Thomas G Preuss

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/597962/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	BeeGUTS—A Toxicokinetic–Toxicodynamic Model for the Interpretation and Integration of Acute and Chronic Honey Bee Tests. Environmental Toxicology and Chemistry, 2022, 41, 2193-2201.	4.3	2
2	The minimum detectable difference (MDD) and the interpretation of treatment-related effects of pesticides in experimental ecosystems. Environmental Science and Pollution Research, 2015, 22, 1160-1174.	5.3	67
3	Mechanistic modelling of toxicokinetic processes within Myriophyllum spicatum. Chemosphere, 2015, 120, 292-298.	8.2	9
4	How do interactive maternal traits and environmental factors determine offspring size in <i>Daphnia magna</i> ?. Annales De Limnologie, 2014, 50, 9-18.	0.6	13
5	Population-level effects in Amphiascus tenuiremis: Contrasting matrix- and individual-based population models. Aquatic Toxicology, 2014, 157, 207-214.	4.0	3
6	Recovery based on plot experiments is a poor predictor of landscapeâ€level population impacts of agricultural pesticides. Environmental Toxicology and Chemistry, 2014, 33, 1499-1507.	4.3	29
7	A contribution to the identification of representative vulnerable fish species for pesticide risk assessment in Europe—A comparison of population resilience using matrix models. Ecological Modelling, 2014, 280, 65-75.	2.5	31
8	Physiologically-based toxicokinetic models help identifying the key factors affecting contaminant uptake during flood events. Aquatic Toxicology, 2014, 152, 38-46.	4.0	30
9	Limitations of extrapolating toxic effects on reproduction to the population level. Ecological Applications, 2014, 24, 1972-1983.	3.8	36
10	Predicting the sensitivity of populations from individual exposure to chemicals: The role of ecological interactions. Environmental Toxicology and Chemistry, 2014, 33, 1449-1457.	4.3	12
11	Modelling the impact of the environmental scenario on population recovery from chemical stress exposure: A case study using Daphnia magna. Aquatic Toxicology, 2014, 156, 221-229.	4.0	4
12	Understanding Receptor-Mediated Effects in Rainbow Trout: <i>In Vitro</i> – <i>in Vivo</i> Extrapolation Using Physiologically Based Toxicokinetic Models. Environmental Science & Technology, 2014, 48, 3303-3309.	10.0	25
13	Effects of light and temperature fluctuations on the growth of Myriophyllum spicatum in toxicity tests—a model-based analysis. Environmental Science and Pollution Research, 2014, 21, 9644-9654.	5.3	6
14	Coupling different mechanistic effect models for capturing individual- and population-level effects of chemicals: Lessons from a case where standard risk assessment failed. Ecological Modelling, 2014, 280, 18-29.	2.5	29
15	Ecological interactions affecting population-level responses to chemical stress in Mesocyclops leuckarti. Chemosphere, 2014, 112, 340-347.	8.2	5
16	A list of fish species that are potentially exposed to pesticides in edge-of-field water bodies in the European Union—a first step towards identifying vulnerable representatives for risk assessment. Environmental Science and Pollution Research, 2013, 20, 2679-2687.	5.3	27
17	Extrapolating ecotoxicological effects from individuals to populations: a generic approach based on Dynamic Energy Budget theory and individual-based modeling. Ecotoxicology, 2013, 22, 574-583.	2.4	80
18	A plea for the use of copepods in freshwater ecotoxicology. Environmental Science and Pollution Research, 2013, 20, 75-85.	5.3	45

