Björn Lindman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5981491/publications.pdf

Version: 2024-02-01

165	7,590	50	78
papers	citations	h-index	g-index
167	167	167	6510 citing authors
all docs	docs citations	times ranked	

#	Article	IF	Citations
1	Revisiting the dissolution of cellulose in H3PO4(aq) through cryo-TEM, PTssNMR and DWS. Carbohydrate Polymers, 2021, 252, 117122.	10.2	10
2	Hydrophobic interactions control the self-assembly of DNA and cellulose. Quarterly Reviews of Biophysics, 2021, 54, e3.	5.7	56
3	Lignin enhances cellulose dissolution in cold alkali. Carbohydrate Polymers, 2021, 274, 118661.	10.2	11
4	Lipid and surfactant self-assembly: Significance of NMR in developing our understanding. Current Opinion in Colloid and Interface Science, 2019, 44, 14-22.	7.4	12
5	New Insights on the Role of Urea on the Dissolution and Thermally-Induced Gelation of Cellulose in Aqueous Alkali. Gels, 2018, 4, 87.	4.5	29
6	From surfactant to cellulose and DNA self-assembly. A 50-year journey. Colloid and Polymer Science, 2016, 294, 1687-1703.	2.1	8
7	Clouding of nonionic surfactants. Current Opinion in Colloid and Interface Science, 2016, 22, 23-29.	7.4	70
8	Polyelectrolyte-surfactant association—from fundamentals to applications. Colloid Journal, 2014, 76, 585-594.	1.3	65
9	Competing forces during cellulose dissolution: From solvents to mechanisms. Current Opinion in Colloid and Interface Science, 2014, 19, 32-40.	7.4	259
10	The significance of lipid peroxidation in cardiovascular disease. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 442, 173-180.	4.7	11
11	DNA gel particles: An overview. Advances in Colloid and Interface Science, 2014, 205, 240-256.	14.7	17
12	Mixed protein–DNA gel particles for DNA delivery: Role of protein composition and preparation method on biocompatibility. International Journal of Pharmaceutics, 2013, 454, 192-203.	5.2	12
13	Cyclodextrin-grafted cellulose: Physico-chemical characterization. Carbohydrate Polymers, 2013, 93, 324-330.	10.2	73
14	Cellulose Dissolution in an Alkali Based Solvent: Influence of Additives and Pretreatments. Journal of the Brazilian Chemical Society, 2013, 24, 295-303.	0.6	46
15	Condensation and Decondensation of DNA by Cationic Surfactant, Spermine, or Cationic Surfactant–Cyclodextrin Mixtures: Macroscopic Phase Behavior, Aggregate Properties, and Dissolution Mechanisms. Langmuir, 2012, 28, 7976-7989.	3 . 5	52
16	Counter-ion effect on surfactant–DNA gel particles as controlled DNA delivery systems. Soft Matter, 2012, 8, 3200.	2.7	22
17	DNA with amphiphilic counterions: tuning colloidal DNA with cyclodextrin. Soft Matter, 2012, 8, 4988.	2.7	8
18	Mixtures of Cationic Copolymers and Oppositely Charged Surfactants: Effect of Polymer Charge Density and Ionic Strength on the Adsorption Behavior at the Silica–Aqueous Interface. ACS Applied Materials & Density amp; Interfaces, 2012, 4, 1500-1511.	8.0	28

