Daniel Laubitz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5976266/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oligofructose restores postprandial shortâ€chain fatty acid levels during highâ€fat feeding. Obesity, 2022, 30, 1442-1452.	3.0	7
2	Dynamics of Gut Microbiota Recovery after Antibiotic Exposure in Young and Old Mice (A Pilot Study). Microorganisms, 2021, 9, 647.	3.6	15
3	Dynamics of dark fermentation microbial communities in the light of lactate and butyrate production. Microbiome, 2021, 9, 158.	11.1	47
4	Paneth Cell-Derived Lysozyme Defines the Composition of Mucolytic Microbiota and the Inflammatory Tone of the Intestine. Immunity, 2020, 53, 398-416.e8.	14.3	97
5	An indisputable role of NHE8 in mucosal protection. American Journal of Physiology - Renal Physiology, 2020, 319, G421-G431.	3.4	8
6	Intestinal Epithelial Expression of MHCII Determines Severity of Chemical, T-Cell–Induced, and Infectious Colitis in Mice. Gastroenterology, 2020, 159, 1342-1356.e6.	1.3	26
7	Dynamics and Complexity of Dark Fermentation Microbial Communities Producing Hydrogen From Sugar Beet Molasses in Continuously Operating Packed Bed Reactors. Frontiers in Microbiology, 2020, 11, 612344.	3.5	19
8	Elevating EGFR-MAPK program by a nonconventional Cdc42 enhances intestinal epithelial survival and regeneration. JCI Insight, 2020, 5, .	5.0	18
9	The effect of maxillary sinus antrostomy size on the sinus microbiome. International Forum of Allergy and Rhinology, 2019, 9, 30-38.	2.8	10
10	Sexual Dimorphism in the Response to Broad-spectrum Antibiotics During T Cell-mediated Colitis. Journal of Crohn's and Colitis, 2019, 13, 115-126.	1.3	10
11	Tu1853 - Downregulation of Disabled Homolog 2 (DAB2) Expression by Microbial Components in Dendritic Cells in Inflammatory Bowel Disease Contributes to Dendritic Cells Function and Intestinal Inflammation. Gastroenterology, 2018, 154, S-1038.	1.3	0
12	Su1948 - Dynamics of Gut Microbiome Recovery after Broad-Spectrum Antibiotic Treatment in Young and Old Mice. Gastroenterology, 2018, 154, S-643.	1.3	1
13	61 - Decreased Expression of NHE3 in Colon Cancer Epithelium is Associated with DNA Damage, Increased Local Inflammation and Tumor Growth. Gastroenterology, 2018, 154, S-21.	1.3	0
14	820 - Intestinal Epithelial Mhcii Expression Modulates the Course of Autoimmune and Infectious Colitis in a Mouse Model of Conditional I-A B Knockout. Gastroenterology, 2018, 154, S-169-S-170.	1.3	0
15	Sa1671 - Long-Term Reduction of Nhe3 Expression in Colon Cancer Cells Activates Ampk, and Leads to Energy Crisis While Promoting Cell Survival and Proliferation. Gastroenterology, 2018, 154, S-349.	1.3	0
16	Microbial dysbiosis associated with impaired intestinal Na+/H+ exchange accelerates and exacerbates colitis in ex-germ free mice. Mucosal Immunology, 2018, 11, 1329-1341.	6.0	53
17	Tu1823 - Differential Response to Broad-Spectrum Antibiotics by the Gut Microbiota in Male and Female Mice During Colitis. Gastroenterology, 2018, 154, S-1029-S-1030.	1.3	0
18	Mucosal Inflammation, not Microbiome, Drives the Development Colorectal Cancer During Colitis-Associated Microbial Dysbiosis. Gastroenterology, 2017, 152, S357.	1.3	1