THOMAS G PREUSS

#	Article	IF	CITATIONS
19	Life-stage-dependent sensitivity of the cyclopoid copepod Mesocyclops leuckarti to triphenyltin. Chemosphere, 2013, 92, 1145-1153.	8.2	24
20	Feeding Inhibition Explains Effects of Imidacloprid on the Growth, Maturation, Reproduction, and Survival of <i>Daphnia magna</i> . Environmental Science & Technology, 2013, 47, 2909-2917.	10.0	58
21	Predicting Population Dynamics from the Properties of Individuals: A Cross-Level Test of Dynamic Energy Budget Theory. American Naturalist, 2013, 181, 506-519.	2.1	95
22	Chemical and natural stressors combined: from cryptic effects to population extinction. Scientific Reports, 2013, 3, 2036.	3.3	65
23	Combination of a higherâ€tier flowâ€through system and population modeling to assess the effects of timeâ€variable exposure of isoproturon on the green algae <i>Desmodesmus subspicatus</i> and <i>Pseudokirchneriella subcapitata</i> . Environmental Toxicology and Chemistry, 2012, 31, 899-908.	4.3	13
24	Promoting effects on reproduction increase population vulnerability of <i>Daphnia magna</i> . Environmental Toxicology and Chemistry, 2012, 31, 1604-1610.	4.3	19
25	Toxicokinetic Model Describing Bioconcentration and Biotransformation of Diazinon in Daphnia magna. Environmental Science & Technology, 2011, 45, 4995-5002.	10.0	35
26	General Unified Threshold Model of Survival - a Toxicokinetic-Toxicodynamic Framework for Ecotoxicology. Environmental Science & Technology, 2011, 45, 2529-2540.	10.0	341
27	Process-based modeling of grassland dynamics built on ecological indicator values for land use. Ecological Modelling, 2011, 222, 3854-3868.	2.5	22
28	Identification of realistic worst case aquatic macroinvertebrate species for prospective risk assessment using the trait concept. Environmental Science and Pollution Research, 2011, 18, 1316-1323.	5.3	11
29	An individualâ€based modeling approach for evaluation of endpoint sensitivity in harpacticoid copepod lifeâ€cycle tests and optimization of test design. Environmental Toxicology and Chemistry, 2011, 30, 2353-2362.	4.3	7
30	Toxicokineticâ€ŧoxicodynamic modeling of quantal and graded sublethal endpoints: A brief discussion of concepts. Environmental Toxicology and Chemistry, 2011, 30, 2519-2524.	4.3	77
31	Framework for traitsâ€based assessment in ecotoxicology. Integrated Environmental Assessment and Management, 2011, 7, 172-186.	2.9	123
32	A review of the tissue residue approach for organic and organometallic compounds in aquatic organisms. Integrated Environmental Assessment and Management, 2011, 7, 50-74.	2.9	52
33	Some nonylphenol isomers show antiestrogenic potency in the MVLN cell assay. Toxicology in Vitro, 2010, 24, 129-134.	2.4	28
34	The potential of individual based population models to extrapolate effects measured at standardized test conditions to relevant environmental conditions—an example for 3,4-dichloroaniline on Daphnia magna. Journal of Environmental Monitoring, 2010, 12, 2070.	2.1	35
35	Development and validation of an individual based Daphnia magna population model: The influence of crowding on population dynamics. Ecological Modelling, 2009, 220, 310-329.	2.5	83
36	Mechanistic effect models for ecological risk assessment of chemicals (MEMoRisk)—a new SETAC-Europe Advisory Group. Environmental Science and Pollution Research, 2009, 16, 250-252.	5.3	32

THOMAS G PREUSS

#	Article	IF	CITATIONS
37	CREAM: a European project on mechanistic effect models for ecological risk assessment of chemicals. Environmental Science and Pollution Research, 2009, 16, 614-617.	5.3	63
38	Chronic toxicity of fenoxycarb to the midge Chironomus riparius after exposure in sediments of different composition. Journal of Soils and Sediments, 2009, 9, 94-102.	3.0	13
39	Life stage- dependent bioconcentration of a nonylphenol isomer in Daphnia magna. Environmental Pollution, 2008, 156, 1211-1217.	7.5	33
40	Nonylphenol Isomers Differ in Estrogenic Activity. Environmental Science & Technology, 2006, 40, 5147-5153.	10.0	136
41	Henry's law constants measurements of the nonylphenol isomer 4(3′,5′-dimethyl-3′-heptyl)-phenol, tertiary octylphenol and γ-hexachlorocyclohexane between 278 and 298 K. Atmospheric Environment, 2004, 38, 4859-4868.	4.1	19