Jahir A Orozco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/598063/publications.pdf Version: 2024-02-01

IAHIP & OPOZCO

#	Article	IF	CITATIONS
1	Electrochemical Nanobiosensors as Pointâ€ofâ€Care Testing Solution to Cytokines Measurement Limitations. Electroanalysis, 2022, 34, 184-211.	2.9	7
2	Differential detection of zika virus based on PCR. Journal of Virological Methods, 2022, 301, 114459.	2.1	0
3	Photosensitive Polymeric Janus Micromotor for Enzymatic Activity Protection and Enhanced Substrate Degradation. ACS Applied Materials & amp; Interfaces, 2022, 14, 5897-5907.	8.0	12
4	Wearable electrochemical biosensors to measure biomarkers with complex blood-to-sweat partition such as proteins and hormones. Mikrochimica Acta, 2022, 189, 127.	5.0	17
5	Light-Triggered Polymersome-Based Anticancer Therapeutics Delivery. Nanomaterials, 2022, 12, 836.	4.1	8
6	SARS-CoV-2 electrochemical immunosensor based on the spike-ACE2 complex. Analytica Chimica Acta, 2022, 1205, 339718.	5.4	25
7	Peptide-based simple detection of SARS-CoV-2 with electrochemical readout. Analytica Chimica Acta, 2022, 1205, 339739.	5.4	37
8	β-1,4-Galactosyltransferase-V colorectal cancer biomarker immunosensor with label-free electrochemical detection. Talanta, 2022, 243, 123337.	5.5	14
9	Electrochemical genosensor for the specific detection of SARS-CoV-2. Talanta, 2022, 245, 123482.	5.5	16
10	Cerium oxide–doped PEDOT nanocomposite for label-free electrochemical immunosensing of anti-p53 autoantibodies. Mikrochimica Acta, 2022, 189, .	5.0	8
11	Hybrid Nanobioengineered Nanomaterial-Based Electrochemical Biosensors. Molecules, 2022, 27, 3841.	3.8	11
12	Detection of hepatitis E virus genotype 3 in wastewater by an electrochemical genosensor. Analytica Chimica Acta, 2022, 1221, 340121.	5.4	4
13	Hybrid nanomaterial/catalase-modified electrode for hydrogen peroxide sensing. Journal of Electroanalytical Chemistry, 2021, 880, 114826.	3.8	16
14	Biosensors: Biosensors With Signal Amplification. , 2021, , .		0
15	Functional Nanocarriers for Delivering Itraconazole Against Fungal Intracellular Infections. Frontiers in Pharmacology, 2021, 12, 685391.	3.5	14
16	Advances in Functionalized Photosensitive Polymeric Nanocarriers. Polymers, 2021, 13, 2464.	4.5	25
17	Polymeric Micro/Nanocarriers and Motors for Cargo Transport and Phototriggered Delivery. Polymers, 2021, 13, 3920.	4.5	14
18	Genetic Modification Approaches for Parasporins Bacillus thuringiensis Proteins with Anticancer Activity. Molecules, 2021, 26, 7476.	3.8	1

