
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/597793/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Investigation of the sources and evolution processes of severe haze pollution in Beijing in January 2013. Journal of Geophysical Research D: Atmospheres, 2014, 119, 4380-4398.	3.3	581
2	Aerosol composition, sources and processes during wintertime in Beijing, China. Atmospheric Chemistry and Physics, 2013, 13, 4577-4592.	4.9	507
3	The impact of relative humidity on aerosol composition and evolution processes during wintertime in Beijing, China. Atmospheric Environment, 2013, 77, 927-934.	4.1	330
4	Long-term real-time measurements of aerosol particle composition in Beijing, China: seasonal variations, meteorological effects, and source analysis. Atmospheric Chemistry and Physics, 2015, 15, 10149-10165.	4.9	324
5	Primary and secondary aerosols in Beijing in winter: sources, variations and processes. Atmospheric Chemistry and Physics, 2016, 16, 8309-8329.	4.9	288
6	PM2.5 in the Yangtze River Delta, China: Chemical compositions, seasonal variations, and regional pollution events. Environmental Pollution, 2017, 223, 200-212.	7.5	236
7	Carbonaceous aerosols on the south edge of the Tibetan Plateau: concentrations, seasonality and sources. Atmospheric Chemistry and Physics, 2015, 15, 1573-1584.	4.9	213
8	Ubiquity of bisphenol A in the atmosphere. Environmental Pollution, 2010, 158, 3138-3143.	7.5	210
9	Molecular characterization of urban organic aerosol in tropical India: contributions of primary emissions and secondary photooxidation. Atmospheric Chemistry and Physics, 2010, 10, 2663-2689.	4.9	200
10	Organic molecular compositions and temporal variations of summertime mountain aerosols over Mt. Tai, North China Plain. Journal of Geophysical Research, 2008, 113, .	3.3	199
11	Air pollution–aerosol interactions produce more bioavailable iron for ocean ecosystems. Science Advances, 2017, 3, e1601749.	10.3	182
12	Penetration of biomass-burning emissions from South Asia through the Himalayas: new insights from atmospheric organic acids. Scientific Reports, 2015, 5, 9580.	3.3	180
13	Effects of Aqueous-Phase and Photochemical Processing on Secondary Organic Aerosol Formation and Evolution in Beijing, China. Environmental Science & Technology, 2017, 51, 762-770.	10.0	179
14	Organic molecular composition of marine aerosols over the Arctic Ocean in summer: contributions of primary emission and secondary aerosol formation. Biogeosciences, 2013, 10, 653-667.	3.3	169
15	Rapid formation and evolution of an extreme haze episode in Northern China during winter 2015. Scientific Reports, 2016, 6, 27151.	3.3	162
16	Seasonal variations of sugars in atmospheric particulate matter from Gosan, Jeju Island: Significant contributions of airborne pollen and Asian dust in spring. Atmospheric Environment, 2012, 55, 234-239.	4.1	161
17	"APEC Blueâ€: Secondary Aerosol Reductions from Emission Controls in Beijing. Scientific Reports, 2016, 6, 20668.	3.3	155
18	Changes in Aerosol Chemistry From 2014 to 2016 in Winter in Beijing: Insights From Highâ€Resolution Aerosol Mass Spectrometry. Journal of Geophysical Research D: Atmospheres, 2019, 124, 1132-1147.	3.3	155

#	Article	IF	CITATIONS
19	lsoprene, Monoterpene, and Sesquiterpene Oxidation Products in the High Arctic Aerosols during Late Winter to Early Summer. Environmental Science & Technology, 2009, 43, 4022-4028.	10.0	149
20	Levoglucosan as a tracer of biomass burning: Recent progress and perspectives. Atmospheric Research, 2019, 220, 20-33.	4.1	144
21	Characteristics of organic phosphorus fractions in different trophic sediments of lakes from the middle and lower reaches of Yangtze River region and Southwestern Plateau, China. Environmental Pollution, 2008, 152, 366-372.	7.5	142
22	Diurnal variations of organic molecular tracers and stable carbon isotopic composition in atmospheric aerosols over Mt. Tai in the North China Plain: an influence of biomass burning. Atmospheric Chemistry and Physics, 2012, 12, 8359-8375.	4.9	141
23	Isotopic Composition of Atmospheric Mercury in China: New Evidence for Sources and Transformation Processes in Air and in Vegetation. Environmental Science & Technology, 2016, 50, 9262-9269.	10.0	139
24	A chemical cocktail during the COVID-19 outbreak in Beijing, China: Insights from six-year aerosol particle composition measurements during the Chinese New Year holiday. Science of the Total Environment, 2020, 742, 140739.	8.0	138
25	Molecular characterization of marine organic aerosols collected during a round-the-world cruise. Journal of Geophysical Research, 2011, 116, .	3.3	136
26	Rapid formation of a severe regional winter haze episode over a mega-city cluster on the North China Plain. Environmental Pollution, 2017, 223, 605-615.	7.5	136
27	Photochemical and Other Sources of Organic Compounds in the Canadian High Arctic Aerosol Pollution during Winterâ [~] Spring. Environmental Science & Technology, 2009, 43, 286-292.	10.0	134
28	Dicarboxylic acids, ketocarboxylic acids and glyoxal in the marine aerosols collected during a round-the-world cruise. Marine Chemistry, 2013, 148, 22-32.	2.3	129
29	Seasonal variation characteristic of inhalable microbial communities in PM2.5 in Beijing city, China. Science of the Total Environment, 2018, 610-611, 308-315.	8.0	127
30	Real-Time Characterization of Aerosol Particle Composition above the Urban Canopy in Beijing: Insights into the Interactions between the Atmospheric Boundary Layer and Aerosol Chemistry. Environmental Science & Technology, 2015, 49, 11340-11347.	10.0	124
31	Impact of Gobi desert dust on aerosol chemistry of Xi'an, inland China during spring 2009: differences in composition and size distribution between the urban ground surface and the mountain atmosphere. Atmospheric Chemistry and Physics, 2013, 13, 819-835.	4.9	118
32	Aerosol composition, oxidation properties, and sources in Beijing: results from the 2014 Asia-Pacific Economic Cooperation summit study. Atmospheric Chemistry and Physics, 2015, 15, 13681-13698.	4.9	117
33	Water-Soluble Brown Carbon in Atmospheric Aerosols from Godavari (Nepal), a Regional Representative of South Asia. Environmental Science & Technology, 2019, 53, 3471-3479.	10.0	115
34	Seasonal variation of levoglucosan in aerosols over the western North Pacific and its assessment as a biomass-burning tracer. Atmospheric Environment, 2010, 44, 3511-3518.	4.1	112
35	Bacteria and Antibiotic Resistance Genes (ARGs) in PM _{2.5} from China: Implications for Human Exposure. Environmental Science & Technology, 2019, 53, 963-972.	10.0	111
36	Contributions of biogenic volatile organic compounds to the formation of secondary organic aerosols over Mt. Tai, Central East China. Atmospheric Environment, 2010, 44, 4817-4826.	4.1	110

