R Thomas Zoeller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5977412/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Endocrine disrupting chemicals and thyroid hormone action. Advances in Pharmacology, 2021, 92, 401-417.	2.0	11
2	Urinary Phthalate Biomarkers and Bone Mineral Density in Postmenopausal Women. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e2567-e2579.	3.6	12
3	Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification. Nature Reviews Endocrinology, 2020, 16, 45-57.	9.6	484
4	The Use and Misuse of Historical Controls in Regulatory Toxicology: Lessons from the CLARITY-BPA Study. Endocrinology, 2020, 161, .	2.8	22
5	Maternal, cord, and threeâ€yearâ€old child serum thyroid hormone concentrations in the Health Outcomes and Measures of the Environment study. Clinical Endocrinology, 2020, 92, 366-372.	2.4	0
6	Data integration, analysis, and interpretation of eight academic CLARITY-BPA studies. Reproductive Toxicology, 2020, 98, 29-60.	2.9	42
7	Thresholds and Endocrine Disruptors: An Endocrine Society Policy Perspective. Journal of the Endocrine Society, 2020, 4, bvaa085.	0.2	21
8	Impacts of food contact chemicals on human health: a consensus statement. Environmental Health, 2020, 19, 25.	4.0	100
9	Maternal serum perfluoroalkyl substance mixtures and thyroid hormone concentrations in maternal and cord sera: The HOME Study. Environmental Research, 2020, 185, 109395.	7.5	46
10	Removing Critical Gaps in Chemical Test Methods by Developing New Assays for the Identification of Thyroid Hormone System-Disrupting Chemicals—The ATHENA Project. International Journal of Molecular Sciences, 2020, 21, 3123.	4.1	34
11	CLARITY-BPA: Bisphenol A or Propylthiouracil on Thyroid Function and Effects in the Developing Male and Female Rat Brain. Endocrinology, 2019, 160, 1771-1785.	2.8	19
12	Update on Activities in Endocrine Disruptor Research and Policy. Endocrinology, 2019, 160, 1681-1683.	2.8	8
13	Urinary concentrations of phthalate biomarkers and weight change among postmenopausal women: a prospective cohort study. Environmental Health, 2019, 18, 20.	4.0	27
14	Thyroid hormones and neurobehavioral functions among adolescents chronically exposed to groundwater with geogenic arsenic in Bangladesh. Science of the Total Environment, 2019, 678, 278-287.	8.0	15
15	Comparative Analyses of the 12 Most Abundant PCB Congeners Detected in Human Maternal Serum for Activity at the Thyroid Hormone Receptor and Ryanodine Receptor. Environmental Science & Technology, 2019, 53, 3948-3958.	10.0	60
16	Predictors of urinary phthalate biomarker concentrations in postmenopausal women. Environmental Research, 2019, 169, 122-130.	7.5	21
17	Maternal Thyroid Function During Pregnancy or Neonatal Thyroid Function and Attention Deficit Hyperactivity Disorder. Epidemiology, 2019, 30, 130-144.	2.7	46
18	Polybrominated diphenyl ethers (PBDEs) and hydroxylated PBDE metabolites (OH-PBDEs) in maternal and fetal tissues, and associations with fetal cytochrome P450 gene expression. Environment International, 2018, 112, 269-278.	10.0	66