#	Article	IF	CITATIONS
19	Cyclodextrin–Surfactant Coassembly Depends on the Cyclodextrin Ability To Crystallize. Langmuir, 2012, 28, 2387-2394.	3.5	23
20	Supramolecular Organization in Self-Assembly of Chromatin and Cationic Lipid Bilayers is Controlled by Membrane Charge Density. Biomacromolecules, 2012, 13, 4146-4157.	5.4	7
21	Ionization by pH and Anionic Surfactant Binding Gives the Same Thickening Effects of Crosslinked Polyacrylic Acid Derivatives. Journal of Dispersion Science and Technology, 2012, 33, 1368-1372.	2.4	8
22	Kinetic Studies of Amino Acid-Based Surfactant Binding to DNA. Journal of Physical Chemistry B, 2012, 116, 5831-5837.	2.6	23
23	Phase behavior and rheological properties of DNA–cationic polysaccharide mixtures. Journal of Colloid and Interface Science, 2012, 383, 63-74.	9.4	8
24	pH-responsive liposome-templated polyelectrolyte nanocapsules. Soft Matter, 2012, 8, 4415.	2.7	58
25	DNA with Double-Chained Amphiphilic Counterions and Its Interaction with Lecithin. Langmuir, 2012, 28, 13698-13704.	3.5	9
26	Preparation of Calcium Alginate Nanoparticles Using Water-in-Oil (W/O) Nanoemulsions. Langmuir, 2012, 28, 4131-4141.	3.5	103
27	Complexation between DNA and surfactants and lipids: phase behavior and molecular organization. Soft Matter, 2012, 8, 11022.	2.7	34
28	Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose, 2012, 19, 581-587.	4.9	437
29	Swelling behavior of a new biocompatible plasmid DNA hydrogel. Colloids and Surfaces B: Biointerfaces, 2012, 92, 106-112.	5.0	29
30	Conduction Through Viscoelastic Phase in a Redoxâ€Active Ionic Liquid at Reduced Temperatures. Advanced Materials, 2012, 24, 781-784.	21.0	17
31	Size and morphology of assemblies formed by DNA and lysozyme in dilute aqueous mixtures. Physical Chemistry Chemical Physics, 2011, 13, 3082-3091.	2.8	18
32	DNA gel particles from single and double-tail surfactants: supramolecular assemblies and release characteristics. Soft Matter, 2011, 7, 2001.	2.7	18
33	DNA–lipidself-assembly: phase behavior and phase structures of a DNA–surfactant complex mixed with lecithin and water. Soft Matter, 2011, 7, 730-742.	2.7	28
34	Inclusion of a single-tail amino acid-based amphiphile in a lipoplex formulation: Effects on transfection efficiency and physicochemical properties. Molecular Membrane Biology, 2011, 28, 42-53.	2.0	7
35	Adsorption of Branched-Linear Polyethyleneimine–Ethylene Oxide Conjugate on Hydrophilic Silica Investigated by Ellipsometry and Monte Carlo Simulations. Langmuir, 2011, 27, 9961-9971.	3.5	16
36	Extraordinarily Efficient Conduction in a Redoxâ€Active Ionic Liquid. ChemPhysChem, 2011, 12, 145-149.	2.1	65

#	Article	IF	Citations
37	Physicochemical properties of transferrin-associated lipopolyplexes and their role in biological activity. Colloids and Surfaces B: Biointerfaces, 2010, 76, 207-214.	5.0	10
38	On the mechanism of dissolution of cellulose. Journal of Molecular Liquids, 2010, 156, 76-81.	4.9	609
39	Swelling properties of cross-linked DNA gels. Advances in Colloid and Interface Science, 2010, 158, 21-31.	14.7	25
40	Cyclodextrins in DNA decompaction. Colloids and Surfaces B: Biointerfaces, 2010, 76, 20-27.	5.0	20
41	Interactions between DNA and Nonionic Ethylene Oxide Surfactants are Predominantly Repulsive. Langmuir, 2010, 26, 13102-13109.	3.5	13
42	Interactions between Cationic Lipid Bilayers and Model Chromatin. Langmuir, 2010, 26, 12488-12492.	3.5	11
43	Release of DNA from surfactant complexes induced by 2-hydroxypropyl-Î ² -cyclodextrin. International Journal of Biological Macromolecules, 2010, 46, 153-158.	7.5	20
44	Vesicle-Templated Layer-by-Layer Assembly for the Production of Nanocapsules. Langmuir, 2010, 26, 10555-10560.	3.5	65
45	Novel Biocompatible DNA Gel Particles. Langmuir, 2010, 26, 10606-10613.	3.5	22
46	DNA gel particles. Soft Matter, 2010, 6, 3143.	2.7	25
47	Phase Behavior and Coassembly of DNA and Lysozyme in Dilute Aqueous Mixtures: A Model Investigation of DNAâ^'Protein Interactions. Langmuir, 2010, 26, 2986-2988.	3.5	12
48	Chitosan-DNA Particles for DNA Delivery: Effect of Chitosan Molecular Weight on Formation and Release Characteristics. Journal of Dispersion Science and Technology, 2009, 30, 1494-1499.	2.4	10
49	Nonionic polymers and surfactants: Temperature anomalies revisited. Comptes Rendus Chimie, 2009, 12, 121-128.	0.5	28
50	Mixed Protein Carriers for Modulating DNA Release. Langmuir, 2009, 25, 10263-10270.	3.5	20
51	Complex Formation between a Fluorescently-Labeled Polyelectrolyte and a Triblock Copolymer. Journal of Physical Chemistry B, 2009, 113, 6205-6214.	2.6	17
52	Association of a Hydrophobically Modified Polyelectrolyte and a Block Copolymer Followed by Fluorescence Techniques. Journal of Physical Chemistry B, 2009, 113, 6194-6204.	2.6	13
53	Controlling the Morphology in DNA Condensation and Precipitation. Biomacromolecules, 2009, 10, 1319-1323.	5.4	30
54	The Effect of Postadded Ethylene Glycol Surfactants on DNA-Cationic Surfactant/Water Mesophases. Journal of Physical Chemistry B, 2009, 113, 9909-9914.	2.6	20