#	Article	IF	CITATIONS
37	Source apportionment of organic aerosol from 2-year highly time-resolved measurements by an aerosol chemical speciation monitor in Beijing, China. Atmospheric Chemistry and Physics, 2018, 18, 8469-8489.	4.9	110
38	Contributions of City-Specific Fine Particulate Matter (PM _{2.5}) to Differential <i>In Vitro</i> Oxidative Stress and Toxicity Implications between Beijing and Guangzhou of China. Environmental Science & Technology, 2019, 53, 2881-2891.	10.0	109
39	Characteristics and sources of submicron aerosols above the urban canopy (260 m) in Beijing, China, during the 2014 APEC summit. Atmospheric Chemistry and Physics, 2015, 15, 12879-12895.	4.9	100
40	A conceptual framework for mixing structures in individual aerosol particles. Journal of Geophysical Research D: Atmospheres, 2016, 121, 13,784.	3.3	98
41	Introduction to the special issue "In-depth study of air pollution sources and processes within Beijing and its surrounding region (APHH-Beijing)― Atmospheric Chemistry and Physics, 2019, 19, 7519-7546.	4.9	95
42	Contributions of biomass/biofuel burning to organic aerosols and particulate matter in Tanzania, East Africa, based on analyses of ionic species, organic and elemental carbon, levoglucosan and mannosan. Atmospheric Chemistry and Physics, 2013, 13, 10325-10338.	4.9	94
43	Fluorescent water-soluble organic aerosols in the High Arctic atmosphere. Scientific Reports, 2015, 5, 9845.	3.3	94
44	Carbon isotopic evolution of the terminal Neoproterozoic and early Cambrian: Evidence from the Yangtze Platform, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254, 140-157.	2.3	91
45	Chemical composition of aerosol particles and light extinction apportionment before and during the heating season in Beijing, China. Journal of Geophysical Research D: Atmospheres, 2015, 120, 12708-12722.	3.3	91
46	Insights into aerosol chemistry during the 2015 China Victory Day parade: results from simultaneous measurements at ground level and 260 m in Beijing. Atmospheric Chemistry and Physics, 2017, 17, 3215-3232.	4.9	90
47	Contrasting physical properties of black carbon in urban Beijing between winter and summer. Atmospheric Chemistry and Physics, 2019, 19, 6749-6769.	4.9	89
48	Seasonal variations of stable carbon isotopic composition and biogenic tracer compounds of water-soluble organic aerosols in a deciduous forest. Atmospheric Chemistry and Physics, 2012, 12, 1367-1376.	4.9	86
49	Radiative and heterogeneous chemical effects of aerosols on ozone and inorganic aerosols over East Asia. Science of the Total Environment, 2018, 622-623, 1327-1342.	8.0	84
50	Characterization of black carbon-containing fine particles in Beijing during wintertime. Atmospheric Chemistry and Physics, 2019, 19, 447-458.	4.9	84
51	Variations of bacteria and fungi in PM2.5 in Beijing, China. Atmospheric Environment, 2018, 172, 55-64.	4.1	83
52	Primary biogenic and anthropogenic sources of organic aerosols in Beijing, China: Insights from saccharides and n-alkanes. Environmental Pollution, 2018, 243, 1579-1587.	7.5	78
53	Humic-Like Substances (HULIS) in Aerosols of Central Tibetan Plateau (Nam Co, 4730 m asl): Abundance, Light Absorption Properties, and Sources. Environmental Science & Technology, 2018, 52, 7203-7211.	10.0	78
54	Secondary Production of Organic Aerosols from Biogenic VOCs over Mt. Fuji, Japan. Environmental Science & Technology, 2014, 48, 8491-8497.	10.0	77

#	Article	IF	CITATIONS
55	Fluorescence characterization of dissolved organic matter in an urban river and its complexation with Hg(II). Applied Geochemistry, 2007, 22, 1668-1679.	3.0	76
56	High abundances of oxalic, azelaic, and glyoxylic acids and methylglyoxal in the open ocean with high biological activity: Implication for secondary OA formation from isoprene. Geophysical Research Letters, 2014, 41, 3649-3657.	4.0	75
57	Aqueous production of secondary organic aerosol from fossil-fuel emissions in winter Beijing haze. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	75
58	Response of aerosol chemistry to clean air action in Beijing, China: Insights from two-year ACSM measurements and model simulations. Environmental Pollution, 2019, 255, 113345.	7.5	74
59	Vertical characterization of aerosol optical properties and brown carbon in winter in urban Beijing, China. Atmospheric Chemistry and Physics, 2019, 19, 165-179.	4.9	73
60	Chemical Differences Between PM ₁ and PM _{2.5} in Highly Polluted Environment and Implications in Air Pollution Studies. Geophysical Research Letters, 2020, 47, e2019GL086288.	4.0	72
61	Modeling study of surface ozone source-receptor relationships in East Asia. Atmospheric Research, 2016, 167, 77-88.	4.1	71
62	Airborne particulate matter pollution in urban China: a chemical mixture perspective from sources to impacts. National Science Review, 2017, 4, 593-610.	9.5	71
63	Long-term observations of saccharides in remote marine aerosols from the western North Pacific: A comparison between 1990–1993 and 2006–2009 periods. Atmospheric Environment, 2013, 67, 448-458.	4.1	70
64	Overview of biological ice nucleating particles in the atmosphere. Environment International, 2021, 146, 106197.	10.0	69
65	Ultraviolet absorbance titration for determining stability constants of humic substances with Cu(II) and Hg(II). Analytica Chimica Acta, 2008, 616, 115-121.	5.4	64
66	Evaluating the sensitivity of radical chemistry and ozone formation to ambient VOCs and NO _{<i>x</i>} in Beijing. Atmospheric Chemistry and Physics, 2021, 21, 2125-2147.	4.9	64
67	Elevated levels of OH observed in haze events during wintertime in central Beijing. Atmospheric Chemistry and Physics, 2020, 20, 14847-14871.	4.9	62
68	Isotopic composition for source identification of mercury in atmospheric fine particles. Atmospheric Chemistry and Physics, 2016, 16, 11773-11786.	4.9	61
69	Significant impacts of heterogeneous reactions on the chemical composition and mixing state of dust particles: A case study during dust events over northern China. Atmospheric Environment, 2017, 159, 83-91.	4.1	60
70	Influence of continental organic aerosols to the marine atmosphere over the East China Sea: Insights from lipids, PAHs and phthalates. Science of the Total Environment, 2017, 607-608, 339-350.	8.0	59
71	Proteins and Amino Acids in Fine Particulate Matter in Rural Guangzhou, Southern China: Seasonal Cycles, Sources, and Atmospheric Processes. Environmental Science & Technology, 2017, 51, 6773-6781.	10.0	58
72	High Contribution of Nonfossil Sources to Submicrometer Organic Aerosols in Beijing, China. Environmental Science & Technology, 2017, 51, 7842-7852.	10.0	58

#	Article	IF	CITATIONS
73	Molecular markers of biomass burning, fungal spores and biogenic SOA in the Taklimakan desert aerosols. Atmospheric Environment, 2016, 130, 64-73.	4.1	57
74	Production of N ₂ O ₅ and ClNO ₂ in summer in urban Beijing, China. Atmospheric Chemistry and Physics, 2018, 18, 11581-11597.	4.9	57
75	A review of aerosol chemistry in Asia: insights from aerosol mass spectrometer measurements. Environmental Sciences: Processes and Impacts, 2020, 22, 1616-1653.	3.5	57
76	Direct observations of organic aerosols in common wintertime hazes in North China: insights into direct emissions from Chinese residential stoves. Atmospheric Chemistry and Physics, 2017, 17, 1259-1270.	4.9	56
77	Organic Aerosol Processing During Winter Severe Haze Episodes in Beijing. Journal of Geophysical Research D: Atmospheres, 2019, 124, 10248-10263.	3.3	56
78	Effect of aerosol composition on the performance of low-cost optical particle counter correction factors. Atmospheric Measurement Techniques, 2020, 13, 1181-1193.	3.1	56
79	Long-term characterization of aerosol chemistry in cold season from 2013 to 2020 in Beijing, China. Environmental Pollution, 2021, 268, 115952.	7.5	56
80	Brown carbon in the cryosphere: Current knowledge and perspective. Advances in Climate Change Research, 2016, 7, 82-89.	5.1	55
81	Anthropogenic and biogenic organic compounds in summertime fine aerosols (PM2.5) in Beijing, China. Atmospheric Environment, 2016, 124, 166-175.	4.1	55
82	Molecular distribution and compound-specific stable carbon isotopic composition of dicarboxylic acids, oxocarboxylic acids and <i>î±</i> -dicarbonyls in PM _{2.5} from Beijing, China. Atmospheric Chemistry and Physics, 2018, 18, 2749-2767.	4.9	55
83	Characterization of biogenic primary and secondary organic aerosols in the marine atmosphere over the East China Sea. Atmospheric Chemistry and Physics, 2018, 18, 13947-13967.	4.9	54
84	Seasonal cycles of waterâ€soluble organic nitrogen aerosols in a deciduous broadleaf forest in northern Japan. Journal of Geophysical Research D: Atmospheres, 2014, 119, 1440-1454.	3.3	53
85	Real-time observational evidence of changing Asian dust morphology with the mixing of heavy anthropogenic pollution. Scientific Reports, 2017, 7, 335.	3.3	53
86	Simultaneous measurements of particle number size distributions at ground level and 260†m on a meteorological tower in urban Beijing, China. Atmospheric Chemistry and Physics, 2017, 17, 6797-6811.	4.9	52
87	Temporal variations and spatial distributions of gaseous and particulate air pollutants and their health risks during 2015–2019 in China. Environmental Pollution, 2021, 272, 116031.	7.5	52
88	Interaction between carbamazepine and humic substances: A fluorescence spectroscopy study. Environmental Toxicology and Chemistry, 2008, 27, 95-102.	4.3	51
89	Molecular Markers of Secondary Organic Aerosol in Mumbai, India. Environmental Science & Technology, 2016, 50, 4659-4667.	10.0	51
90	Atmospheric lead in urban Guiyang, Southwest China: Isotopic source signatures. Atmospheric Environment, 2015, 115, 163-169.	4.1	50

