Michael E Wisniewski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5975672/publications.pdf

Version: 2024-02-01

222 papers 14,262 citations

67 h-index 24258 110 g-index

223 all docs 223 docs citations

times ranked

223

8648 citing authors

#	Article	IF	CITATIONS
1	Recent advances in research on biocontrol of postharvest fungal decay in apples. Critical Reviews in Food Science and Nutrition, 2023, 63, 10607-10620.	10.3	11
2	Pre- and postharvest measures used to control decay and mycotoxigenic fungi in potato (<i>Solanum) Tj ETQq0</i>	0	Overlock 10 T
3	Eco-friendly management of postharvest fungal decays in kiwifruit. Critical Reviews in Food Science and Nutrition, 2022, 62, 8307-8318.	10.3	24
4	Evidence for host–microbiome coâ€evolution in apple. New Phytologist, 2022, 234, 2088-2100.	7.3	40
5	Contrasting effects of genotype and root size on the fungal and bacterial communities associated with apple rootstocks. Horticulture Research, 2022, 9, .	6.3	7
6	The pathobiome concept applied to postharvest pathology and its implication on biocontrol strategies. Postharvest Biology and Technology, 2022, 189, 111911.	6.0	16
7	The impact of the endophytic bacterial community on mulberry tree growth in the Three Gorges Reservoir ecosystem, China. Environmental Microbiology, 2021, 23, 1858-1875.	3.8	7
8	Endophytic Microbiome in the Carposphere and Its Importance in Fruit Physiology and Pathology. Plant Pathology in the 21st Century, 2021, , 73-88.	0.9	14
9	The Apple Microbiome: Structure, Function, and Manipulation for Improved Plant Health. Compendium of Plant Genomes, 2021, , 341-382.	0.5	8
10	Probiotics in edible coatings: Approaches to food security and fruits disease management. , 2021, , $371-386$.		1
11	Metagenomics Approaches for the Detection and Surveillance of Emerging and Recurrent Plant Pathogens. Microorganisms, 2021, 9, 188.	3.6	55
12	Experimental evidence of microbial inheritance in plants and transmission routes from seed to phyllosphere and root. Environmental Microbiology, 2021, 23, 2199-2214.	3.8	106
13	Global analysis of the apple fruit microbiome: are all apples the same?. Environmental Microbiology, 2021, 23, 6038-6055.	3.8	64
14	Compositional shifts in the strawberry fruit microbiome in response to near-harvest application of Metschnikowia fructicola, a yeast biocontrol agent. Postharvest Biology and Technology, 2021, 175, 111469.	6.0	50
15	Impact of packhouse treatments on the peel microbiome of mandarin fruit (cv. Orr). Postharvest Biology and Technology, 2021, 176, 111519.	6.0	8
16	Analysis of Stored Wheat Grain-Associated Microbiota Reveals Biocontrol Activity among Microorganisms against Mycotoxigenic Fungi. Journal of Fungi (Basel, Switzerland), 2021, 7, 781.	3.5	8
17	Genetics and Genomics of Cold Hardiness and Dormancy. Compendium of Plant Genomes, 2021, , 247-270.	0.5	О
18	Changes in the Fungal Community Assembly of Apple Fruit Following Postharvest Application of the Yeast Biocontrol Agent Metschnikowia fructicola. Horticulturae, 2021, 7, 360.	2.8	12