JAHIR A OROZCO

#	Article	IF	CITATIONS
19	Genosensors for differential detection of Zika virus. Talanta, 2020, 210, 120648.	5.5	37
20	Gold nanoparticle/DNA-based nanobioconjugate for electrochemical detection of Zika virus. Mikrochimica Acta, 2020, 187, 594.	5.0	43
21	Nanobioconjugates for Signal Amplification in Electrochemical Biosensing. Molecules, 2020, 25, 3542.	3.8	16
22	Metabolic Activity of Anthocyanin Extracts Loaded into Non-ionic Niosomes in Diet-Induced Obese Mice. Pharmaceutical Research, 2020, 37, 152.	3.5	15
23	Recent Advances in Polymeric Nanoparticle-Encapsulated Drugs against Intracellular Infections. Molecules, 2020, 25, 3760.	3.8	66
24	Phosphoglycan-sensitized platform for specific detection of anti-glycan IgG and IgM antibodies in serum. Talanta, 2020, 217, 121117.	5.5	16
25	Photosensitive nanocarriers for specific delivery of cargo into cells. Scientific Reports, 2020, 10, 2110.	3.3	35
26	Electrochemical Biosensors for Determination of Colorectal Tumor Biomarkers. Micromachines, 2020, 11, 411.	2.9	45
27	Assessing the Influence of the Sourcing Voltage on Polyaniline Composites for Stress Sensing Applications. Polymers, 2020, 12, 1164.	4.5	7
28	Architecting Graphene Oxide Rolledâ€Up Micromotors: A Simple Paperâ€Based Manufacturing Technology. Small, 2018, 14, 1702746.	10.0	29
29	Electroanalysis of an Iron@Graphene arbon Nanotube Hybrid Material. Electroanalysis, 2018, 30, 1521-1528.	2.9	10
30	Amperometric biosensor based on a single antibody of dual function for rapid detection of Streptococcus agalactiae. Biosensors and Bioelectronics, 2017, 87, 453-458.	10.1	40
31	Synthesis of graphene-coated carbon nanotubes-supported metal nanoparticles as multifunctional hybrid materials. Carbon, 2017, 111, 393-401.	10.3	21
32	Molecular Techniques for the Detection of Organisms in Aquatic Environments, with Emphasis on Harmful Algal Bloom Species. Sensors, 2017, 17, 1184.	3.8	70
33	Electrochemical RNA genosensors for toxic algal species: enhancing selectivity and sensitivity. Talanta, 2016, 161, 560-566.	5.5	23
34	Graphene-based Janus micromotors for the dynamic removal of pollutants. Journal of Materials Chemistry A, 2016, 4, 3371-3378.	10.3	112
35	Multifunctional Silverâ€Exchanged Zeolite Micromotors for Catalytic Detoxification of Chemical and Biological Threats. Advanced Functional Materials, 2015, 25, 2147-2155.	14.9	117
36	Micromotor-based on–off fluorescence detection of sarin and soman simulants. Chemical Communications, 2015, 51, 11190-11193.	4.1	76

JAHIR A OROZCO

#	Article	IF	CITATIONS
37	Micromotors to capture and destroy anthrax simulant spores. Analyst, The, 2015, 140, 1421-1427.	3.5	53
38	Self-Propelled Activated Carbon Janus Micromotors for Efficient Water Purification. Small, 2015, 11, 499-506.	10.0	259
39	Water-Driven Micromotors for Rapid Photocatalytic Degradation of Biological and Chemical Warfare Agents. ACS Nano, 2014, 8, 11118-11125.	14.6	316
40	Efficient Biocatalytic Degradation of Pollutants by Enzymeâ€Releasing Selfâ€Propelled Motors. Chemistry - A European Journal, 2014, 20, 2866-2871.	3.3	71
41	Multiplexed immunoassay based on micromotors and microscale tags. Lab on A Chip, 2014, 14, 3505.	6.0	49
42	Bubble-Propelled Micromotors for Enhanced Transport of Passive Tracers. Langmuir, 2014, 30, 5082-5087.	3.5	136
43	Molecularly Imprinted Polymer-Based Catalytic Micromotors for Selective Protein Transport. Journal of the American Chemical Society, 2013, 135, 5336-5339.	13.7	194
44	Functionalized Ultrasound-Propelled Magnetically Guided Nanomotors: Toward Practical Biomedical Applications. ACS Nano, 2013, 7, 9232-9240.	14.6	386
45	Review: advances in electrochemical genosensors-based methods for monitoring blooms of toxic algae. Environmental Science and Pollution Research, 2013, 20, 6838-6850.	5.3	17
46	Toward inÂvivo detection of hydrogen peroxide with ultrasound molecular imaging. Biomaterials, 2013, 34, 8918-8924.	11.4	93
47	Efficient bubble propulsion of polymer-based microengines in real-life environments. Nanoscale, 2013, 5, 8909.	5.6	54
48	Artificial Enzyme-Powered Microfish for Water-Quality Testing. ACS Nano, 2013, 7, 818-824.	14.6	226
49	Micromotor-based lab-on-chip immunoassays. Nanoscale, 2013, 5, 1325-1331.	5.6	146
50	Multiâ€Fuel Driven Janus Micromotors. Small, 2013, 9, 467-471.	10.0	184
51	Micromotorâ€Based High‥ielding Fast Oxidative Detoxification of Chemical Threats. Angewandte Chemie - International Edition, 2013, 52, 13276-13279.	13.8	184
52	Superhydrophobic Alkanethiol-Coated Microsubmarines for Effective Removal of Oil. ACS Nano, 2012, 6, 4445-4451.	14.6	371
53	Bacterial Isolation by Lectin-Modified Microengines. Nano Letters, 2012, 12, 396-401.	9.1	300
54	Electrochemical Performance of Selfâ€Assembled Monolayer Gold Nanoparticleâ€Modified Ultramicroelectrode Array Architectures. Electroanalysis, 2012, 24, 635-642.	2.9	10