#	Article	IF	CITATIONS
91	Springtime precipitation effects on the abundance of fluorescent biological aerosol particles and HULIS in Beijing. Scientific Reports, 2016, 6, 29618.	3.3	50
92	Light absorption enhancement of black carbon in urban Beijing in summer. Atmospheric Environment, 2019, 213, 499-504.	4.1	49
93	Fluorescence characteristics of water-soluble organic carbon in atmospheric aerosolâ~†. Environmental Pollution, 2021, 268, 115906.	7.5	49
94	Deciphering dissolved organic matter by Fourier transform ion cyclotron resonance mass spectrometryÂ(FT-ICR MS): from bulk to fractions and individuals. , 2022, 1, .		49
95	Radical Formation by Fine Particulate Matter Associated with Highly Oxygenated Molecules. Environmental Science & Technology, 2019, 53, 12506-12518.	10.0	45
96	Summertime aerosol volatility measurements in Beijing, China. Atmospheric Chemistry and Physics, 2019, 19, 10205-10216.	4.9	45
97	Light absorption, fluorescence properties and sources of brown carbon aerosols in the Southeast Tibetan Plateau. Environmental Pollution, 2020, 257, 113616.	7.5	45
98	Spectroscopic characterization and molecular weight distribution of dissolved organic matter in sediment porewaters from Lake Erhai, Southwest China. Biogeochemistry, 2006, 81, 179-189.	3.5	44
99	Diurnal variations of polar organic tracers in summer forest aerosols: A case study of a Quercus and Picea mixed forest in Hokkaido, Japan. Geochemical Journal, 2011, 45, 297-308.	1.0	44
100	Role of Ammonia on the Feedback Between AWC and Inorganic Aerosol Formation During Heavy Pollution in theÂNorthÂChinaÂPlain. Earth and Space Science, 2019, 6, 1675-1693.	2.6	44
101	Enhanced modern carbon and biogenic organic tracers in Northeast Asian aerosols during spring/summer. Journal of Geophysical Research D: Atmospheres, 2013, 118, 2362-2371.	3.3	43
102	Temporal and spatial distributions of dissolved organic carbon and nitrogen in two small lakes on the Southwestern China Plateau. Limnology, 2008, 9, 163-171.	1.5	42
103	Size distributions of n-alkanes, fatty acids and fatty alcohols in springtime aerosols from New Delhi, India. Environmental Pollution, 2016, 219, 957-966.	7.5	42
104	Seasonal Characterization of Organic Nitrogen in Atmospheric Aerosols Using High Resolution Aerosol Mass Spectrometry in Beijing, China. ACS Earth and Space Chemistry, 2017, 1, 673-682.	2.7	42
105	Influence of biomass burning on atmospheric aerosols over the western South China Sea: Insights from ions, carbonaceous fractions and stable carbon isotope ratios. Environmental Pollution, 2018, 242, 1800-1809.	7.5	42
106	Assessment of molecular diversity of lignin products by various ionization techniques and high-resolution mass spectrometry. Science of the Total Environment, 2020, 713, 136573.	8.0	42
107	Specific sources of health risks induced by metallic elements in PM2.5 during the wintertime in Beijing, China. Atmospheric Environment, 2021, 246, 118112.	4.1	42
108	Seasonal variations of biogenic secondary organic aerosol tracers in Cape Hedo, Okinawa. Atmospheric Environment, 2016, 130, 113-119.	4.1	41

#	Article	IF	CITATIONS
109	Changes of Emission Sources to Nitrate Aerosols in Beijing After the Clean Air Actions: Evidence From Dual Isotope Compositions. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031998.	3.3	41
110	Atmospheric chemistry of nitrogenous aerosols in northeastern Asia: biological sources and secondary formation. Atmospheric Chemistry and Physics, 2015, 15, 9883-9896.	4.9	40
111	High-resolution vertical distribution and sources of HONO and NO ₂ in the nocturnal boundary layer in urban Beijing, China. Atmospheric Chemistry and Physics, 2020, 20, 5071-5092.	4.9	40
112	First High-Resolution Emission Inventory of Levoglucosan for Biomass Burning and Non-Biomass Burning Sources in China. Environmental Science & Technology, 2021, 55, 1497-1507.	10.0	40
113	Overview of the Mount Tai Experiment (MTX2006) in central East China in June 2006: studies of significant regional air pollution. Atmospheric Chemistry and Physics, 2013, 13, 8265-8283.	4.9	39
114	Using stable isotopes to trace sources and formation processes of sulfate aerosols from Beijing, China. Scientific Reports, 2016, 6, 29958.	3.3	39
115	Impact of Arctic amplification on declining spring dust events in East Asia. Climate Dynamics, 2020, 54, 1913-1935.	3.8	39
116	Molecular Characterization and Seasonal Variation in Primary and Secondary Organic Aerosols in Beijing, China. Journal of Geophysical Research D: Atmospheres, 2018, 123, 12,394.	3.3	38
117	Aerosol Ammonium in the Urban Boundary Layer in Beijing: Insights from Nitrogen Isotope Ratios and Simulations in Summer 2015. Environmental Science and Technology Letters, 2019, 6, 389-395.	8.7	38
118	Atmospheric conditions and composition that influence PM _{2.5} oxidative potential in Beijing, China. Atmospheric Chemistry and Physics, 2021, 21, 5549-5573.	4.9	38
119	Thirteen years of observations on primary sugars and sugar alcohols over remote Chichijima Island in the western North Pacific. Atmospheric Chemistry and Physics, 2018, 18, 81-101.	4.9	37
120	Mixing characteristics of refractory black carbon aerosols at an urban site in Beijing. Atmospheric Chemistry and Physics, 2020, 20, 5771-5785.	4.9	37
121	Impacts of Chemical Degradation on the Global Budget of Atmospheric Levoglucosan and Its Use As a Biomass Burning Tracer. Environmental Science & Technology, 2021, 55, 5525-5536.	10.0	37
122	Source and formation process impact the chemodiversity of rainwater dissolved organic matter along the Yangtze River Basin in summer. Water Research, 2022, 211, 118024.	11.3	37
123	Size-segregated sugar composition of transported dust aerosols from Middle-East over Delhi during March 2012. Atmospheric Research, 2017, 189, 24-32.	4.1	36
124	Impacts of springtime biomass burning in the northern Southeast Asia on marine organic aerosols over the Gulf of Tonkin, China. Environmental Pollution, 2018, 237, 285-297.	7.5	36
125	Seasonal pattern of ammonium 15N natural abundance in precipitation at a rural forested site and implications for NH3 source partitioning. Environmental Pollution, 2019, 247, 541-549.	7.5	36
126	Analysis of natural organic matter via fourier transform ion cyclotron resonance mass spectrometry: an overview of recent nonâ€petroleum applications. Mass Spectrometry Reviews, 2022, 41, 647-661.	5.4	36