#	Article	IF	CITATIONS
55	A cubic DNA-lipid complex. Soft Matter, 2009, 5, 3827.	2.7	23
56	Modeling the Surfactant Uptake in Cross-Linked DNA Gels. Journal of Dispersion Science and Technology, 2009, 30, 954-960.	2.4	0
57	Enzymatic Degradation of Model Cellulose Film Pre-Treated with Antimicrobial Agent. Journal of Dispersion Science and Technology, 2009, 30, 929-936.	2.4	1
58	Role of Linker Groups between Hydrophilic and Hydrophobic Moieties of Cationic Surfactants on Oligonucleotideâ 'Surfactant Interactions. Langmuir, 2009, 25, 13770-13775.	3.5	27
59	Polyelectrolyte–surfactant complexes with long range order. Journal of Colloid and Interface Science, 2008, 319, 330-337.	9.4	8
60	Cationic agents for DNA compaction. Journal of Colloid and Interface Science, 2008, 323, 75-83.	9.4	48
61	The antimicrobial reagent role on the degradation of model cellulose film. Journal of Colloid and Interface Science, 2008, 327, 75-83.	9.4	9
62	DNA pre-condensation with an amino acid-based cationic amphiphile. A viable approach for liposome-based gene delivery. Molecular Membrane Biology, 2008, 25, 23-34.	2.0	35
63	Interaction between DNA and Cationic Surfactants: Effect of DNA Conformation and Surfactant Headgroup. Journal of Physical Chemistry B, 2008, 112, 14446-14452.	2.6	88
64	PVAâ^'DNA Cryogel Membranes:  Characterization, Swelling, and Transport Studies. Langmuir, 2008, 24, 273-279.	3.5	60
65	Effect of the Head-Group Geometry of Amino Acid-Based Cationic Surfactants on Interaction with Plasmid DNA. Biomacromolecules, 2008, 9, 1852-1859.	5 . 4	48
66	Cyclodextrinâ^'Surfactant Complex: A New Route in DNA Decompaction. Biomacromolecules, 2008, 9, 772-775.	5.4	37
67	Per Ekwall and Physical Chemistry 1 in Lund: Ion Binding and Microstructure in Relation to Phase Behavior. Journal of Dispersion Science and Technology, 2007, 28, 21-29.	2.4	3
68	Effect of Bioactive Polypeptides on Leaking Large Bowel Anastomosis and Intestines in the Rat. Journal of Investigative Surgery, 2007, 20, 229-235.	1.3	9
69	Efficacy of Bioactive Polypeptides on Bleeding and Intra-Abdominal Adhesions. European Surgical Research, 2007, 39, 35-40.	1.3	10
70	Surfactantâ^'DNA Gel Particles: Formation and Release Characteristics. Biomacromolecules, 2007, 8, 3886-3892.	5.4	40
71	DNA Gel Particles:  Particle Preparation and Release Characteristics. Langmuir, 2007, 23, 6478-6481.	3.5	57
72	Dispersed Lipid Liquid Crystalline Phases Stabilized by a Hydrophobically Modified Cellulose. Langmuir, 2007, 23, 2768-2777.	3.5	36