JAHIR A OROZCO

#	Article	IF	CITATIONS
55	Electrochemical Detection of Harmful Algae by Means of a Sandwich Hybridization Assay on an Electrode Surface. Springer Protocols, 2012, , 243-261.	0.3	1
56	Dynamic Isolation and Unloading of Target Proteins by Aptamer-Modified Microtransporters. Analytical Chemistry, 2011, 83, 7962-7969.	6.5	122
57	Motion-driven sensing and biosensing using electrochemically propelled nanomotors. Analyst, The, 2011, 136, 4621.	3.5	144
58	Evaluation of probe orientation and effect of the digoxigenin-enzymatic label in a sandwich hybridization format to develop toxic algae biosensors. Harmful Algae, 2011, 10, 489-494.	4.8	17
59	Highly Efficient Catalytic Microengines: Template Electrosynthesis of Polyaniline/Platinum Microtubes. Journal of the American Chemical Society, 2011, 133, 11862-11864.	13.7	492
60	Electrochemical performance of a DNA-based sensor device for detecting toxic algae. Sensors and Actuators B: Chemical, 2011, 153, 71-77.	7.8	33
61	ISFET Based Microsensors for Environmental Monitoring. Sensors, 2010, 10, 61-83.	3.8	144
62	Ultramicroelectrode Array Based Sensors: A Promising Analytical Tool for Environmental Monitoring. Sensors, 2010, 10, 475-490.	3.8	40
63	Plasma-activated multi-walled carbon nanotube–polystyrene composite substrates for biosensing. Nanotechnology, 2009, 20, 335501.	2.6	36
64	Gold nanoparticle-modified ultramicroelectrode arrays for biosensing: A comparative assessment. Bioelectrochemistry, 2009, 75, 176-181.	4.6	35
65	Gold nanoparticle-modified ultramicroelectrode arrays: A suitable transducer platform for the development of biosensors. Procedia Chemistry, 2009, 1, 666-669.	0.7	3
66	Flow injection analysis system based on amperometric thin-film transducers for free chlorine detection in swimming pool waters. Talanta, 2009, 77, 1739-1744.	5.5	44
67	Composite planar electrode for sensing electrochemical oxygen demand. Analytica Chimica Acta, 2008, 607, 176-182.	5.4	34
68	Underpotential Depositionâ^'Anodic Stripping Voltammetric Detection of Copper at Gold Nanoparticle-Modified Ultramicroelectrode Arrays. Environmental Science & Technology, 2008, 42, 4877-4882.	10.0	48
69	Scalable fabrication of immunosensors based on carbon nanotube polymer composites. Nanotechnology, 2008, 19, 075102.	2.6	37
70	Portable system based on microsensors for environmental monitoring applications. Measurement Science and Technology, 2007, 18, 935-940.	2.6	17
71	Characterization of ultramicroelectrode arrays combining electrochemical techniques and optical microscopy imaging. Electrochimica Acta, 2007, 53, 729-736.	5.2	33
72	Monitoring of bentonite pore water with a probe based on solid-state microsensors. Analytica Chimica Acta, 2006, 579, 95-101.	5.4	7