#	Article	IF	CITATIONS
127	Large contributions of biogenic and anthropogenic sources to fine organic aerosols in Tianjin, North China. Atmospheric Chemistry and Physics, 2020, 20, 117-137.	4.9	36
128	Carbon and oxygen isotopic composition of Lower to Middle Cambrian sediments at Taijiang, Guizhou Province, China. Geological Magazine, 2005, 142, 723-733.	1.5	35
129	Excitation-emission matrix characterization of dissolved organic matter sources in two eutrophic lakes (Southwestern China Plateau). Geochemical Journal, 2010, 44, 99-112.	1.0	35
130	Evidence of formation of submicrometer waterâ€soluble organic aerosols at a deciduous forest site in northern Japan in summer. Journal of Geophysical Research, 2012, 117, .	3.3	35
131	Response of aerosol composition to different emission scenarios in Beijing, China. Science of the Total Environment, 2016, 571, 902-908.	8.0	35
132	Insight into PM _{2.5} sources by applying positive matrix factorization (PMF) at urban and rural sites of Beijing. Atmospheric Chemistry and Physics, 2021, 21, 14703-14724.	4.9	35
133	Development and Assessment of a High-Resolution Biogenic Emission Inventory from Urban Green Spaces in China. Environmental Science & Technology, 2022, 56, 175-184.	10.0	35
134	High abundances of dicarboxylic acids, oxocarboxylic acids, and α-dicarbonyls in fine aerosols (PM2.5) in Chengdu, China during wintertime haze pollution. Environmental Science and Pollution Research, 2015, 22, 12902-12918.	5.3	34
135	Diel variation in mercury stable isotope ratios records photoreduction of PM _{2.5} -bound mercury. Atmospheric Chemistry and Physics, 2019, 19, 315-325.	4.9	34
136	Important Role of NO ₃ Radical to Nitrate Formation Aloft in Urban Beijing: Insights from Triple Oxygen Isotopes Measured at the Tower. Environmental Science & Technology, 2022, 56, 6870-6879.	10.0	34
137	Measurements of traffic-dominated pollutant emissions in a Chinese megacity. Atmospheric Chemistry and Physics, 2020, 20, 8737-8761.	4.9	33
138	Overview of primary biological aerosol particles from a Chinese boreal forest: Insight into morphology, size, and mixing state at microscopic scale. Science of the Total Environment, 2020, 719, 137520.	8.0	33
139	Light absorption of black carbon and brown carbon in winter in North China Plain: comparisons between urban and rural sites. Science of the Total Environment, 2021, 770, 144821.	8.0	33
140	Vertical distributions of 239+240Pu activity and 240Pu/239Pu atom ratio in sediment core of Lake Chenghai, SW China. Journal of Radioanalytical and Nuclear Chemistry, 2008, 275, 37-42.	1.5	32
141	Aircraft measurements of polar organic tracer compounds in tropospheric particles (PM ₁₀) over central China. Atmospheric Chemistry and Physics, 2014, 14, 4185-4199.	4.9	32
142	Molecular distributions and compound-specific stable carbon isotopic compositions of lipids in wintertime aerosols from Beijing. Scientific Reports, 2016, 6, 27481.	3.3	32
143	Evolutionary processes and sources of high-nitrate haze episodes over Beijing, Spring. Journal of Environmental Sciences, 2017, 54, 142-151.	6.1	32
144	Modeling of aerosol property evolution during winter haze episodes over a megacity cluster in northern China: roles of regional transport and heterogeneous reactions of SO ₂ . Atmospheric Chemistry and Physics, 2019, 19, 9351-9370.	4.9	32

#	Article	lF	CITATIONS
145	Nitrate Isotopic Composition in Precipitation at a Chinese Megacity: Seasonal Variations, Atmospheric Processes, and Implications for Sources. Earth and Space Science, 2019, 6, 2200-2213.	2.6	32
146	Aromatic acids as biomass-burning tracers in atmospheric aerosols and ice cores: A review. Environmental Pollution, 2019, 247, 216-228.	7.5	32
147	Biological Aerosol Particles in Polluted Regions. Current Pollution Reports, 2020, 6, 65-89.	6.6	32
148	High Molecular Diversity of Organic Nitrogen in Urban Snow in North China. Environmental Science & Technology, 2021, 55, 4344-4356.	10.0	32
149	Impacts of biogenic emissions from urban landscapes on summer ozone and secondary organic aerosol formation in megacities. Science of the Total Environment, 2022, 814, 152654.	8.0	32
150	Measurement report: Long-term changes in black carbon and aerosol optical properties from 2012 to 2020 in Beijing, China. Atmospheric Chemistry and Physics, 2022, 22, 561-575.	4.9	32
151	Aerosol optical properties measurements by a CAPS single scattering albedo monitor: Comparisons between summer and winter in Beijing, China. Journal of Geophysical Research D: Atmospheres, 2017, 122, 2513-2526.	3.3	30
152	Dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls in atmospheric aerosols from Mt. Fuji, Japan: Implication for primary emission versus secondary formation. Atmospheric Research, 2019, 221, 58-71.	4.1	30
153	Increase of High Molecular Weight Organosulfate With Intensifying Urban Air Pollution in the Megacity Beijing. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032200.	3.3	30
154	Source contributions to multiple toxic potentials of atmospheric organic aerosols. Science of the Total Environment, 2021, 773, 145614.	8.0	30
155	Stable carbon and nitrogen isotopic compositions of tropical atmospheric aerosols: sources and contribution from burning of C ₃ and C ₄ plants to organic aerosols. Tellus, Series B: Chemical and Physical Meteorology, 2022, 66, 20176.	1.6	29
156	Evidence for a missing source of efficient ice nuclei. Scientific Reports, 2017, 7, 39673.	3.3	29
157	Enhanced Light Scattering of Secondary Organic Aerosols by Multiphase Reactions. Environmental Science & Technology, 2017, 51, 1285-1292.	10.0	29
158	Molecular composition and seasonal variation of amino acids in urban aerosols from Beijing, China. Atmospheric Research, 2018, 203, 28-35.	4.1	29
159	Temporal characteristics and vertical distribution of atmospheric ammonia and ammonium in winter in Beijing. Science of the Total Environment, 2019, 681, 226-234.	8.0	29
160	Measurement report: Vertical distribution of atmospheric particulate matter within the urban boundary layer in southern China – size-segregated chemical composition and secondary formation through cloud processing and heterogeneous reactions. Atmospheric Chemistry and Physics, 2020, 20, 6435-6453.	4.9	29
161	Alkanes and aliphatic carbonyl compounds in wintertime PM2.5 in Beijing, China. Atmospheric Environment, 2019, 202, 244-255.	4.1	28
162	Vertical Characterization and Source Apportionment of Water-Soluble Organic Aerosol with High-resolution Aerosol Mass Spectrometry in Beijing, China. ACS Earth and Space Chemistry, 2019, 3, 273-284.	2.7	28