DANIEL LAUBITZ

#	Article	IF	CITATIONS
19	Epithelial NA + /H + Exchange Promotes Homeostasis in the GUT Microbiome and Protects Against the Development of Colitis. Gastroenterology, 2017, 152, S184.	1.3	0
20	Pathophysiology of Intestinal Na+/H+ Exchange. Cellular and Molecular Gastroenterology and Hepatology, 2017, 3, 27-40.	4.5	65
21	Sodium. , 2017, , 489-501.		1
22	Reduced Epithelial Na+/H+ Exchange Drives Gut Microbial Dysbiosis and Promotes Inflammatory Response in T Cell-Mediated Murine Colitis. PLoS ONE, 2016, 11, e0152044.	2.5	35
23	542 Intrinsic Effects of Reduced NHE3 Activity in Intestinal Epithelial Cells. Gastroenterology, 2016, 150, S114.	1.3	Ο
24	Transcriptional Reprogramming and Resistance to Colonic Mucosal Injury in Poly(ADP-ribose) Polymerase 1 (PARP1)-deficient Mice. Journal of Biological Chemistry, 2016, 291, 8918-8930.	3.4	35
25	Characterization of the Mycobacterial Acyl-CoA Carboxylase Holo Complexes Reveals Their Functional Expansion into Amino Acid Catabolism. PLoS Pathogens, 2015, 11, e1004623.	4.7	19
26	Mo1775 Colonic Microbiome and Barrier Dysfunction Contribute to Susceptibility to Colitis in NHE3XRag2 Double Knockout Mice. Gastroenterology, 2015, 148, S-708.	1.3	0
27	Tu1761 Dramatic Susceptibility to T-Cell Mediated Colitis in RAG2/NHE3 Double Knockout Mice. Gastroenterology, 2014, 146, S-836.	1.3	0
28	Mycobacterium tuberculosis Phosphoenolpyruvate Carboxykinase Is Regulated by Redox Mechanisms and Interaction with Thioredoxin. Journal of Biological Chemistry, 2014, 289, 13066-13078.	3.4	26
29	Identification of Protein Partners in Mycobacteria Using a Single-Step Affinity Purification Method. PLoS ONE, 2014, 9, e91380.	2.5	20
30	Post-Translational Loss of Renal TRPV5 Calcium Channel Expression, Ca2+ Wasting, and Bone Loss in Experimental Colitis. Gastroenterology, 2013, 145, 613-624.	1.3	33
31	739 Alteration of the Gut Microbiome in NHE3-Deficient Mice. Gastroenterology, 2013, 144, S-133.	1.3	0
32	Reduced colonic microbial diversity is associated with colitis in NHE3-deficient mice. American Journal of Physiology - Renal Physiology, 2013, 305, G667-G677.	3.4	71
33	Curcumin inhibits interferon-Î ³ signaling in colonic epithelial cells. American Journal of Physiology - Renal Physiology, 2012, 302, G85-G96.	3.4	59
34	Bone loss and renal Ca 2+ wasting in experimental colitis is accompanied by downregulation of TRPV5 in renal distal convoluted tubules. FASEB Journal, 2012, 26, 867.28.	0.5	0
35	Renal CA 2+ Wasting in Murine Models of Crohn's Disease is Mediated by Concerted Downregulation of Klotho and TRPV5 in Distal Convoluted Tubules. Gastroenterology, 2011, 140, S-638.	1.3	0
36	Role of NHE3 in the Maintenance of Intestinal Barrier Integrity in IL-10-Deficient Mice. Gastroenterology, 2011, 140, S-634-S-635.	1.3	0

DANIEL LAUBITZ

#	Article	IF	CITATIONS
37	Tumor Necrosis Factor and Interferon-γ Down-regulate Klotho in Mice With Colitis. Gastroenterology, 2010, 138, 1384-1394.e2.	1.3	115
38	279 Changes in Mucosal Homeostasis Leading to Hypersensitivity to Mucosal Injury in NHE3 Knockout Mice. Gastroenterology, 2009, 136, A-54.	1.3	0
39	Changes in Mucosal Homeostasis Predispose NHE3 Knockout Mice to Increased Susceptibility to DSS-Induced Epithelial Injury. Gastroenterology, 2009, 137, 965-975.e10.	1.3	59
40	S1724 Spontaneous Distal Colitis in NHE3-Deficient Mice. Gastroenterology, 2008, 134, A-257.	1.3	0
41	M1685 Curcumin Inhibits IFN-γ Signaling in Colonic Epithelial Cells. Gastroenterology, 2008, 134, A-397.	1.3	0
42	Colonic gene expression profile in NHE3-deficient mice: evidence for spontaneous distal colitis. American Journal of Physiology - Renal Physiology, 2008, 295, G63-G77.	3.4	78
43	Competition of Lactobacillus paracasei with Salmonella enterica for Adhesion to Caco-2 Cells. Journal of Biomedicine and Biotechnology, 2008, 2008, 1-6.	3.0	74
44	Gut myoelectrical activity induces heat shock response inEscherichia coliand Caco-2 cells. Experimental Physiology, 2006, 91, 867-875.	2.0	9
45	Exposure of Escherichia coli to intestinal myoelectrical activity-related electric field induces resistance against subsequent UV254nm (UVC) irradiation. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2001, 496, 97-104.	1.7	8
46	Influence of intestinal myoelectrical activity on the growth ofEscherichia coli. Bioelectromagnetics, 2001, 22, 449-455.	1.6	14