1993, , 377-385.		0
407	Mechanisms of Endocytosis II Non-Clathrin. , 2022, , .		O