#	Article	IF	CITATIONS
163	Precursors and Pathways Leading to Enhanced Secondary Organic Aerosol Formation during Severe Haze Episodes. Environmental Science & Technology, 2021, 55, 15680-15693.	10.0	28
164	Characterization and source apportionment of organic aerosol at 260 m on aÂmeteorological tower in Beijing, China. Atmospheric Chemistry and Physics, 2018, 18, 3951-3968.	4.9	27
165	Molecular characterization of firework-related urban aerosols using Fourier transform ion cyclotron resonance mass spectrometry. Atmospheric Chemistry and Physics, 2020, 20, 6803-6820.	4.9	27
166	Mass spectral characterization of primary emissions and implications in source apportionment of organic aerosol. Atmospheric Measurement Techniques, 2020, 13, 3205-3219.	3.1	27
167	Occurrence of Aerosol Proteinaceous Matter in Urban Beijing: An Investigation on Composition, Sources, and Atmospheric Processes During the "APEC Blue―Period. Environmental Science & Technology, 2019, 53, 7380-7390.	10.0	26
168	Characterising mass-resolved mixing state of black carbon in Beijing using a morphology-independent measurement method. Atmospheric Chemistry and Physics, 2020, 20, 3645-3661.	4.9	26
169	Intracellular and Extracellular Antibiotic Resistance Genes in Airborne PM _{2.5} for Respiratory Exposure in Urban Areas. Environmental Science and Technology Letters, 2021, 8, 128-134.	8.7	26
170	Acidification impacts on the molecular composition of dissolved organic matter revealed by FT-ICR MS. Science of the Total Environment, 2022, 805, 150284.	8.0	26
171	Hygroscopic behavior of waterâ€soluble matter extracted from biomass burning aerosols collected at a rural site in Tanzania, East Africa. Journal of Geophysical Research D: Atmospheres, 2014, 119, 12,233.	3.3	25
172	Stable sulfur isotope ratios and chemical compositions of fine aerosols (PM2.5) in Beijing, China. Science of the Total Environment, 2018, 633, 1156-1164.	8.0	25
173	Cloud scavenging of anthropogenic refractory particles at a mountain site in North China. Atmospheric Chemistry and Physics, 2018, 18, 14681-14693.	4.9	25
174	Excitation-emission matrix fluorescence, molecular characterization and compound-specific stable carbon isotopic composition of dissolved organic matter in cloud water over Mt. Tai. Atmospheric Environment, 2019, 213, 608-619.	4.1	25
175	Abundance and Diurnal Trends of Fluorescent Bioaerosols in the Troposphere over Mt. Tai, China, in Spring. Journal of Geophysical Research D: Atmospheres, 2019, 124, 4158-4173.	3.3	25
176	Quantitative Determination of Hydroxymethanesulfonate (HMS) Using Ion Chromatography and UHPLC-LTQ-Orbitrap Mass Spectrometry: A Missing Source of Sulfur during Haze Episodes in Beijing. Environmental Science and Technology Letters, 2020, 7, 701-707.	8.7	25
177	Measurement report: Optical properties and sources of water-soluble brown carbon in Tianjin, North China – insights from organic molecular compositions. Atmospheric Chemistry and Physics, 2022, 22, 6449-6470.	4.9	25
178	Thirteen years of observations on biomass burning organic tracers over Chichijima Island in the western North Pacific: An outflow region of Asian aerosols. Journal of Geophysical Research D: Atmospheres, 2015, 120, 4155-4168.	3.3	24
179	Non-polar organic compounds in marine aerosols over the northern South China Sea: Influence of continental outflow. Chemosphere, 2016, 153, 332-339.	8.2	24
180	Antecedent soil moisture prior to freezing can affect quantity, composition and stability of soil dissolved organic matter during thaw. Scientific Reports, 2017, 7, 6380.	3.3	24

#	Article	IF	CITATIONS
181	Variation of Bacterial and Fungal Community Structures in PM2.5 Collected during the 2014 APEC Summit Periods. Aerosol and Air Quality Research, 2018, 18, 444-455.	2.1	24
182	Source apportionment of black carbon aerosols from light absorption observation and source-oriented modeling: an implication in a coastal city in China. Atmospheric Chemistry and Physics, 2020, 20, 14419-14435.	4.9	24
183	High Abundance of Fluorescent Biological Aerosol Particles in Winter in Beijing, China. ACS Earth and Space Chemistry, 2017, 1, 493-502.	2.7	23
184	Homologous series of n-alkanes (C19-C35), fatty acids (C12-C32) and n-alcohols (C8-C30) in atmospheric aerosols from central Alaska: Molecular distributions, seasonality and source indices. Atmospheric Environment, 2018, 184, 87-97.	4.1	23
185	Fine particle characterization in a coastal city in China: composition, sources, and impacts of industrial emissions. Atmospheric Chemistry and Physics, 2020, 20, 2877-2890.	4.9	23
186	A 3D study on the amplification of regional haze and particle growth by local emissions. Npj Climate and Atmospheric Science, 2021, 4, .	6.8	23
187	Source apportionment of fine organic carbon at an urban site of Beijing using a chemical mass balance model. Atmospheric Chemistry and Physics, 2021, 21, 7321-7341.	4.9	23
188	Multiphase chemistry experiment in Fogs and Aerosols in the North China Plain (McFAN): integrated analysis and intensive winter campaign 2018. Faraday Discussions, 2021, 226, 207-222.	3.2	23
189	Brown carbon from biomass burning imposes strong circum-Arctic warming. One Earth, 2022, 5, 293-304.	6.8	23
190	Springtime variations of organic and inorganic constituents inÂsubmicron aerosols (PM1.0) from Cape Hedo, Okinawa. Atmospheric Environment, 2016, 130, 84-94.	4.1	22
191	Synergistic effect of water-soluble species and relative humidity on morphological changes in aerosol particles in the Beijing megacity during severe pollution episodes. Atmospheric Chemistry and Physics, 2019, 19, 219-232.	4.9	22
192	Molecular markers of biomass burning and primary biological aerosols in urban Beijing: size distribution and seasonal variation. Atmospheric Chemistry and Physics, 2020, 20, 3623-3644.	4.9	22
193	Transâ€Regional Transport of Haze Particles From the North China Plain to Yangtze River Delta During Winter. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033778.	3.3	22
194	Organic aerosol volatility and viscosity in the North China Plain: contrast between summer and winter. Atmospheric Chemistry and Physics, 2021, 21, 5463-5476.	4.9	22
195	Sources and processes of iron aerosols in a megacity in Eastern China. Atmospheric Chemistry and Physics, 2022, 22, 2191-2202.	4.9	22
196	Ice core records of monoterpene- and isoprene-SOA tracers from Aurora Peak in Alaska since 1660s: Implication for climate change variability in the North Pacific Rim. Atmospheric Environment, 2016, 130, 105-112.	4.1	21
197	New insights into the sources and formation of carbonaceous aerosols in China: potential applications of dual-carbon isotopes. National Science Review, 2017, 4, 804-806.	9.5	21
198	Roles of Sulfur Oxidation Pathways in the Variability in Stable Sulfur Isotopic Composition of Sulfate Aerosols at an Urban Site in Beijing, China. Environmental Science and Technology Letters, 2020, 7, 883-888.	8.7	21