#	Article	IF	CITATIONS
19	The relationship of cold acclimation and extracellular ice formation to winter thermonasty in two <i>Rhododendron</i> species and their F ₁ hybrid. American Journal of Botany, 2021, 108, 1946-1956.	1.7	3
20	Role of Effector Proteins in the Virulence of Penicillium expansum on Apple Fruit. Plant Pathology in the 21st Century, 2021, , 1-19.	0.9	0
21	Spatial and Compositional Diversity in the Microbiota of Harvested Fruits: What Can It Tell Us About Biological Control of Postharvest Diseases. Plant Pathology in the 21st Century, 2021, , 63-72.	0.9	0
22	Multiple transcriptomic analyses and characterization of pathogen-related core effectors and LysM family members reveal their differential roles in fungal growth and pathogenicity in Penicillium expansum. Molecular Genetics and Genomics, 2020, 295, 1415-1429.	2.1	7
23	Fox Hunting in Wild Apples: Searching for Novel Genes in Malus Sieversii. International Journal of Molecular Sciences, 2020, 21, 9516.	4.1	4
24	Characterizing the Fungal Microbiome in Date (Phoenix dactylifera) Fruit Pulp and Peel from Early Development to Harvest. Microorganisms, 2020, 8, 641.	3.6	19
25	Yeasts and Bacterial Consortia from Kefir Grains Are Effective Biocontrol Agents of Postharvest Diseases of Fruits. Microorganisms, 2020, 8, 428.	3.6	24
26	Genome Sequence, Assembly, and Characterization of the Antagonistic Yeast Candida oleophila Used as a Biocontrol Agent Against Post-harvest Diseases. Frontiers in Microbiology, 2020, 11, 295.	3 . 5	26
27	Effect of Washing, Waxing and Low-Temperature Storage on the Postharvest Microbiome of Apple. Microorganisms, 2020, 8, 944.	3.6	54
28	Introgressing blue mold resistance into elite apple germplasm by rapid cycle breeding and foreground and background DNA-informed selection. Tree Genetics and Genomes, 2020, 16, 1.	1.6	16
29	Plant Antifreeze Proteins. , 2020, , 189-226.		5
30	Revealing Cues for Fungal Interplay in the Plant–Air Interface in Vineyards. Frontiers in Plant Science, 2019, 10, 922.	3.6	36
31	The postharvest microbiome: The other half of sustainability. Biological Control, 2019, 137, 104025.	3.0	38
32	Biocontrol of Aspergillus flavus in Ensiled Sorghum by Water Kefir Microorganisms. Microorganisms, 2019, 7, 253.	3.6	23
33	Identification of pathogenicity-related genes and the role of a subtilisin-related peptidase S8 (PePRT) in authophagy and virulence of Penicillium expansum on apples. Postharvest Biology and Technology, 2019, 149, 209-220.	6.0	27
34	Differential gene expression in non-transgenic and transgenic "M.26―apple overexpressing a peach CBF gene during the transition from eco-dormancy to bud break. Horticulture Research, 2019, 6, 86.	6.3	18
35	Identification and Functional Analysis of NLP-Encoding Genes from the Postharvest Pathogen Penicillium expansum. Microorganisms, 2019, 7, 175.	3.6	28
36	Shifts in the Composition of the Microbiota of Stored Wheat Grains in Response to Fumigation. Frontiers in Microbiology, 2019, 10, 1098.	3.5	43

3

#	Article	IF	CITATIONS
37	High-definition infrared thermography of ice nucleation and propagation in wheat under natural frost conditions and controlled freezing. Planta, 2018, 247, 791-806.	3.2	36
38	The fruit microbiome: A new frontier for postharvest biocontrol and postharvest biology. Postharvest Biology and Technology, 2018, 140, 107-112.	6.0	125
39	Identification of Novel Strain-Specific and Environment-Dependent Minor QTLs Linked to Fire Blight Resistance in Apples. Plant Molecular Biology Reporter, 2018, 36, 247-256.	1.8	27
40	The impact of the postharvest environment on the viability and virulence of decay fungi. Critical Reviews in Food Science and Nutrition, 2018, 58, 1681-1687.	10.3	44
41	Metabarcoding: A powerful tool to investigate microbial communities and shape future plant protection strategies. Biological Control, 2018, 120, 1-10.	3.0	115
42	Transcriptome Analysis Provides Insights into Gingerol Biosynthesis in Ginger (<i>Zingiber) Tj ETQq0 0 0 rgBT /O</i>	verlock 10 2.8	Tf ₁₉ 0 542 To
43	Cold Hardiness in Trees: A Mini-Review. Frontiers in Plant Science, 2018, 9, 1394.	3.6	56
44	Meta-Analysis of the Effect of Overexpression of Dehydration-Responsive Element Binding Family Genes on Temperature Stress Tolerance and Related Responses. Frontiers in Plant Science, 2018, 9, 713.	3.6	9
45	Genome Sequence, Assembly and Characterization of Two Metschnikowia fructicola Strains Used as Biocontrol Agents of Postharvest Diseases. Frontiers in Microbiology, 2018, 9, 593.	3.5	58
46	Apple endophytic microbiota of different rootstock/scion combinations suggests a genotype-specific influence. Microbiome, 2018, 6, 18.	11.1	155
47	Progress Toward Identifying Markers Linked to Genes Controlling Chilling Requirement and Cold Hardiness in Blueberry. , 2018, , 39-52.		0
48	Volatile organic compounds produced by Antarctic strains of Candida sake play a role in the control of postharvest pathogens of apples. Biological Control, 2017, 109, 14-20.	3.0	85
49	Biocontrol activity of a cold-adapted yeast from Tibet against gray mold in cherry tomato and its action mechanism. Extremophiles, 2017, 21, 789-803.	2.3	15
50	Meta-analysis of the effect of overexpression of CBF/DREB family genes on drought stress response. Environmental and Experimental Botany, 2017, 142, 1-14.	4.2	30
51	PCPPI: a comprehensive database for the prediction of Penicillium–crop protein–protein interactions. Database: the Journal of Biological Databases and Curation, 2017, 2017, .	3.0	10
52	Fire Blight Resistance in Wild Accessions of <i>Malus sieversii</i> . Plant Disease, 2017, 101, 1738-1745.	1.4	42
53	Potential Role of Exoglucanase Genes (WaEXG1 and WaEXG2) in the Biocontrol Activity of Wickerhamomyces anomalus. Microbial Ecology, 2017, 73, 876-884.	2.8	32
54	Transcriptomic Response of Resistant (Pl613981–Malus sieversii) and Susceptible ("Royal Galaâ€) Genotypes of Apple to Blue Mold (Penicillium expansum) Infection. Frontiers in Plant Science, 2017, 8, 1981.	3.6	40

