Frank Eisner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5977245/publications.pdf

Version: 2024-02-01

394421 454955 2,851 32 19 30 citations h-index g-index papers 33 33 33 2736 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Neural Correlates of Phonetic Adaptation as Induced by Lexical and Audiovisual Context. Journal of Cognitive Neuroscience, 2020, 32, 2145-2158.	2.3	6
2	Interleaved lexical and audiovisual information can retune phoneme boundaries. Attention, Perception, and Psychophysics, 2020, 82, 2018-2026.	1.3	4
3	Human emotional vocalizations can develop in the absence of auditory learning Emotion, 2020, 20, 1435-1445.	1.8	3
4	Audiovisual and lexical cues do not additively enhance perceptual adaptation. Psychonomic Bulletin and Review, 2020, 27, 707-715.	2.8	6
5	Learning to read recycles visual cortical networks without destruction. Science Advances, 2019, 5, eaax0262.	10.3	45
6	Consistency influences altered auditory feedback processing. Quarterly Journal of Experimental Psychology, 2019, 72, 2371-2379.	1.1	13
7	Self-monitoring in the cerebral cortex: Neural responses to small pitch shifts in auditory feedback during speech production. NeuroImage, 2018, 179, 326-336.	4.2	18
8	Opposing and following responses in sensorimotor speech control: Why responses go both ways. Psychonomic Bulletin and Review, 2018, 25, 1458-1467.	2.8	24
9	You talkin' to me? Communicative talker gaze activates left-lateralized superior temporal cortex during perception of degraded speech. Neuropsychologia, 2017, 100, 51-63.	1.6	10
10	Learning to read alters cortico-subcortical cross-talk in the visual system of illiterates. Science Advances, 2017, 3, e1602612.	10.3	54
11	Individual variability as a window on production-perception interactions in speech motor control. Journal of the Acoustical Society of America, 2017, 142, 2007-2018.	1.1	34
12	When brain regions talk to each other during speech processing, what are they talking about? Commentary on Gow and Olson (2015). Language, Cognition and Neuroscience, 2016, 31, 860-863.	1.2	4
13	Emotional Vocalizations Are Recognized Across Cultures Regardless of the Valence of Distractors. Psychological Science, 2015, 26, 354-356.	3.3	48
14	The Brain Dynamics of Rapid Perceptual Adaptation to Adverse Listening Conditions. Journal of Neuroscience, 2013, 33, 10688-10697.	3.6	131
15	<i>Tain't What You Say, It's the Way That You Say It</i> in Interaction with Superior Temporal Regions to Control the Performance of Vocal Impersonations. Journal of Cognitive Neuroscience, 2013, 25, 1875-1886.	2.3	68
16	Commonalities outweigh differences in the communication of emotions across human cultures. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E180.	7.1	13
17	Constraints on the Transfer of Perceptual Learning in Accented Speech. Frontiers in Psychology, 2013, 4, 148.	2.1	19
18	Auditory skills and brain morphology predict individual differences in adaptation to degraded speech. Neuropsychologia, 2012, 50, 2154-2164.	1.6	49

#	Article	IF	CITATIONS
19	Neural Correlates of Sublexical Processing in Phonological Working Memory. Journal of Cognitive Neuroscience, 2011, 23, 961-977.	2.3	72
20	The Effect of Delayed Auditory Feedback on Activity in the Temporal Lobe While Speaking: A Positron Emission Tomography Study. Journal of Speech, Language, and Hearing Research, 2010, 53, 226-236.	1.6	53
21	Cross-cultural recognition of basic emotions through nonverbal emotional vocalizations. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2408-2412.	7.1	533
22	Inferior Frontal Gyrus Activation Predicts Individual Differences in Perceptual Learning of Cochlear-Implant Simulations. Journal of Neuroscience, 2010, 30, 7179-7186.	3.6	92
23	Perceptual Cues in Nonverbal Vocal Expressions of Emotion. Quarterly Journal of Experimental Psychology, 2010, 63, 2251-2272.	1.1	222
24	Developmental phonagnosia: A selective deficit of vocal identity recognition. Neuropsychologia, 2009, 47, 123-131.	1.6	110
25	A little more conversation, a little less action $\hat{a}\in$ " candidate roles for the motor cortex in speech perception. Nature Reviews Neuroscience, 2009, 10, 295-302.	10.2	276
26	Pre-lexical abstraction of speech in the auditory cortex. Trends in Cognitive Sciences, 2009, 13, 14-19.	7.8	134
27	Bilateral Speech Comprehension Reflects Differential Sensitivity to Spectral and Temporal Features. Journal of Neuroscience, 2008, 28, 8116-8123.	3.6	177
28	Perceptual learning in speech: Stability over time. Journal of the Acoustical Society of America, 2006, 119, 1950-1953.	1.1	154
29	Positive Emotions Preferentially Engage an Auditory-Motor "Mirror" System. Journal of Neuroscience, 2006, 26, 13067-13075.	3.6	177
30	The specificity of perceptual learning in speech processing. Perception & Psychophysics, 2005, 67, 224-238.	2.3	262
31	How abstract phonemic categories are necessary for coping with speaker-related variation. Phonology and Phonetics, 0, , .	0.4	33
32	Audiovisual Recalibration of Vowel Categories. , 0, , .		3