#	Article	IF	CITATIONS
199	Contrasting mixing state of black carbon-containing particles in summer and winter in Beijing. Environmental Pollution, 2020, 263, 114455.	7.5	21
200	Suspect Screening of Liquid Crystal Monomers (LCMs) in Sediment Using an Established Database Covering 1173 LCMs. Environmental Science & Technology, 2022, 56, 8061-8070.	10.0	21
201	Dispersion of atmospheric fine particulate matters in simulated lung fluid and their effects on model cell membranes. Science of the Total Environment, 2016, 542, 36-43.	8.0	20
202	Black carbon in Xiamen, China: Temporal variations, transport pathways and impacts of synoptic circulation. Chemosphere, 2020, 241, 125133.	8.2	20
203	Persistent residential burning-related primary organic particles during wintertime hazes in North China: insights into their aging and optical changes. Atmospheric Chemistry and Physics, 2021, 21, 2251-2265.	4.9	20
204	Aerosol chemistry and particle growth events at an urban downwind site in North China Plain. Atmospheric Chemistry and Physics, 2018, 18, 14637-14651.	4.9	19
205	Vertical profiles of biogenic volatile organic compounds as observed online at a tower in Beijing. Journal of Environmental Sciences, 2020, 95, 33-42.	6.1	19
206	Variable Late Holocene 14C Reservoir Ages in Lake Bosten, Northwestern China. Frontiers in Earth Science, 2020, 7, .	1.8	19
207	Characterization of submicron organic particles in Beijing during summertime: comparison between SP-AMS and HR-AMS. Atmospheric Chemistry and Physics, 2020, 20, 14091-14102.	4.9	19
208	Geochemistry of Cretaceous granites from Mianning in the Panxi region, Sichuan Province, southwestern China: Implications for their generation. Journal of Asian Earth Sciences, 2007, 29, 737-750.	2.3	18
209	High daytime abundance of primary organic aerosols over Mt. Emei, Southwest China in summer. Science of the Total Environment, 2020, 703, 134475.	8.0	18
210	Indoor air filtration could lead to increased airborne endotoxin levels. Environment International, 2020, 142, 105878.	10.0	18
211	Photochemical Degradation of Organic Matter in the Atmosphere. Advanced Sustainable Systems, 2021, 5, 2100027.	5.3	18
212	Abundance and viability of particle-attached and free-floating bacteria in dusty and nondusty air. Biogeosciences, 2020, 17, 4477-4487.	3.3	18
213	Unexpected Increases of Severe Haze Pollution During the Post COVIDâ€19 Period: Effects of Emissions, Meteorology, and Secondary Production. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	18
214	Recent analytical tools to mitigate carbon-based pollution: New insights by using wavelet coherence for a sustainable environment. Environmental Research, 2022, 212, 113074.	7.5	18
215	Nitrogen cycling in the soil–plant system along a series of coral islands affected by seabirds in the South China Sea. Science of the Total Environment, 2018, 627, 166-175.	8.0	17
216	Implications for biomass/coal combustion emissions and secondary formation of carbonaceous aerosols in North China. RSC Advances, 2018, 8, 38108-38117.	3.6	17

#	Article	IF	CITATIONS
217	The organic molecular composition, diurnal variation, and stable carbon isotope ratios of PM2.5 in Beijing during the 2014 APEC summit. Environmental Pollution, 2018, 243, 919-928.	7.5	17
218	Sources and Radiative Absorption of Waterâ€Soluble Brown Carbon in the High Arctic Atmosphere. Geophysical Research Letters, 2019, 46, 14881-14891.	4.0	17
219	Characterization and source apportionment of marine aerosols over the East China Sea. Science of the Total Environment, 2019, 651, 2679-2688.	8.0	17
220	Molecular and spatial distributions of dicarboxylic acids, oxocarboxylic acids, and <i>α</i> -dicarbonyls in marine aerosols from the South China Sea to the eastern Indian Ocean. Atmospheric Chemistry and Physics, 2020, 20, 6841-6860.	4.9	17
221	Fine particles from village air in northern China in winter: Large contribution of primary organic aerosols from residential solid fuel burning. Environmental Pollution, 2021, 272, 116420.	7.5	17
222	Regional Impact of Biomass Burning in Southeast Asia on Atmospheric Aerosols during the 2013 Seven South-East Asian Studies Project. Aerosol and Air Quality Research, 2017, 17, 2924-2941.	2.1	17
223	Characteristics, seasonality and sources of inorganic ions and trace metals in North-east Asian aerosols. Environmental Chemistry, 2015, 12, 338.	1.5	16
224	Vertical Characterization of Aerosol Particle Composition in Beijing, China: Insights From 3â€Month Measurements With Two Aerosol Mass Spectrometers. Journal of Geophysical Research D: Atmospheres, 2018, 123, 13,016.	3.3	16
225	A Black Carbonâ€Tracer Method for Estimating Cooking Organic Aerosol From Aerosol Mass Spectrometer Measurements. Geophysical Research Letters, 2019, 46, 8474-8483.	4.0	16
226	Vertical Distributions of Primary and Secondary Aerosols in Urban Boundary Layer: Insights into Sources, Chemistry, and Interaction with Meteorology. Environmental Science & Technology, 2021, 55, 4542-4552.	10.0	16
227	Evolution of the Dissolved Organic Matter Composition along the Upper Mekong (Lancang) River. ACS Earth and Space Chemistry, 2021, 5, 319-330.	2.7	16
228	Fossil and Non-fossil Fuel Sources of Organic and Elemental Carbonaceous Aerosol in Beijing, Shanghai, and Guangzhou: Seasonal Carbon Source Variation. Aerosol and Air Quality Research, 2020, 20, 2495-2506.	2.1	16
229	An interlaboratory comparison of aerosol inorganic ion measurements by ion chromatography: implications for aerosol pH estimate. Atmospheric Measurement Techniques, 2020, 13, 6325-6341.	3.1	16
230	A sub-decadal trend in diacids in atmospheric aerosols in eastern Asia. Atmospheric Chemistry and Physics, 2016, 16, 585-596.	4.9	15
231	Aircraft observations of water-soluble dicarboxylic acids in the aerosols over China. Atmospheric Chemistry and Physics, 2016, 16, 6407-6419.	4.9	15
232	Responses of soil WEOM quantity and quality to freeze–thaw and litter manipulation with contrasting soil water content: A laboratory experiment. Catena, 2021, 198, 105058.	5.0	15
233	Source apportionment of carbonaceous aerosols in Beijing with radiocarbon and organic tracers: insight into the differences between urban and rural sites. Atmospheric Chemistry and Physics, 2021, 21, 8273-8292.	4.9	15
234	Online Liquid Chromatography and FT-ICR MS Enable Advanced Separation and Profiling of Organosulfates in Dissolved Organic Matter. ACS ES&T Water, 2021, 1, 1975-1982.	4.6	15

#	Article	IF	CITATIONS
235	Impact of biomass burning on soil microorganisms and plant metabolites: A view from molecular distributions of atmospheric hydroxy fatty acids over Mount Tai. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 2684-2699.	3.0	14
236	Hygroscopic behavior of water-soluble matter in marine aerosols over the East China Sea. Science of the Total Environment, 2017, 578, 307-316.	8.0	14
237	Dietary change in seabirds on Guangjin Island, South China Sea, over the past 1200 years inferred from stable isotope analysis. Holocene, 2017, 27, 331-338.	1.7	14
238	Molecular characterization of size-segregated organic aerosols in the urban boundary layer in wintertime Beijing by FT-ICR MS. Faraday Discussions, 2021, 226, 457-478.	3.2	14
239	Increase of nitrooxy organosulfates in firework-related urban aerosols during Chinese New Year's Eve. Atmospheric Chemistry and Physics, 2021, 21, 11453-11465.	4.9	14
240	Vertical distribution of particle-phase dicarboxylic acids, oxoacids and <i>α</i> -dicarbonyls in the urban boundary layer based on the 325 m tower in Beijing. Atmospheric Chemistry and Physics, 2020, 20, 10331-10350.	4.9	14
241	Chromophoric dissolved organic carbon cycle and its molecular compositions and optical properties in precipitation in the Guanzhong basin, China. Science of the Total Environment, 2022, 814, 152775.	8.0	14
242	Relationship between fluorescence characteristics and molecular weight distribution of natural dissolved organic matter in Lake Hongfeng and Lake Baihua, China. Science Bulletin, 2006, 51, 89-96.	1.7	13
243	Effective densities of soot particles and their relationships with the mixing state at an urban site in the Beijing megacity in the winter of 2018. Atmospheric Chemistry and Physics, 2019, 19, 14791-14804.	4.9	13
244	Transport Patterns, Size Distributions, and Depolarization Characteristics of Dust Particles in East Asia in Spring 2018. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031752.	3.3	13
245	Using highly time-resolved online mass spectrometry to examine biogenic and anthropogenic contributions to organic aerosol in Beijing. Faraday Discussions, 2021, 226, 382-408.	3.2	13
246	Cable-car measurements of vertical aerosol profiles impacted by mountain-valley breezes in Lushan Mountain, East China. Science of the Total Environment, 2021, 768, 144198.	8.0	13
247	Surface–atmosphere fluxes of volatile organic compounds in Beijing. Atmospheric Chemistry and Physics, 2020, 20, 15101-15125.	4.9	13
248	Seasonal Distributions and Stable Carbon Isotope Ratios of Water-Soluble Diacids, Oxoacids, and α-Dicarbonyls in Aerosols from Sapporo: Influence of Biogenic Volatile Organic Compounds and Photochemical Aging. ACS Earth and Space Chemistry, 2018, 2, 1220-1230.	2.7	12
249	Insight into the composition of organic compounds ( ≥  C _{6PM_{2.5} in wintertime in Beijing, China. Atmospheric Chemistry and Physics, 2019, 19, 10865-10881.}	mp;gt;) in 4.9	12
250	Variation in the mercury concentration and stable isotope composition of atmospheric total suspended particles in Beijing, China. Journal of Hazardous Materials, 2020, 383, 121131.	12.4	12
251	Source forensics of n-alkanes and n-fatty acids in urban aerosols using compound specific radiocarbon/stable carbon isotopic composition. Environmental Research Letters, 2020, 15, 074007.	5.2	12
252	Summertime fluorescent bioaerosol particles in the coastal megacity Tianjin, North China. Science of the Total Environment, 2020, 723, 137966.	8.0	12