R THOMAS ZOELLER

#	Article	IF	CITATIONS
19	Maternal urinary phthalate metabolites during pregnancy and thyroid hormone concentrations in maternal and cord sera: The HOME Study. International Journal of Hygiene and Environmental Health, 2018, 221, 623-631.	4.3	74
20	Associations of early life urinary triclosan concentrations with maternal, neonatal, and child thyroid hormone levels. Hormones and Behavior, 2018, 101, 77-84.	2.1	36
21	Polybrominated diphenyl ether (PBDE) exposures and thyroid hormones in children at age 3â€ ⁻ years. Environment International, 2018, 117, 339-347.	10.0	48
22	Do Environmental Chemicals Make Us Fat?. Endocrinology, 2017, 158, 3086-3087.	2.8	0
23	Scientific principles for the identification of endocrine-disrupting chemicals: a consensus statement. Archives of Toxicology, 2017, 91, 1001-1006.	4.2	118
24	Project TENDR: Targeting Environmental Neuro-Developmental Risks The TENDR Consensus Statement. Environmental Health Perspectives, 2016, 124, A118-22.	6.0	123
25	EU regulation of endocrine disruptors: a missed opportunity. Lancet Diabetes and Endocrinology,the, 2016, 4, 649-650.	11.4	4
26	Science-based regulation of endocrine disrupting chemicals in Europe: which approach?. Lancet Diabetes and Endocrinology,the, 2016, 4, 643-646.	11.4	13
27	Exposure to endocrine-disrupting chemicals in the USA: a population-based disease burden and cost analysis. Lancet Diabetes and Endocrinology,the, 2016, 4, 996-1003.	11.4	204
28	Exposure to Thyroid-Disrupting Chemicals: A Transatlantic Call for Action. Thyroid, 2016, 26, 479-480.	4.5	16
29	Endocrine-Disrupting Chemicals and Human Diseaseâ^—. , 2016, , 2640-2652.e3.		3
30	Assessing dose–response relationships for endocrine disrupting chemicals (EDCs): a focus on non-monotonicity. Environmental Health, 2015, 14, 42.	4.0	74
31	Parma consensus statement on metabolic disruptors. Environmental Health, 2015, 14, 54.	4.0	174
32	Endocrine-Disrupting Activity of Hydraulic Fracturing Chemicals and Adverse Health Outcomes After Prenatal Exposure in Male Mice. Endocrinology, 2015, 156, 4458-4473.	2.8	82
33	NIEHS/FDA CLARITY-BPA research program update. Reproductive Toxicology, 2015, 58, 33-44.	2.9	84
34	Gestational urinary bisphenol A and maternal and newborn thyroid hormone concentrations: The HOME Study. Environmental Research, 2015, 138, 453-460.	7.5	101
35	Neurobehavioral Deficits, Diseases, and Associated Costs of Exposure to Endocrine-Disrupting Chemicals in the European Union. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 1256-1266.	3.6	133
36	Transient Maternal Hypothyroxinemia Potentiates the Transcriptional Response to Exogenous Thyroid Hormone in the Fetal Cerebral Cortex Before the Onset of Fetal Thyroid Function: A Messenger and MicroRNA Profiling Study. Cerebral Cortex, 2015, 25, 1735-1745.	2.9	20

R THOMAS ZOELLER

#	Article	IF	CITATIONS
37	Alteration of Rat Fetal Cerebral Cortex Development after Prenatal Exposure to Polychlorinated Biphenyls. PLoS ONE, 2014, 9, e91903.	2.5	24
38	Polybrominated Diphenyl Ether (DE-71) Interferes With Thyroid Hormone Action Independent of Effects on Circulating Levels of Thyroid Hormone in Male Rats. Endocrinology, 2014, 155, 4104-4112.	2.8	33
39	A path forward in the debate over health impacts of endocrine disrupting chemicals. Environmental Health, 2014, 13, 118.	4.0	107
40	Regulation of Endocrine-Disrupting Chemicals Insufficient to Safeguard Public Health. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 1993-1994.	3.6	5
41	A new approach to synergize academic and guideline-compliant research: The CLARITY-BPA research program. Reproductive Toxicology, 2013, 40, 35-40.	2.9	84
42	Science and policy on endocrine disrupters must not be mixed: a reply to a "common sense― intervention by toxicology journal editors. Environmental Health, 2013, 12, 69.	4.0	64
43	Hormones and Endocrine-Disrupting Chemicals: Low-Dose Effects and Nonmonotonic Dose Responses. Endocrine Reviews, 2012, 33, 378-455.	20.1	2,413
44	Endocrine-Disrupting Chemicals and Public Health Protection: A Statement of Principles from The Endocrine Society. Endocrinology, 2012, 153, 4097-4110.	2.8	885
45	Individual Polychlorinated Biphenyl (PCB) Congeners Produce Tissue- and Gene-Specific Effects on Thyroid Hormone Signaling during Development. Endocrinology, 2011, 152, 2909-2919.	2.8	79
46	New Insights into Thyroid Hormone Action in the Developing Brain: The Importance of T3 Degradation. Endocrinology, 2010, 151, 5089-5091.	2.8	24
47	Endocrine-Disrupting Chemicals: An Endocrine Society Scientific Statement. Endocrine Reviews, 2009, 30, 293-342.	20.1	3,491
48	Environmental neuroendocrine and thyroid disruption: relevance for reproductive medicine?. Fertility and Sterility, 2008, 89, e99-e100.	1.0	11
49	Polychlorinated Biphenyls (Aroclor 1254) Do Not Uniformly Produce Agonist Actions on Thyroid Hormone Responses in the Developing Rat Brain. Endocrinology, 2008, 149, 4001-4008.	2.8	44
50	The Balance between Oligodendrocyte and Astrocyte Production in Major White Matter Tracts Is Linearly Related to Serum Total Thyroxine. Endocrinology, 2008, 149, 2527-2536.	2.8	83
51	Implications of Research on Assays to Characterize Thyroid Toxicants. Critical Reviews in Toxicology, 2007, 37, 195-210.	3.9	33
52	Environmental Chemicals Impacting the Thyroid: Targets and Consequences. Thyroid, 2007, 17, 811-817.	4.5	201
53	Current and Potential Rodent Screens and Tests for Thyroid Toxicants. Critical Reviews in Toxicology, 2007, 37, 55-95.	3.9	39
54	General Background on the Hypothalamic-Pituitary-Thyroid (HPT) Axis. Critical Reviews in Toxicology, 2007, 37, 11-53.	3.9	314

