Matthew J Cliff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5975886/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microarray screening reveals two non-conventional SUMO-binding modules linked to DNA repair by non-homologous end-joining. Nucleic Acids Research, 2022, 50, 4732-4754.	14.5	4
2	An Enzyme with High Catalytic Proficiency Utilizes Distal Site Substrate Binding Energy to Stabilize the Closed State but at the Expense of Substrate Inhibition. ACS Catalysis, 2022, 12, 3149-3164.	11.2	3
3	Structural and biochemical characterization of the prenylated flavin mononucleotide-dependent indole-3-carboxylic acid decarboxylase. Journal of Biological Chemistry, 2022, 298, 101771.	3.4	10
4	Spinning sugars in antigen biosynthesis: characterization of the Coxiella burnetii and Streptomyces griseus TDP-sugar epimerases. Journal of Biological Chemistry, 2022, , 101903.	3.4	1
5	Structure and Mechanism of <i>Pseudomonas aeruginosa</i> PA0254/HudA, a prFMN-Dependent Pyrrole-2-carboxylic Acid Decarboxylase Linked to Virulence. ACS Catalysis, 2021, 11, 2865-2878.	11.2	15
6	1H, 13C, 15N backbone resonance assignment for the 1–164 construct of human XRCC4. Biomolecular NMR Assignments, 2021, 15, 389-395.	0.8	2
7	The Relationship between Enzyme Conformational Change, Proton Transfer, and Phosphoryl Transfer in β-Phosphoglucomutase. ACS Catalysis, 2021, 11, 12840-12849.	11.2	7
8	Structural effects of the highly protective V127 polymorphism on human prion protein. Communications Biology, 2020, 3, 402.	4.4	5
9	Allomorphy as a mechanism of post-translational control of enzyme activity. Nature Communications, 2020, 11, 5538.	12.8	1
10	lsotopically labeled flavoenzymes and their uses in probing reaction mechanisms. Methods in Enzymology, 2019, 620, 145-166.	1.0	2
11	Mapping Hidden Residual Structure within the Myc bHLH-LZ Domain Using Chemical Denaturant Titration. Structure, 2019, 27, 1537-1546.e4.	3.3	17
12	Equatorial Active Site Compaction and Electrostatic Reorganization in Catechol-O-methyltransferase. ACS Catalysis, 2019, 9, 4394-4401.	11.2	21
13	Enzymatic Carboxylation of 2-Furoic Acid Yields 2,5-Furandicarboxylic Acid (FDCA). ACS Catalysis, 2019, 9, 2854-2865.	11.2	74
14	The role of conserved residues in Fdc decarboxylase in prenylated flavin mononucleotide oxidative maturation, cofactor isomerization, and catalysis. Journal of Biological Chemistry, 2018, 293, 2272-2287.	3.4	35
15	Myc phosphorylation in its basic helix–loop–helix region destabilizes transient α-helical structures, disrupting Max and DNA binding. Journal of Biological Chemistry, 2018, 293, 9301-9310.	3.4	28
16	1H, 15N and 13C backbone resonance assignments of pentaerythritol tetranitrate reductase from Enterobacter cloacae PB2. Biomolecular NMR Assignments, 2018, 12, 79-83.	0.8	6
17	Nonequivalence of Second Sphere "Noncatalytic―Residues in Pentaerythritol Tetranitrate Reductase in Relation to Local Dynamics Linked to H-Transfer in Reactions with NADH and NADPH Coenzymes. ACS Catalysis, 2018, 8, 11589-11599.	11.2	12
18	van der Waals Contact between Nucleophile and Transferring Phosphorus Is Insufficient To Achieve Enzyme Transition-State Architecture. ACS Catalysis, 2018, 8, 8140-8153.	11.2	12

