Lehao Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5976798/publications.pdf

Version: 2024-02-01

687363 610901 1,063 26 13 24 citations h-index g-index papers 27 27 27 1754 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Polyethylene Oxide as a Multifunctional Binder for High-Performance Ternary Layered Cathodes. Polymers, 2021, 13, 3992.	4.5	9
2	Comprehensively-upgraded polymer electrolytes by multifunctional aramid nanofibers for stable all-solid-state Li-ion batteries. Nano Energy, 2020, 69, 104398.	16.0	101
3	Layered ternary metal oxides: Performance degradation mechanisms as cathodes, and design strategies for high-performance batteries. Progress in Materials Science, 2020, 111, 100655.	32.8	115
4	Localized Electrons Enhanced Ion Transport for Ultrafast Electrochemical Energy Storage. Advanced Materials, 2020, 32, e1905578.	21.0	39
5	Comprehensively-modified polymer electrolyte membranes with multifunctional PMIA for highly-stable all-solid-state lithium-ion batteries. Journal of Energy Chemistry, 2020, 48, 334-343.	12.9	37
6	Flexible, high-voltage, ion-conducting composite membranes with 3D aramid nanofiber frameworks for stable all-solid-state lithium metal batteries. Science China Materials, 2020, 63, 703-718.	6.3	32
7	Facile fabrication of flexible Si-based nanocomposite films as high-rate anodes by layer-by-layer self-assembly. Applied Surface Science, 2019, 476, 501-512.	6.1	13
8	Li1.4Al0.4Ti1.6(PO4)3 nanoparticle-reinforced solid polymer electrolytes for all-solid-state lithium batteries. Solid State Ionics, 2019, 331, 89-95.	2.7	84
9	Materials Engineering of High-Performance Anodes as Layered Composites with Self-Assembled Conductive Networks. Journal of Physical Chemistry C, 2018, 122, 14014-14028.	3.1	7
10	Facile and Green Preparation of Three-Dimensionally Nanoporous Copper Films by Low-Current Electrical Field-Induced Assembly of Copper Nanoparticles for Lithium-Ion Battery Applications. Journal of Materials Engineering and Performance, 2018, 27, 4680-4692.	2.5	4
11	Stretchable conductors by kirigami patterning of aramid-silver nanocomposites with zero conductance gradient. Applied Physics Letters, 2017, 111, .	3.3	39
12	Tin-based anode materials with well-designed architectures for next-generation lithium-ion batteries. Journal of Power Sources, 2016, 321, 11-35.	7.8	195
13	Facile Fabrication of Multifunctional Aramid Nanofiber Films by Spin Coating. Journal of Materials Engineering and Performance, 2016, 25, 4757-4763.	2.5	14
14	High Strength Conductive Composites with Plasmonic Nanoparticles Aligned on Aramid Nanofibers. Advanced Functional Materials, 2016, 26, 8435-8445.	14.9	115
15	Well-constructed silicon-based materials as high-performance lithium-ion battery anodes. Nanoscale, 2016, 8, 701-722.	5.6	113
16	Large area preparation of multilayered graphene films by chemical vapour deposition with high electrocatalytic activity toward hydrogen peroxide. Materials Technology, 2015, 30, 121-126.	3.0	8
17	Low-current field-assisted assembly of copper nanoparticles for current collectors. Faraday Discussions, 2015, 181, 383-401.	3.2	16
18	Electromagnetic wave absorbing properties of multi-wall carbon nanotube/Fe3O4 hybrid materials. New Carbon Materials, 2013, 28, 184-190.	6.1	70

#	Article	IF	CITATION
19	Electrochemical Determination of Melamine with a Glassy Carbon Electrode Coated with a Multi-Wall Carbon Nanotube/Chitosan Composite. Journal of the Electrochemical Society, 2012, 159, K141-K145.	2.9	21
20	Preparation and electrochemical property of CMC/MWCNT composite using ionic liquid as solvent. Science Bulletin, 2012, 57, 1620-1625.	1.7	10
21	Electrochemical Property of Multi-Walled Carbon Nanotubes/Chitosan Composites by Electrostatic Interactions. Fullerenes Nanotubes and Carbon Nanostructures, 2011, 19, 452-460.	2.1	6
22	Intercalation Lithium Behavior of Molybdenum Disulphide as Anode Materials for Lithium Ion Battery. Advanced Materials Research, 2011, 335-336, 218-221.	0.3	0
23	Physical model for the growth of amorphous carbon nanotubes. Applied Physics Letters, 2011, 98, 163111.	3.3	3
24	Zinc and Cobalt Recovery from Co-Ni Residue of Zinc Hydrometallurgy by an Ammonia Process. Advanced Materials Research, 2011, 396-398, 48-51.	0.3	3
25	Hydrogen Storage Behavior of Amorphous Carbon Nanotubes at Low Pressure and Room Temperature. Fullerenes Nanotubes and Carbon Nanostructures, 2011, 19, 677-683.	2.1	7
26	Determination of Melamine and its Analogues in Food. Advanced Materials Research, 0, 403-408, 2675-2678.	0.3	0