#	Article	IF	CITATIONS
73	Effect of Additives on Swelling of Covalent DNA Gelsâ€. Journal of Physical Chemistry B, 2007, 111, 8444-8452.	2.6	44
74	Effect of Headgroup on DNAâ^'Cationic Surfactant Interactionsâ€. Journal of Physical Chemistry B, 2007, 111, 8502-8508.	2.6	81
75	Responsive Polymer Gels:  Double-Stranded versus Single-Stranded DNA. Journal of Physical Chemistry B, 2007, 111, 10886-10896.	2.6	47
76	DNA encapsulation by biocompatible catanionic vesicles. Journal of Colloid and Interface Science, 2007, 312, 87-97.	9.4	58
77	Interaction between Covalent DNA Gels and a Cationic Surfactant. Biomacromolecules, 2006, 7, 1090-1095.	5.4	57
78	Novel treatment in peritoneal adhesion prevention: Protection by polypeptides. Scandinavian Journal of Gastroenterology, 2006, 41, 1110-1117.	1.5	14
79	Spontaneous Formation of Vesicles and Dispersed Cubic and Hexagonal Particles in Amino Acid-Based Catanionic Surfactant Systems. Langmuir, 2006, 22, 5588-5596.	3.5	81
80	Effect of Type of Fragrance Compounds on Their Location in Hexagonal Liquid Crystal. Journal of Dispersion Science and Technology, 2006, 27, 1151-1155.	2.4	13
81	Gels of Catanionic Vesicles and Hydrophobically Modified Poly(ethylene glycol). Journal of Dispersion Science and Technology, 2006, 27, 83-90.	2.4	17
82	Phase Behavior of a DNA-Based Surfactant Mixed with Water and n-Alcohols. Journal of Physical Chemistry B, 2006, 110, 17221-17229.	2.6	23
83	The effect of chain length on the melting temperature and size of dialkyldimethylammonium bromide vesicles. Chemistry and Physics of Lipids, 2006, 142, 128-132.	3.2	47
84	Solubilization and location of phenethylalcohol, benzaldehyde, and limonene in lamellar liquid crystal formed with block copolymer and water. Journal of Colloid and Interface Science, 2006, 297, 792-796.	9.4	23
85	Increasing anastomosis safety and preventing abdominal adhesion formation by the use of polypeptides in the rat. International Journal of Colorectal Disease, 2006, 21, 566-572.	2.2	8
86	Incorporation of substituted acrylamides to the lamellar mesophase of Aerosol OT. Journal of Colloid and Interface Science, 2006, 299, 378-387.	9.4	14
87	Cationic Amphiphilic Polyelectrolytes and Oppositely Charged Surfactants at the Silicaâ 'Aqueous Interface. Langmuir, 2005, 21, 4490-4502.	3.5	13
88	Electrophoretic properties of complexes between DNA and the cationic surfactant cetyltrimethylammonium bromide. Electrophoresis, 2005, 26, 2908-2917.	2.4	17
89	The interaction between DNA and cationic lipid films at the air–water interface. Journal of Colloid and Interface Science, 2005, 286, 166-175.	9.4	50
90	Adsorption and Aggregation of Cationic Amphiphilic Polyelectrolytes on Silica. Langmuir, 2005, 21, 2855-2864.	3.5	31