MATTHEW J CLIFF

#	Article	IF	CITATIONS
19	Assessing the Influence of Mutation on GTPase Transition States by Using Xâ€ray Crystallography, ¹⁹ Fâ€NMR, and DFT Approaches. Angewandte Chemie - International Edition, 2017, 56, 9732-9735.	13.8	9
20	Assessing the Influence of Mutation on GTPase Transition States by Using Xâ€ray Crystallography, 19 Fâ€NMR, and DFT Approaches. Angewandte Chemie, 2017, 129, 9864-9867.	2.0	1
21	1H, 15N, 13C backbone resonance assignments of human soluble catechol O-methyltransferase in complex with S-adenosyl-l-methionine and 3,5-dinitrocatechol. Biomolecular NMR Assignments, 2017, 11, 57-61.	0.8	2
22	1H, 15N, 13C backbone resonance assignments of human phosphoglycerate kinase in a transition state analogue complex with ADP, 3-phosphoglycerate and magnesium trifluoride. Biomolecular NMR Assignments, 2017, 11, 251-256.	0.8	1
23	Structural Basis for Selective Interaction between the ESCRT Regulator HD-PTP and UBAP1. Structure, 2016, 24, 2115-2126.	3.3	22
24	Characterizing monoclonal antibody formulations in arginine glutamate solutions using ¹ H NMR spectroscopy. MAbs, 2016, 8, 1245-1258.	5.2	31
25	Proteoglycans and Their Heterogeneous Glycosaminoglycans at the Atomic Scale. Biomacromolecules, 2015, 16, 951-961.	5.4	35
26	Real-time pure shift 15N HSQC of proteins: a real improvement in resolution and sensitivity. Journal of Biomolecular NMR, 2015, 62, 43-52.	2.8	30
27	Making the longest sugars: a chemical synthesis of heparin-related [4] _n oligosaccharides from 16-mer to 40-mer. Chemical Science, 2015, 6, 6158-6164.	7.4	77
28	α-Fluorophosphonates reveal how a phosphomutase conserves transition state conformation over hexose recognition in its two-step reaction. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12384-12389.	7.1	42
29	Simultaneously Enhancing Spectral Resolution and Sensitivity in Heteronuclear Correlation NMR Spectroscopy. Angewandte Chemie - International Edition, 2013, 52, 11616-11619.	13.8	160
30	The CouPSTU and TarPQM Transporters in Rhodopseudomonas palustris: Redundant, Promiscuous Uptake Systems for Lignin-Derived Aromatic Substrates. PLoS ONE, 2013, 8, e59844.	2.5	33
31	Near attack conformers dominate β-phosphoglucomutase complexes where geometry and charge distribution reflect those of substrate. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6910-6915.	7.1	47
32	Chargeâ€Balanced Metal Fluoride Complexes for Protein Kinaseâ€A with Adenosine Diphosphate and Substrate Peptide SP20. Angewandte Chemie - International Edition, 2012, 51, 12242-12245.	13.8	26
33	Mapping local structural perturbations in the native state of stefin B (cystatin B) under amyloid forming conditions. Frontiers in Molecular Neuroscience, 2012, 5, 94.	2.9	7
34	Prioritization of Charge over Geometry in Transition State Analogues of a Dual Specificity Protein Kinase. Journal of the American Chemical Society, 2011, 133, 3989-3994.	13.7	18
35	Atomic details of near-transition state conformers for enzyme phosphoryl transfer revealed by MgF3- rather than by phosphoranes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4555-4560.	7.1	74
36	Transition State Analogue Structures of Human Phosphoglycerate Kinase Establish the Importance of Charge Balance in Catalysis. Journal of the American Chemical Society, 2010, 132, 6507-6516.	13.7	79