#	Article	IF	CITATIONS
253	An evaluation of source apportionment of fine OC and PM _{2.5} by multiple methods: APHH-Beijing campaigns as a case study. Faraday Discussions, 2021, 226, 290-313.	3.2	12
254	Variations in physicochemical properties of airborne particles during a heavy haze-to-dust episode in Beijing. Science of the Total Environment, 2021, 762, 143081.	8.0	12
255	Nitrate and secondary organic aerosol dominated particle light extinction in Beijing due to clean air action. Atmospheric Environment, 2022, 269, 118833.	4.1	12
256	Mixing state of refractory black carbon in fog and haze at rural sites in winter on the North China Plain. Atmospheric Chemistry and Physics, 2021, 21, 17631-17648.	4.9	12
257	Characterization of Secondary Organic Aerosol Tracers over Tianjin, North China during Summer to Autumn. ACS Earth and Space Chemistry, 2019, 3, 2339-2352.	2.7	11
258	The MALINA oceanographic expedition: how do changes in ice cover, permafrost and UV radiation impact biodiversity and biogeochemical fluxes in the Arctic Ocean?. Earth System Science Data, 2021, 13, 1561-1592.	9.9	11
259	Characterization of dicarboxylic acids, oxoacids, and α-dicarbonyls in PM2.5 within the urban boundary layer in southern China: Sources and formation pathways. Environmental Pollution, 2021, 285, 117185.	7.5	11
260	Source profiles and emission factors of organic and inorganic species in fine particles emitted from the ultra-low emission power plant and typical industries. Science of the Total Environment, 2021, 789, 147966.	8.0	11
261	Tracing atmospheric transport of soil microorganisms and higher plant waxes in the East Asian outflow to the North Pacific Rim by using hydroxy fatty acids: Yearâ€round observations at Gosan, Jeju Island. Journal of Geophysical Research D: Atmospheres, 2017, 122, 4112-4131.	3.3	10
262	Sources, evolution and impacts of EC and OC in snow on sea ice: a measurement study in Barrow, Alaska. Science Bulletin, 2017, 62, 1547-1554.	9.0	10
263	Changes in the source of sedimentary organic matter in the marginal sea sediments of Eastern Hainan Island in response to human activities during the past 200 years. Quaternary International, 2017, 440, 150-159.	1.5	10
264	Water-soluble low molecular weight organics in cloud water at Mt. Tai Mo Shan, Hong Kong. Science of the Total Environment, 2019, 697, 134095.	8.0	10
265	Chemical formation and source apportionment of PM2.5 at an urban site at the southern foot of the Taihang mountains. Journal of Environmental Sciences, 2021, 103, 20-32.	6.1	10
266	Source forensics of inorganic and organic nitrogen using δ15N for tropospheric aerosols over Mt. Tai. Npj Climate and Atmospheric Science, 2021, 4, .	6.8	10
267	Distinctive Sources Govern Organic Aerosol Fractions with Different Degrees of Oxygenation in the Urban Atmosphere. Environmental Science & amp; Technology, 2021, 55, 4494-4503.	10.0	10
268	Molecular Distributions of Diacids, Oxoacids, and <i>α</i> â€Dicarbonyls in Summer―and Winterâ€Time Fine Aerosols From Tianjin, North China: Emissions From Combustion Sources and Aqueous Phase Secondary Formation. Journal of Geophysical Research D: Atmospheres, 2021, 126, .	3.3	10
269	Characteristics, Seasonality, and Secondary Formation Processes of Diacids and Related Compounds in Fine Aerosols During Warm and Cold Periods: Yearâ€Round Observations at Tianjin, North China. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035435.	3.3	10
270	A New Structural Classification Scheme for Dissolved Organic Sulfur in Urban Snow from North China. Environmental Science and Technology Letters, 2022, 9, 366-374.	8.7	10

#	Article	IF	CITATIONS
271	Molecular compositions, optical properties, and implications of dissolved brown carbon in snow/ice on the Tibetan Plateau glaciers. Environment International, 2022, 164, 107276.	10.0	10
272	The chemical composition and mixing state of BC-containing particles and the implications on light absorption enhancement. Atmospheric Chemistry and Physics, 2022, 22, 7619-7630.	4.9	10
273	Predicting cloud condensation nuclei number concentration based on conventional measurements of aerosol properties in the North China Plain. Science of the Total Environment, 2020, 719, 137473.	8.0	9
274	Insights into air pollution chemistry and sulphate formation from nitrous acid (HONO) measurements during haze events in Beijing. Faraday Discussions, 2021, 226, 223-238.	3.2	9
275	Measurement report: Diurnal and temporal variations of sugar compounds in suburban aerosols from the northern vicinity of Beijing, China – an influence of biogenic and anthropogenic sources. Atmospheric Chemistry and Physics, 2021, 21, 4959-4978.	4.9	9
276	Measurement report: Vertical distribution of biogenic and anthropogenic secondary organic aerosols in the urban boundary layer over Beijing during late summer. Atmospheric Chemistry and Physics, 2021, 21, 12949-12963.	4.9	9
277	Modelling spatiotemporal variations of the canopy layer urban heat island in Beijing at the neighbourhood scale. Atmospheric Chemistry and Physics, 2021, 21, 13687-13711.	4.9	9
278	Molecular composition and sources of water-soluble organic aerosol in summer in Beijing. Chemosphere, 2020, 255, 126850.	8.2	9
279	Exploring Possible Missing Sinks of Nitrate and Its Precursors in Current Air Quality Models —A Case Simulation in the Pearl River Delta, China, Using an Observation-Based Box Model. Scientific Online Letters on the Atmosphere, 2015, 11, 124-128.	1.4	8
280	Influence of the morphological change in natural Asian dust during transport: A modeling study for a typical dust event over northern China. Science of the Total Environment, 2020, 739, 139791.	8.0	8
281	Size-resolved characterization of organic aerosol in the North China Plain: new insights from high resolution spectral analysis. Environmental Science Atmospheres, 2021, 1, 346-358.	2.4	8
282	Assessing the Nonlinear Effect of Atmospheric Variables on Primary and Oxygenated Organic Aerosol Concentration Using Machine Learning. ACS Earth and Space Chemistry, 2022, 6, 1059-1066.	2.7	8
283	Rapid transition of aerosol optical properties and water-soluble organic aerosols in cold season in Fenwei Plain. Science of the Total Environment, 2022, 829, 154661.	8.0	8
284	Ultraviolet absorbance titration for the determination of conditional stability constants of Hg(II) and dissolved organic matter. Diqiu Huaxue, 2008, 27, 46-52.	0.5	7
285	Historical Trends of Biogenic SOA Tracers in an Ice Core from Kamchatka Peninsula. Environmental Science and Technology Letters, 2016, 3, 351-358.	8.7	7
286	δ ¹⁵ N of Nitric Oxide Produced Under Aerobic or Anaerobic Conditions From Seven Soils and Their Associated N Isotope Fractionations. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2020JG005705.	3.0	7
287	Molecular markers for fungal spores and biogenic SOA over the Antarctic Peninsula: Field measurements and modeling results. Science of the Total Environment, 2021, 762, 143089.	8.0	7
288	High-Resolution Fluorescence Spectra of Airborne Biogenic Secondary Organic Aerosols: Comparisons to Primary Biological Aerosol Particles and Implications for Single-Particle Measurements. Environmental Science & Technology, 2021, 55, 16747-16756.	10.0	7