R THOMAS ZOELLER

#	Article	IF	CITATIONS
55	4-Hydroxy-PCB106 acts as a direct thyroid hormone receptor agonist in rat GH3 cells. Molecular and Cellular Endocrinology, 2006, 257-258, 26-34.	3.2	50
56	Collision of Basic and Applied Approaches to Risk Assessment of Thyroid Toxicants. Annals of the New York Academy of Sciences, 2006, 1076, 168-190.	3.8	9
57	Endocrine Disruptors: Do Family Lines Carry an Epigenetic Record of Previous Generations' Exposures?. Endocrinology, 2006, 147, 5513-5514.	2.8	12
58	Endocrine Disruption for Endocrinologists (and Others). Endocrinology, 2006, 147, s1-s3.	2.8	65
59	Maternal thyroid hormone increases HES expression in the fetal rat brain: An effect mimicked by exposure to a mixture of polychlorinated biphenyls (PCBs). Developmental Brain Research, 2005, 156, 13-22.	1.7	70
60	Bisphenol-A, an Environmental Contaminant that Acts as a Thyroid Hormone Receptor Antagonist in Vitro, Increases Serum Thyroxine, and Alters RC3/Neurogranin Expression in the Developing Rat Brain. Endocrinology, 2005, 146, 607-612.	2.8	414
61	Environmental chemicals as thyroid hormone analogues: New studies indicate that thyroid hormone receptors are targets of industrial chemicals?. Molecular and Cellular Endocrinology, 2005, 242, 10-15.	3.2	208
62	Mode of Action: Developmental Thyroid Hormone Insufficiency—Neurological Abnormalities Resulting From Exposure to Propylthiouracil. Critical Reviews in Toxicology, 2005, 35, 771-781.	3.9	88
63	Challenges Confronting Risk Analysis of Potential Thyroid Toxicants. Risk Analysis, 2003, 23, 143-162.	2.7	38
64	Transplacental thyroxine and fetal brain development. Journal of Clinical Investigation, 2003, 111, 954-957.	8.2	67
65	Differential display identifies neuroendocrine-specific protein-A (NSP-A) and interferon-inducible protein 10 (IP-10) as ethanol-responsive genes in the fetal rat brain. Developmental Brain Research, 2002, 138, 117-133.	1.7	6
66	Maternal Hypothyroidism Selectively Affects the Expression of Neuroendocrine-Specific Protein A Messenger Ribonucleic Acid in the Proliferative Zone of the Fetal Rat Brain Cortex**This work was supported by NIH Grants ES-8333 and AA-10418 and a Healey Endowment grant (to R.T.Z.) Endocrinology 2001 142 390-399	2.8	50
67	Maternal Hypothyroidism Selectively Affects the Expression of Neuroendocrine-Specific Protein A Messenger Ribonucleic Acid in the Proliferative Zone of the Fetal Rat Brain Cortex. Endocrinology, 2001, 142, 390-399.	2.8	20
68	Developmental Exposure to Polychlorinated Biphenyls Exerts Thyroid Hormone-Like Effects on the Expression of RC3/Neurogranin and Myelin Basic Protein Messenger Ribonucleic Acids in the Developing Rat Brain1. Endocrinology, 2000, 141, 181-189.	2.8	152
69	Thyroid hormone of maternal origin regulates the expression of RC3/neurogranin mRNA in the fetal rat brain. Molecular Brain Research, 2000, 82, 126-132.	2.3	62
70	Effects of Prenatal Ethanol Exposure on Hypothalamic-Pituitary-Adrenal Responses to Chronic Cold Stress in Rats. Alcoholism: Clinical and Experimental Research, 1999, 23, 301-310.	2.4	55
71	Prenatal Ethanol Exposure Selectively Reduces the mRNA Encoding α-1 Thyroid Hormone Receptor in Fetal Rat Brain. Alcoholism: Clinical and Experimental Research, 1998, 22, 2111-2117.	2.4	20
72	N-Ethylmaleimide (NEM) Can Significantly Improve In Situ Hybridization Results Using 35S-labeled Oligodeoxynucleotide or Complementary RNA Probes. Journal of Histochemistry and Cytochemistry, 1997, 45, 1035-1041.	2.5	16

#	Article	IF	CITATIONS
73	Identification of a phylogenetically conserved Sug1 CAD family member that is differentially expressed in the mouse nervous system. Journal of Neurobiology, 1997, 33, 877-890.	3.6	12