#	Article	IF	Citations
91	Polyion Adsorption onto Catanionic Surfaces. A Monte Carlo Study. Journal of Physical Chemistry B, 2005, 109, 11781-11788.	2.6	52
92	Dynamics and Energetics of the Self-Assembly of a Hydrophobically Modified Polyelectrolyte:  Naphthalene-Labeled Poly(Acrylic Acid). Journal of Physical Chemistry B, 2005, 109, 11478-11492.	2.6	25
93	DNAâ^'Cationic Surfactant Interactions Are Different for Double- and Single-Stranded DNA. Biomacromolecules, 2005, 6, 2164-2171.	5.4	127
94	Coilâ^'Globule Transition of DNA Molecules Induced by Cationic Surfactants:Â A Dynamic Light Scattering Study. Journal of Physical Chemistry B, 2005, 109, 10458-10463.	2.6	111
95	Self-Assembly of a Hydrophobically Modified Naphthalene-Labeled Poly(acrylic acid) Polyelectrolyte in Water:Organic Solvent Mixtures Followed by Steady-State and Time-Resolved Fluorescence. Journal of Physical Chemistry B, 2005, 109, 3243-3251.	2.6	14
96	Fragmentation of the Lamellae and Fractionation of Polymer Coils upon Mixing Poly(dimethylacrylamide) with the Lamellar Phase of Aerosol OT in Water. Journal of Physical Chemistry B, 2005, 109, 23896-23904.	2.6	11
97	Surface Complexation of DNA with Insoluble Monolayers. Influence of Divalent Counterions. Langmuir, 2005, 21, 1900-1907.	3.5	61
98	Interaction between DNA and Charged Colloids Could Be Hydrophobically Driven. Biomacromolecules, 2005, 6, 832-837.	5.4	35
99	SANS Study of the Interactions among DNA, a Cationic Surfactant, and Polystyrene Latex Particles. Langmuir, 2005, 21, 3578-3583.	3.5	25
100	Nanometric Sieving of Polymer Coils by a Lamellar Liquid Crystal:Â Surfactant AOT and Polydimethylacrylamide. Macromolecules, 2005, 38, 1949-1957.	4.8	14
101	DNA Compaction onto Hydrophobic Surfaces by Different Cationic Surfactants. Langmuir, 2005, 21, 6495-6502.	3.5	15
102	Prevention of postoperative peritoneal adhesions: Effects of lysozyme, polylysine and polyglutamate versus hyaluronic acid. Scandinavian Journal of Gastroenterology, 2005, 40, 1118-1123.	1.5	26
103	Mixed Systems of Hydrophobically Modified Polyelectrolytes:  Controlling Rheology by Charge and Hydrophobe Stoichiometry and Interaction Strength. Langmuir, 2005, 21, 10188-10196.	3.5	17
104	Adsorption of Cationic Cellulose Derivatives/Anionic Surfactant Complexes onto Solid Surfaces. I. Silica Surfaces. Langmuir, 2004, 20, 1753-1762.	3.5	66
105	DNA and Cationic Surfactant Complexes at Hydrophilic Surfaces. An Ellipsometry and Surface Force Study. Langmuir, 2004, 20, 8597-8603.	3.5	39
106	Influence of DNA Adsorption and DNA/Cationic Surfactant Coadsorption on the Interaction Forces between Hydrophobic Surfaces. Langmuir, 2004, 20, 6407-6413.	3.5	13
107	Network Formation of Catanionic Vesicles and Oppositely Charged Polyelectrolytes. Effect of Polymer Charge Density and Hydrophobic Modification. Langmuir, 2004, 20, 4647-4656.	3.5	80
108	Mixing Oil and Water by a DNA-Based Surfactant. Journal of Physical Chemistry B, 2004, 108, 15408-15414.	2.6	29

#	Article	IF	CITATIONS
109	Adsorption of Cationic Cellulose Derivative/Anionic Surfactant Complexes onto Solid Surfaces. II. Hydrophobized Silica Surfaces. Langmuir, 2004, 20, 6692-6701.	3.5	63
110	DNA Compaction by cationic surfactant in solution and at polystyrene particle solution interfaces: a dynamic light scattering study. Physical Chemistry Chemical Physics, 2004, 6, 1603-1607.	2.8	63
111	DNA Compaction at Hydrophobic Surfaces Induced by a Cationic Amphiphileâ€. Langmuir, 2003, 19, 7712-7718.	3.5	56
112	Mechanism of formation of DNA–cationic vesicle complexes. Faraday Discussions, 2003, 122, 191-201.	3.2	64
113	Modeling of DNA compaction by polycations. Journal of Chemical Physics, 2003, 119, 8150-8157.	3.0	82
114	Phase behaviour and structure of amphiphilic poly(ethylene oxide)-poly(propylene oxide) triblock copolymers ((EO)4(PO)59(EO)4 and (EO)17(PO)59(EO)17) in ternary mixtures with water and xylene. Canadian Journal of Chemistry, 2003, 81, 897-908.	1.1	3
115	Polyelectrolytes confined to spherical cavities. Journal of Chemical Physics, 2002, 117, 1385-1394.	3.0	38
116	In Situ Polymerization of N,N-Dimethylacrylamide in Aerosol OTâ^'Water:  Modified Lamellar Structure and Multiphase Separation. Macromolecules, 2002, 35, 7553-7560.	4.8	9
117	Cyclodextrins in Hydrophobically Modified Poly(ethylene glycol) Solutions:  Inhibition of Polymerâ~Polymer Associations. Langmuir, 2002, 18, 9028-9034.	3.5	35
118	Equilibrium between Poly(N,N-dimethylacrylamide) and the Lamellar Phase of Aerosol OT/Water. Journal of Physical Chemistry B, 2002, 106, 5035-5041.	2.6	26
119	Compaction and Decompaction of DNA in the Presence of Catanionic Amphiphile Mixtures. Journal of Physical Chemistry B, 2002, 106, 12608-12612.	2.6	100
120	DNA Interaction with Catanionic Vesicles. Journal of Physical Chemistry B, 2002, 106, 12600-12607.	2.6	104
121	Aqueous Phase Behavior of Hexaethylene Glycol Dodecyl Ether Studied by Differential Scanning Calorimetry, Fourier Transform Infrared Spectroscopy, and 13C NMR Spectroscopy. Langmuir, 2002, 18, 9204-9210.	3.5	25
122	Phase Separation in Polyelectrolyte Gels Interacting with Surfactants of Opposite Charge. Journal of Physical Chemistry B, 2002, 106, 9777-9793.	2.6	86
123	Effect of Pharmaceutically Acceptable Glycols on the Stability of the Liquid Crystalline Gels Formed by Poloxamer 407 in Water. Journal of Colloid and Interface Science, 2002, 252, 226-235.	9.4	94
124	The effect of poly(N, N -dimethylacrylamide) on the lamellar phase of Aerosol OT/water. Colloid and Polymer Science, 2002, 280, 517-525.	2.1	11
125	Clouding of a cationic hydrophobically associating comb polymer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 201, 9-15.	4.7	9
126	A calorimetric study of the gel-to-liquid crystal transition in catanionic surfactant vesicles. Thermochimica Acta, 2002, 394, 31-37.	2.7	46

