Stephen Dongmin Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5980487/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Contact Resistance of Carbon–Li _{<i>x</i>} (Ni,Mn,Co)O ₂ Interfaces. Advanced Energy Materials, 2022, 12, .	19.5	7
2	Fictitious phase separation in Li layered oxides driven by electro-autocatalysis. Nature Materials, 2021, 20, 991-999.	27.5	101
3	Electro-chemo-mechanical charge carrier equilibrium at interfaces. Physical Chemistry Chemical Physics, 2021, 23, 23730-23740.	2.8	2
4	Galvanostatic Intermittent Titration Technique Reinvented: Part I. A Critical Review. Journal of the Electrochemical Society, 2021, 168, 120504.	2.9	21
5	Galvanostatic Intermittent Titration Technique Reinvented: Part II. Experiments. Journal of the Electrochemical Society, 2021, 168, 120503.	2.9	10
6	Mg Deficiency in Grain Boundaries of nâ€īype Mg ₃ Sb ₂ Identified by Atom Probe Tomography. Advanced Materials Interfaces, 2019, 6, 1900429.	3.7	44
7	Intrinsic and Extrinsically Limited Thermoelectric Transport within Semiconducting Singleâ€Walled Carbon Nanotube Networks. Advanced Electronic Materials, 2019, 5, 1800910.	5.1	29
8	Exceptional thermoelectric performance in Mg ₃ Sb _{0.6} Bi _{1.4} for low-grade waste heat recovery. Energy and Environmental Science, 2019, 12, 965-971.	30.8	177
9	Effect of Twoâ€Dimensional Crystal Orbitals on Fermi Surfaces and Electron Transport in Threeâ€Dimensional Perovskite Oxides. Angewandte Chemie, 2019, 131, 5557-5566.	2.0	8
10	Effect of Twoâ€Dimensional Crystal Orbitals on Fermi Surfaces and Electron Transport in Threeâ€Dimensional Perovskite Oxides. Angewandte Chemie - International Edition, 2019, 58, 5503-5512.	13.8	17
11	Resonant Bonding, Multiband Thermoelectric Transport, and Native Defects in n-Type BaBiTe3–xSex (x =) Tj ET	Qq1_1 0.7	84314 rgBT
12	Grain boundary dominated charge transport in Mg ₃ Sb ₂ -based compounds. Energy and Environmental Science, 2018, 11, 429-434.	30.8	253
13	Improving the thermoelectric performance in Mg3+ <i>x</i> Sb1.5Bi0.49Te0.01 by reducing excess Mg. APL Materials, 2018, 6, .	5.1	51
14	Enhancement of average thermoelectric figure of merit by increasing the grain-size of Mg3.2Sb1.5Bi0.49Te0.01. Applied Physics Letters, 2018, 112, .	3.3	126
15	Band engineering in Mg ₃ Sb ₂ by alloying with Mg ₃ Bi ₂ for enhanced thermoelectric performance. Materials Horizons, 2018, 5, 59-64.	12.2	177
16	Phase Boundary Mapping to Obtain n-type Mg3Sb2-Based Thermoelectrics. Joule, 2018, 2, 141-154.	24.0	274
17	Compliant and stretchable thermoelectric coils for energy harvesting in miniature flexible devices. Science Advances, 2018, 4, eaau5849.	10.3	208
18	A practical field guide to thermoelectrics: Fundamentals, synthesis, and characterization. Applied Physics Reviews, 2018, 5, 021303.	11.3	223

Stephen Dongmin Kang

#	Article	IF	CITATIONS
19	Thermopower-conductivity relation for distinguishing transport mechanisms: Polaron hopping in CeO2 and band conduction in SrTiO3. Physical Review B, 2018, 97, .	3.2	26
20	Enhancing the thermoelectric performance of SnSe _{1â^'x} Te _x nanoplates through band engineering. Journal of Materials Chemistry A, 2017, 5, 10713-10721.	10.3	94
21	Enhanced stability and thermoelectric figure-of-merit in copper selenide by lithium doping. Materials Today Physics, 2017, 1, 7-13.	6.0	93
22	Optimization principles and the figure of merit for triboelectric generators. Science Advances, 2017, 3, eaap8576.	10.3	133
23	High thermoelectric performance in (Bi0.25Sb0.75)2Te3 due to band convergence and improved by carrier concentration control. Materials Today, 2017, 20, 452-459.	14.2	151
24	Charge-transport model for conducting polymers. Nature Materials, 2017, 16, 252-257.	27.5	412
25	Apparent critical phenomena in the superionic phase transition of Cu _{2-<i>x</i>} Se. New Journal of Physics, 2016, 18, 013024.	2.9	48
26	YCuTe ₂ : a member of a new class of thermoelectric materials with CuTe ₄ -based layered structure. Journal of Materials Chemistry A, 2016, 4, 2461-2472.	10.3	52
27	Dislocation strain as the mechanism of phonon scattering at grain boundaries. Materials Horizons, 2016, 3, 234-240.	12.2	108
28	Thermoelectric imaging of structural disorder in epitaxial graphene. Nature Materials, 2013, 12, 913-918.	27.5	55
29	Microstructure evolution of sputtered BiSb–Te thermoelectric films during post-annealing and its effects on the thermoelectric properties. Journal of Alloys and Compounds, 2013, 553, 343-349.	5.5	19
30	Interface-controlled thermal transport properties in nano-clustered phase change materials. Journal of Applied Physics, 2012, 111, 073528.	2.5	1
31	Interfacial Thermal Conductance Observed to be Higher in Semiconducting than Metallic Carbon Nanotubes. ACS Nano, 2012, 6, 3853-3860.	14.6	14
32	Microstructure Evolution of Sputtered Bi-Te Films during Post-Annealing: Phase Transformation and Its Effects on the Thermoelectric Properties. Journal of the Electrochemical Society, 2011, 158, H808.	2.9	9
33	Assessing the thermal conductivity of non-uniform thin-films: Nanocrystalline Cu composites incorporating carbon nanotubes. Journal of Applied Physics, 2011, 110, 023506.	2.5	3
34	Controlled recrystallization for low-current RESET programming characteristics of phase-change memory with Ge-doped SbTe. Applied Physics Letters, 2011, 99, 143505.	3.3	15
35	Enhanced thermal efficiency for amorphization in nano-structured Ge2Sb2Te5–TiOx films. Current Applied Physics, 2010, 10, e83-e86.	2.4	3
36	Formation of Ge[sub 2]Sb[sub 2]Te[sub 5]–TiO[sub x] Nanostructures for Phase Change Random Access Memory Applications. Electrochemical and Solid-State Letters, 2010, 13, K8.	2.2	20

#	Article	IF	CITATIONS
37	Direct evidence of phase separation in Ge2Sb2Te5 in phase change memory devices. Applied Physics Letters, 2009, 94, .	3.3	81
38	Electric-Field-Induced Mass Movement of Ge[sub 2]Sb[sub 2]Te[sub 5] in Bottleneck Geometry Line Structures. Electrochemical and Solid-State Letters, 2009, 12, H155.	2.2	28