#	Article	IF	CITATIONS
55	Identification and characterization of LysM effectors in Penicillium expansum. PLoS ONE, 2017, 12, e0186023.	2.5	46
56	Genotyping-by-sequencing markers facilitate the identification of quantitative trait loci controlling resistance to Penicillium expansum in Malus sieversii. PLoS ONE, 2017, 12, e0172949.	2.5	47
57	Comprehensive Transcriptome Profiling Reveals Long Noncoding RNA Expression and Alternative Splicing Regulation during Fruit Development and Ripening in Kiwifruit (Actinidia chinensis). Frontiers in Plant Science, 2016, 7, 335.	3.6	89
58	Spatial and compositional variation in the fungal communities of organic and conventionally grown apple fruit at the consumer point-of-purchase. Horticulture Research, 2016, 3, 16047.	6.3	138
59	The science, development, and commercialization of postharvest biocontrol products. Postharvest Biology and Technology, 2016, 122, 22-29.	6.0	271
60	An apple rootstock overexpressing a peach CBF gene alters growth and flowering in the scion but does not impact cold hardiness or dormancy. Horticulture Research, 2016, 3, 16006.	6.3	39
61	Alternative management technologies for postharvest disease control: The journey from simplicity to complexity. Postharvest Biology and Technology, 2016, 122, 3-10.	6.0	234
62	Chitosan and oligochitosan enhance ginger (Zingiber officinale Roscoe) resistance to rhizome rot caused by Fusarium oxysporum in storage. Carbohydrate Polymers, 2016, 151, 474-479.	10.2	43
63	Engineering carpelâ€specific cold stress tolerance: a case study in <i>Arabidopsis</i> . Physiologia Plantarum, 2016, 157, 469-478.	5. 2	2
64	Heat shock improves stress tolerance and biocontrol performance of Rhodotorula mucilaginosa. Biological Control, 2016, 95, 49-56.	3.0	28
65	Recent advances and current status of the use of heat treatments in postharvest disease management systems: Is it time to turn up the heat?. Trends in Food Science and Technology, 2016, 51, 34-40.	15.1	33
66	Metagenomic Analysis of Fungal Diversity on Strawberry Plants and the Effect of Management Practices on the Fungal Community Structure of Aerial Organs. PLoS ONE, 2016, 11, e0160470.	2.5	76
67	The Use of High-resolution Infrared Thermography (HRIT) for the Study of Ice Nucleation and Ice Propagation in Plants. Journal of Visualized Experiments, 2015, , e52703.	0.3	23
68	Ecofriendly hot water treatment reduces postharvest decay and elicits defense response in kiwifruit. Environmental Science and Pollution Research, 2015, 22, 15037-15045.	5.3	58
69	Influence of vacuum impregnation and pulsed electric field on the freezing temperature and ice propagation rates of spinach leaves. LWT - Food Science and Technology, 2015, 64, 497-502.	5. 2	23
70	Overexpression of a peach CBF gene in apple: a model for understanding the integration of growth, dormancy, and cold hardiness in woody plants. Frontiers in Plant Science, 2015, 6, 85.	3.6	127
71	Responses of Yeast Biocontrol Agents to Environmental Stress. Applied and Environmental Microbiology, 2015, 81, 2968-2975.	3.1	111
72	Characterizing the proteome and oxi-proteome of apple in response to a host (Penicillium expansum) and a non-host (Penicillium digitatum) pathogen. Journal of Proteomics, 2015, 114, 136-151.	2.4	26