#	Article	IF	Citations
127	A rheological investigation of the complex formation between hydrophobically modified ethyl (hydroxy ethyl) cellulose and cyclodextrin. Carbohydrate Polymers, 2002, 50, 219-226.	10.2	50
128	DNAâ^'Surfactant Complexes at Solid Surfaces. Langmuir, 2001, 17, 1666-1669.	3.5	59
129	Linear and Nonlinear Viscoelasticity of Semidilute Aqueous Mixtures of a Nonionic Cellulose Derivative and Ionic Surfactants. Langmuir, 2001, 17, 8001-8009.	3.5	39
130	Interfacial Interaction between Cellulose Derivatives and Surfactants at Solid Surfaces. An Ellipsometry Study. Langmuir, 2001, 17, 1499-1505.	3.5	25
131	Lyotropic Liquid Crystalline Structures Formed by Amphiphilic Heteroarm Star Copolymers. Macromolecules, 2001, 34, 5979-5983.	4.8	26
132	Swelling and Structural Changes of Oppositely Charged Polyelectrolyte Gelâ^Mixed Surfactant Complexes. Macromolecules, 2001, 34, 1522-1525.	4.8	27
133	Polymerâ [^] Surfactant Interactions in Dilute Mixtures of a Nonionic Cellulose Derivative and an Anionic Surfactant. Langmuir, 2001, 17, 28-34.	3.5	120
134	Sodium polyacrylate potentiates the anti-adhesion effect of a cellulose-derived polymer. Biomaterials, 2001, 22, 2185-2190.	11.4	16
135	Prevention of Adhesions by Surfactants and Cellulose Derivatives in Mice. The European Journal of Surgery, 2001, 167, 136-141.	0.9	6
136	Novel Organized Structures in Mixtures of a Hydrophobically Modified Polymer and Two Oppositely Charged Surfactants. Langmuir, 2000, 16, 6825-6832.	3.5	31
137	pH-Controlled DNA Condensation in the Presence of Dodecyldimethylamine Oxide. Langmuir, 2000, 16, 5871-5878.	3.5	71
138	Association of Naphthalene-Labeled Poly(acrylic acid) and Interaction with Cationic Surfactants. Fluorescence Studies. Langmuir, 2000, 16, 10528-10539.	3.5	60
139	DNA Phase Behavior in the Presence of Oppositely Charged Surfactants. Langmuir, 2000, 16, 9577-9583.	3.5	196
140	Associations in Mixtures of Hydrophobically Modified Polymer and Surfactant in Dilute and Semidilute Aqueous Solutions. A Rheology and PFG NMR Self-Diffusion Investigation. Macromolecules, 2000, 33, 9641-9649.	4.8	36
141	Effect of Surfactant on Dynamic and Viscoelastic Properties of Aqueous Solutions of Hydrophobically Modified Ethyl(hydroxyethyl)cellulose, with and without Spacer. Macromolecules, 2000, 33, 877-886.	4.8	42
142	Interactions of Cationic/Nonionic Surfactant Mixtures with an Anionic Hydrogel:Â Absorption Equilibrium and Thermodynamic Modeling. Langmuir, 2000, 16, 2529-2538.	3.5	28
143	Effect of Glycols on the Self-Assembly of Amphiphilic Block Copolymers in Water. 1. Phase Diagrams and Structure Identification. Langmuir, 2000, 16, 3660-3675.	3.5	118
144	Effect of Glycols on the Self-Assembly of Amphiphilic Block Copolymers in Water. 2. Glycol Location in the Microstructure. Langmuir, 2000, 16, 3676-3689.	3.5	94