#	Article	IF	CITATIONS
289	Bimodal distribution of size-resolved particle effective density: results from a short campaign in a rural environment over the North China Plain. Atmospheric Chemistry and Physics, 2022, 22, 2029-2047.	4.9	7
290	Quantifying biological processes producing nitrous oxide in soil using a mechanistic model. Biogeochemistry, 2022, 159, 1-14.	3.5	7
291	Decreased Aviation Leads to Increased Ice Crystal Number and a Positive Radiative Effect in Cirrus Clouds. AGU Advances, 2022, 3, .	5.4	7
292	The importance of hydroxymethanesulfonate (HMS) in winter haze episodes in North China Plain. Environmental Research, 2022, 211, 113093.	7.5	7
293	Size Distribution and Depolarization Properties of Aerosol Particles over the Northwest Pacific and Arctic Ocean from Shipborne Measurements during an R/V <i>Xuelong</i> Cruise. Environmental Science & amp; Technology, 2019, 53, 7984-7995.	10.0	6
294	Application of δ15N to trace the impact of penguin guano on terrestrial and aquatic nitrogen cycles in Victoria Land, Ross Sea region, Antarctica. Science of the Total Environment, 2020, 709, 134496.	8.0	6
295	Direct measurements of black carbon fluxes in central Beijing using the eddy covariance method. Atmospheric Chemistry and Physics, 2021, 21, 147-162.	4.9	6
296	Aqueous-phase reactive species formed by fine particulate matter from remote forests and polluted urban air. Atmospheric Chemistry and Physics, 2021, 21, 10439-10455.	4.9	6
297	Identification and stable isotope analyses of flying fish scales from ornithogenic sediments at three islands in the South China Sea. Marine Ecology - Progress Series, 2017, 585, 175-183.	1.9	6
298	Transport Patterns and Potential Sources of Atmospheric Pollution during the XXIV Olympic Winter Games Period. Advances in Atmospheric Sciences, 2022, 39, 1608-1622.	4.3	6
299	Biological and Nonbiological Sources of Fluorescent Aerosol Particles in the Urban Atmosphere. Environmental Science & Technology, 2022, 56, 7588-7597.	10.0	6
300	Compoundâ€specific ¹⁵ N analysis of amino acids: A tool to estimate the trophic position of tropical seabirds in the South China Sea. Ecology and Evolution, 2018, 8, 8853-8864.	1.9	5
301	Large contribution of fine carbonaceous aerosols from municipal waste burning inferred from distributions of diacids and fatty acids. Environmental Research Communications, 2019, 1, 071005.	2.3	5
302	Compound-Specific Stable Carbon Isotope Ratios of Terrestrial Biomarkers in Urban Aerosols from Beijing, China. ACS Earth and Space Chemistry, 2019, 3, 1896-1904.	2.7	5
303	Vertical profile of particle hygroscopicity and CCN effectiveness during winter in Beijing: insight into the hygroscopicity transition threshold of black carbon. Faraday Discussions, 2021, 226, 239-254.	3.2	5
304	PM2.5-bound silicon-containing secondary organic aerosols (Si-SOA) in Beijing ambient air. Chemosphere, 2021, 288, 132377.	8.2	5
305	Terrestrial lipid biomarkers in marine aerosols over the western North Pacific during 1990–1993 and 2006–2009. Science of the Total Environment, 2021, 797, 149115.	8.0	5
306	Secondary organic aerosol formation from photooxidation of C3H6 under the presence of NH3: Effects of seed particles. Environmental Research, 2022, 211, 113064.	7.5	5

#	Article	IF	CITATIONS
307	Year-round observations of stable carbon isotopic composition of carboxylic acids, oxoacids and α-Dicarbonyls in fine aerosols at Tianjin, North China: Implications for origins and aging. Science of the Total Environment, 2022, 834, 155385.	8.0	5
308	Paleoecology of seabirds at Nandao, Xisha Islands, South China Sea: Sub-fossil evidence for Ashmole's Halo during the Little Ice Age. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 505, 33-41.	2.3	4
309	Multiyear measurements on 15N natural abundance of precipitation nitrate at a rural forested site. Atmospheric Environment, 2021, 253, 118353.	4.1	4
310	Photochemical Processing of Inorganic and Organic Species in the Canadian High Arctic Aerosols: Impact of Ammonium Cation, Transition Metals, and Dicarboxylic Acids before and after Polar Sunrise at Alert. ACS Earth and Space Chemistry, 2021, 5, 2865-2877.	2.7	4
311	Mixing characteristics of black carbon aerosols in a coastal city using the CPMA-SP2 system. Atmospheric Research, 2022, 265, 105867.	4.1	4
312	Insights into vertical differences of particle number size distributions in winter in Beijing, China. Science of the Total Environment, 2022, 802, 149695.	8.0	4
313	Influence of rainfall on fungal aerobiota in the urban atmosphere over Tianjin, China: A case study. Atmospheric Environment: X, 2021, 12, 100137.	1.4	4
314	Deciphering ¹³ C and ³⁴ S Isotopes of Organosulfates in Urban Aerosols by FT-ICR Mass Spectrometry. Environmental Science and Technology Letters, 2022, 9, 526-532.	8.7	4
315	Machine learning elucidates the impact of short-term emission changes on air pollution in Beijing. Atmospheric Environment, 2022, 283, 119192.	4.1	4
316	Compositional Characteristics of Fluvial Particulate Organic Matter Exported From the World's Largest Alpine Wetland. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 2709-2727.	3.0	3
317	Using a coupled LES aerosol–radiation model to investigate the importance of aerosol–boundary layer feedback in a Beijing haze episode. Faraday Discussions, 2021, 226, 173-190.	3.2	3
318	Molecular characterization and spatial distribution of dicarboxylic acids and related compounds in fresh snow in China. Environmental Pollution, 2021, 291, 118114.	7.5	3
319	Latitudinal difference in the molecular distributions of lipid compounds in the forest atmosphere in China. Environmental Pollution, 2022, 294, 118578.	7.5	3
320	Primary Emissions and Secondary Aerosol Processing During Wintertime in Rural Area of North China Plain. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	3
321	Tracer-based characterization of fine carbonaceous aerosol in Beijing during a strict emission control period. Science of the Total Environment, 2022, 841, 156638.	8.0	3
322	General discussion: Aerosol formation and growth; VOC sources and secondary organic aerosols. Faraday Discussions, 2021, 226, 479-501.	3.2	1
323	Release of inhalable particles and viable microbes to the air during packaging peeling: Emission profiles and mechanisms. Environmental Pollution, 2021, 285, 117338.	7.5	1
324	Urban Haze in the North China Plain: Obervations from NACMON. Bulletin of the American Meteorological Society, 2020, 101, 53-58.	3.3	1

#	Article	IF	CITATIONS
325	Dwindling aromatic compounds in fine aerosols from chunk coal to honeycomb briquette combustion. Science of the Total Environment, 2022, 838, 155971.	8.0	1
326	Characteristics and seasonality of trace elements in fine aerosols from Tianjin, North China during 2018-2019. Environmental Advances, 2022, 9, 100263.	4.8	1
327	Determination of Hg and MeHg complexation with dissolved organic matter by fluorescence quenching titration. Diqiu Huaxue, 2006, 25, 264-265.	0.5	0
328	Tissue-specific δ13C in ancient and modern tropical seabirds and flying fish in the Xisha Islands, South China Sea. Isotopes in Environmental and Health Studies, 2018, 54, 508-521.	1.0	0