Angela Gallego Sala

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5976721/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lowâ€salinity transitions drive abrupt microbial response to seaâ€level change. Ecology Letters, 2022, 25, 17-25.	6.4	7
2	A strong mitigation scenario maintains climate neutrality of northern peatlands. One Earth, 2022, 5, 86-97.	6.8	14
3	A new approach to simulate peat accumulation, degradation and stability in a global land surface scheme (JULES vn5.8_accumulate_soil) for northern and temperate peatlands. Geoscientific Model Development, 2022, 15, 1633-1657.	3.6	6
4	Seasonal climate drivers of peak NDVI in a series of Arctic peatlands. Science of the Total Environment, 2022, 838, 156419.	8.0	9
5	Towards a microbial process-based understanding of the resilience of peatland ecosystem service provisioning – A research agenda. Science of the Total Environment, 2021, 759, 143467.	8.0	15
6	Expert assessment of future vulnerability of the global peatland carbon sink. Nature Climate Change, 2021, 11, 70-77.	18.8	167
7	Divergent responses of permafrost peatlands to recent climate change. Environmental Research Letters, 2021, 16, 034001.	5.2	23
8	A cautionary tale about using the apparent carbon accumulation rate (aCAR) obtained from peat cores. Scientific Reports, 2021, 11, 9547.	3.3	22
9	Large historical carbon emissions from cultivated northern peatlands. Science Advances, 2021, 7, .	10.3	37
10	Ecology of peatland testate amoebae in Svalbard and the development of transfer functions for reconstructing past water-table depth and pH. Ecological Indicators, 2021, 131, 108122.	6.3	6
11	Holocene atmospheric dust deposition in NW Spain. Holocene, 2020, 30, 507-518.	1.7	17
12	Tropical forest and peatland conservation in Indonesia: Challenges and directions. People and Nature, 2020, 2, 4-28.	3.7	74
13	Recent Changes in Peatland Testate Amoeba Functional Traits and Hydrology Within a Replicated Site Network in Northwestern Québec, Canada. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	7
14	Shifts in national land use and food production in Great Britain after a climate tipping point. Nature Food, 2020, 1, 76-83.	14.0	25
15	Peatlands as prolific carbon sinks. Nature Geoscience, 2019, 12, 880-881.	12.9	19
16	Salt-Enrichment Impact on Biomass Production in a Natural Population of Peatland Dwelling Arcellinida and Euglyphida (Testate Amoebae). Microbial Ecology, 2019, 78, 534-538.	2.8	12
17	Recent peat and carbon accumulation following the Little Ice Age in northwestern Québec, Canada. Environmental Research Letters, 2019, 14, 075002.	5.2	24
18	Misinterpreting carbon accumulation rates in records from near-surface peat. Scientific Reports, 2019, 9, 17939.	3.3	44

ANGELA GALLEGO SALA

#	Article	IF	CITATIONS
19	Widespread drying of European peatlands in recent centuries. Nature Geoscience, 2019, 12, 922-928.	12.9	130
20	Evaluating tephrochronology in the permafrost peatlands of northern Sweden. Quaternary Geochronology, 2019, 50, 16-28.	1.4	7
21	The role of climate change in regulating Arctic permafrost peatland hydrological and vegetation change over the last millennium. Quaternary Science Reviews, 2018, 182, 121-130.	3.0	42
22	Ecosystem state shifts during longâ€ŧerm development of an Amazonian peatland. Global Change Biology, 2018, 24, 738-757.	9.5	26
23	Inconsistent Response of Arctic Permafrost Peatland Carbon Accumulation to Warm Climate Phases. Global Biogeochemical Cycles, 2018, 32, 1605-1620.	4.9	26
24	Latitudinal limits to the predicted increase of the peatland carbon sink with warming. Nature Climate Change, 2018, 8, 907-913.	18.8	188
25	Vegetation Succession, Carbon Accumulation and Hydrological Change in Subarctic Peatlands, Abisko, Northern Sweden. Permafrost and Periglacial Processes, 2017, 28, 589-604.	3.4	27
26	Testate amoeba as palaeohydrological indicators in the permafrost peatlands of northâ€east European Russia and Finnish Lapland. Journal of Quaternary Science, 2017, 32, 976-988.	2.1	15
27	Simple process-led algorithms for simulating habitats (SPLASHÂv.1.0): robust indices of radiation, evapotranspiration and plant-available moisture. Geoscientific Model Development, 2017, 10, 689-708.	3.6	64
28	Climate-driven expansion of blanket bogs in Britain during the Holocene. Climate of the Past, 2016, 12, 129-136.	3.4	21
29	Vulnerability of the peatland carbon sink to sea-level rise. Scientific Reports, 2016, 6, 28758.	3.3	25
30	The long-term fate of permafrost peatlands under rapid climate warming. Scientific Reports, 2016, 5, 17951.	3.3	87
31	Can oxygen stable isotopes be used to track precipitation moisture source in vascular plant-dominated peatlands?. Earth and Planetary Science Letters, 2015, 430, 149-159.	4.4	20
32	Drivers of Holocene peatland carbon accumulation across a climate gradient in northeastern North America. Quaternary Science Reviews, 2015, 121, 110-119.	3.0	58
33	Climate controls on carbon accumulation in peatlands of Northeast China. Quaternary Science Reviews, 2015, 115, 78-88.	3.0	61
34	Peatland Initiation, Carbon Accumulation, and 2 ka Depth in the James Bay Lowland and Adjacent Regions. Arctic, Antarctic, and Alpine Research, 2014, 46, 19-39.	1.1	15
35	Ecology of Testate Amoebae in an Amazonian Peatland and Development of a Transfer Function for Palaeohydrological Reconstruction. Microbial Ecology, 2014, 68, 284-298.	2.8	57
36	Blanket peat biome endangered by climate change. Nature Climate Change, 2013, 3, 152-155.	18.8	109

ANGELA GALLEGO SALA

#	Article	IF	CITATIONS
37	Anthropogenic perturbation of the carbon fluxes from land to ocean. Nature Geoscience, 2013, 6, 597-607.	12.9	937
38	Global-scale pattern of peatland <i>Sphagnum</i> growth driven by photosynthetically active radiation and growing season length. Biogeosciences, 2012, 9, 2737-2746.	3.3	84
39	Bioclimatic envelope model of climate change impacts on blanket peatland distribution in Great Britain. Climate Research, 2010, 45, 151-162.	1.1	109
40	Assessing the vulnerability of blanket peat to climate change using an ensemble of statistical bioclimatic envelope models. Climate Research, 2010, 45, 131-150.	1.1	63
41	Model inter-comparison between statistical and dynamic model assessments of the long-term stability of blanket peat in Great Britain (1940–2099). Climate Research, 2010, 45, 227-248.	1.1	12
42	Climate change and the British Uplands: evidence for decision-making. Climate Research, 2010, 45, 3-12.	1.1	16
43	Emission of methane from plants. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 1347-1354.	2.6	149
44	Methanotrophy potential versus methane supply by pore water diffusion in peatlands. Biogeosciences, 2009, 6, 1491-1504.	3.3	41
45	An exafs and computer modelling study of calcium titanite. Radiation Effects and Defects in Solids, 1999, 151, 13-19.	1.2	0
46	The Earth system feedbacks that matter for contemporary climate. , 0, , 102-128.		3
47	Peatlands and climate change. , 0, , 129-150.		2