#	Article	IF	CITATIONS
145	Evolution in Structural Polymorphism of Pluronic F127 Poly(ethylene oxide)â^'Poly(propylene oxide) Block Copolymer in Ternary Systems with Water and Pharmaceutically Acceptable Organic Solvents:Â From "Glycols―to "Oilsâ€â€. Langmuir, 2000, 16, 9058-9069.	3.5	121
146	Novel approach for the synthesis of hydrophobe modified polyacrylamide. Direct N -alkylation of polyacrylamide in dimethyl sulfoxide. Polymer, 1999, 40, 7163-7165.	3.8	33
147	DNA conformational dynamics in the presence of catanionic mixtures. FEBS Letters, 1999, 453, 113-118.	2.8	79
148	Interactions between Catanionic Vesicles and Oppositely Charged PolyelectrolytesPhase Behavior and Phase Structure. Macromolecules, 1999, 32, 6626-6637.	4.8	107
149	Phase Behavior of Single DNA in Mixed Solvents. Journal of the American Chemical Society, 1999, 121, 1130-1136.	13.7	128
150	Solubilization of DNAâ^'Cationic Lipid Complexes in Hydrophobic Solvents. A Single-Molecule Visualization by Fluorescence Microscopy. Langmuir, 1999, 15, 1923-1928.	3.5	36
151	On the importance of hydroxyl groups in the polar head-group of nonionic surfactants and membrane lipids. Advances in Colloid and Interface Science, 1996, 64, 253-271.	14.7	89
152	Microemulsions in amphiphilic and polymer-surfactant systems. Colloid and Polymer Science, 1996, 274, 297-308.	2.1	64
153	The effect of surfactants on adsorbed layers of a cationic polyelectrolyte. Colloid and Polymer Science, 1994, 272, 1590-1601.	2.1	50
154	Interfacial behaviour of non-ionic surfactants at the silica-water interface revealed by ellipsometry. Thin Solid Films, 1993, 234, 478-481.	1.8	12
155	lon transport and cation-polyanion interactions in vascular biomembranes. Journal of Membrane Science, 1989, 41, 353-375.	8.2	22
156	Interaction between ethyl(hydroxyethyl)cellulose and sodium dodecyl sulphate in aqueous solution. Colloid and Polymer Science, 1988, 266, 1031-1036.	2.1	75
157	Surface and colloid chemistry of peat and peat dewatering. Electrostatic effects. Colloid and Polymer Science, 1988, 266, 164-172.	2.1	12
158	Magnesium and calcium surfactants Ternary phase diagrams of magnesium and calcium dodecylsulphate with decanol and water. Colloid and Polymer Science, 1986, 264, 909-916.	2.1	20
159	Fourier transform carbon-13 relaxation and self-diffusion studies of microemulsions. Faraday Discussions of the Chemical Society, 1983, 76, 317-329.	2.2	38
160	NMR studies on parvalbumin phylogeny and ionic interactions. Molecular and Cellular Biochemistry, 1982, 44, 161-72.	3.1	31
161	Calcium and Magnesium NMR in Chemistry and Biology. Annual Reports on NMR Spectroscopy, 1981, 11, 183-226.	1.5	29
162	Internal motion at the chloride binding sites of human serum albumin by NMR relaxation studies. FEBS Letters, 1978, 86, 25-28.	2.8	10

Björn Lindman

#	Article	IF	CITATIONS
163	Translational motion and association in aqueous sodium dodecyl sulphate solutions. Colloid and Polymer Science, 1974, 252, 144-152.	2.1	53
164	DNA as an Amphiphilic Polymer. , 0, , 367-376.		3
165	Cross-Linked DNA Gels and Gel Particles. , 0, , 353-365.		O