MATTHEW J CLIFF

#	Article	IF	CITATIONS
37	Why did Nature select phosphate for its dominant roles in biology?. New Journal of Chemistry, 2010, 34, 784.	2.8	146
38	Structural Tightening and Interdomain Communication in the Catalytic Cycle of Phosphoglycerate Kinase. Journal of Molecular Biology, 2010, 396, 345-360.	4.2	7
39	A role for tungsten in the biology of <i>Campylobacter jejuni</i> : tungstate stimulates formate dehydrogenase activity and is transported via an ultraâ€high affinity ABC system distinct from the molybdate transporter. Molecular Microbiology, 2009, 74, 742-757.	2.5	53
40	The Denatured State of N-PGK Is Compact and Predominantly Disordered. Journal of Molecular Biology, 2009, 385, 266-277.	4.2	14
41	Fhit proteins can also recognize substrates other than dinucleoside polyphosphates. FEBS Letters, 2008, 582, 3152-3158.	2.8	29
42	Anionic Charge Is Prioritized over Geometry in Aluminum and Magnesium Fluoride Transition State Analogs of Phosphoryl Transfer Enzymes. Journal of the American Chemical Society, 2008, 130, 3952-3958.	13.7	77
43	Redox-State-Dependent Complex Formation between Pseudoazurin and Nitrite Reductase. Journal of the American Chemical Society, 2007, 129, 226-233.	13.7	15
44	Enzymatic properties of the lactate dehydrogenase enzyme from Plasmodium falciparum. FEBS Journal, 2007, 274, 2738-2748.	4.7	49
45	The Denatured State under Native Conditions: A Non-native-like Collapsed State of N-PGK. Journal of Molecular Biology, 2006, 357, 365-372.	4.2	28
46	A Thiol Labelling Competition Experiment as a Probe for Sidechain Packing in the Kinetic Folding Intermediate of N-PGK. Journal of Molecular Biology, 2006, 364, 810-823.	4.2	5
47	Conformational changes in the AAA ATPase p97–p47 adaptor complex. EMBO Journal, 2006, 25, 1967-1976.	7.8	95
48	Conformational Diversity in the TPR Domain-Mediated Interaction of Protein Phosphatase 5 with Hsp90. Structure, 2006, 14, 415-426.	3.3	80
49	Elucidation of Steps in the Capture of a Protein Substrate for Efficient Encapsulation by GroE. Journal of Biological Chemistry, 2006, 281, 21266-21275.	3.4	38
50	Molecular basis for TPR domain-mediated regulation of protein phosphatase 5. EMBO Journal, 2005, 24, 1-10.	7.8	194
51	Low Energy Pathways and Non-native Interactions. Journal of Biological Chemistry, 2005, 280, 40494-40499.	3.4	25
52	Molecular Recognition via Coupled Folding and Binding in a TPR Domain. Journal of Molecular Biology, 2005, 346, 717-732.	4.2	81
53	Crystal Structure of Tobacco Etch Virus Protease Shows the Protein C Terminus Bound within the Active Site. Journal of Molecular Biology, 2005, 350, 145-155.	4.2	55
54	A survey of the year 2003 literature on applications of isothermal titration calorimetry. Journal of Molecular Recognition, 2004, 17, 513-523.	2.1	69

MATTHEW J CLIFF

#	Article	IF	CITATIONS
55	Beyond the EX1 Limit: Probing the Structure of High-energy States in Protein Unfolding. Journal of Molecular Biology, 2004, 336, 497-508.	4.2	9
56	A survey of the year 2002 literature on applications of isothermal titration calorimetry. Journal of Molecular Recognition, 2003, 16, 383-391.	2.1	50
57	A Kinetic Model of Intermediate Formation during Assembly of Cholera Toxin B-subunit Pentamers. Journal of Biological Chemistry, 2002, 277, 16697-16704.	3.4	34
58	Trp203 mutation in GroEL promotes a self-association reaction: a hydrodynamic study. European Biophysics Journal, 2000, 29, 420-428.	2.2	4
59	Domain rotations between open, closed and bullet-shaped forms of the thermosome, an archaeal chaperonin 1 1Edited by A. R. Fersht. Journal of Molecular Biology, 2000, 301, 323-332.	4.2	56
60	A kinetic analysis of the nucleotide-induced allosteric transitions of GroEL 1 1Edited by A. R. Fersht. Journal of Molecular Biology, 1999, 293, 667-684.	4.2	72
61	Asymmetry, commitment and inhibition in the GroE ATPase cycle impose alternating functions on the two GroEL rings. Journal of Molecular Biology, 1998, 278, 267-278.	4.2	61