#	Article	IF	CITATIONS
73	Transcriptional profiling of apple fruit in response to heat treatment: Involvement of a defense response during Penicillium expansum infection. Postharvest Biology and Technology, 2015, 101, 37-48.	6.0	40
74	Genome, Transcriptome, and Functional Analyses of <i>Penicillium expansum</i> Provide New Insights Into Secondary Metabolism and Pathogenicity. Molecular Plant-Microbe Interactions, 2015, 28, 232-248.	2.6	183
75	Genes responding to water deficit in apple (Malus × domestica Borkh.) roots. BMC Plant Biology, 2014 14, 182.	'3 . 6	28
76	The biology of cold hardiness: Adaptive strategies. Environmental and Experimental Botany, 2014, 106, 1-3.	4.2	10
77	Transcriptomic Profiling of Apple in Response to Inoculation with a Pathogen (Penicillium expansum) and a Non-pathogen (Penicillium digitatum). Plant Molecular Biology Reporter, 2014, 32, 566-583.	1.8	41
78	Heat-induced oxidative injury contributes to inhibition of Botrytis cinerea spore germination and growth. World Journal of Microbiology and Biotechnology, 2014, 30, 951-957.	3.6	27
79	The use of antifreeze proteins for frost protection in sensitive crop plants. Environmental and Experimental Botany, 2014, 106, 60-69.	4.2	39
80	Adaptive mechanisms of freeze avoidance in plants: A brief update. Environmental and Experimental Botany, 2014, 99, 133-140.	4.2	116
81	Genomics of Cold Hardiness in Woody Plants. Critical Reviews in Plant Sciences, 2014, 33, 92-124.	5.7	104
82	Field evaluation of apple overexpressing a peach CBF gene confirms its effect on cold hardiness, dormancy, and growth. Environmental and Experimental Botany, 2014, 106, 79-86.	4.2	31
83	Cold-Adapted Yeasts as Biocontrol Agents: Biodiversity, Adaptation Strategies and Biocontrol Potential., 2014,, 441-464.		7
84	Understanding plant cold hardiness: an opinion. Physiologia Plantarum, 2013, 147, 4-14.	5. 2	195
85	De-novo assembly and characterization of the transcriptome of Metschnikowia fructicola reveals differences in gene expression following interaction with Penicillium digitatumand grapefruit peel. BMC Genomics, 2013, 14, 168.	2.8	79
86	The potential role of PR-8 gene of apple fruit in the mode of action of the yeast antagonist, Candida oleophila, in postharvest biocontrol of Botrytis cinerea. Postharvest Biology and Technology, 2013, 85, 203-209.	6.0	38
87	CBF gene expression in peach leaf and bark tissues is gated by a circadian clock. Tree Physiology, 2013, 33, 866-877.	3.1	45
88	Review: Utilization of antagonistic yeasts to manage postharvest fungal diseases of fruit. International Journal of Food Microbiology, 2013, 167, 153-160.	4.7	389
89	Production of hydrogen peroxide and expression of <scp>ROS</scp> â€generating genes in peach flower petals in response to host and nonâ€host fungal pathogens. Plant Pathology, 2013, 62, 820-828.	2.4	31
90	Evaluation of yeasts obtained from Antarctic soil samples as biocontrol agents for the management of postharvest diseases of apple (<i>Malus</i> Â×Â <i>domestica</i>). FEMS Yeast Research, 2013, 13, 189-199.	2.3	95

#	Article	IF	CITATIONS
91	Identification of differentially expressed genes associated with changes in the morphology of <i>Pichia fermentans </i> on apple and peach fruit. FEMS Yeast Research, 2012, 12, 785-795.	2.3	19
92	Increase in antioxidant gene transcripts, stress tolerance and biocontrol efficacy of Candida oleophila following sublethal oxidative stress exposure. FEMS Microbiology Ecology, 2012, 80, 578-590.	2.7	76
93	Pretreatment of the yeast antagonist, Candida oleophila, with glycine betaine increases oxidative stress tolerance in the microenvironment of apple wounds. International Journal of Food Microbiology, 2012, 157, 45-51.	4.7	31
94	Effect of heat treatment on inhibition of Monilinia fructicola and induction of disease resistance in peach fruit. Postharvest Biology and Technology, 2012, 65, 61-68.	6.0	87
95	Global changes in gene expression of grapefruit peel tissue in response to the yeast biocontrol agent <i>Metschnikowia fructicola</i> . Molecular Plant Pathology, 2012, 13, 338-349.	4.2	78
96	Effect of heat shock treatment on stress tolerance and biocontrol efficacy of Metschnikowia fructicola. FEMS Microbiology Ecology, 2011, 76, 145-155.	2.7	72
97	Glycine betaine improves oxidative stress tolerance and biocontrol efficacy of the antagonistic yeast Cystofilobasidium infirmominiatum. International Journal of Food Microbiology, 2011, 146, 76-83.	4.7	93
98	Expression of Two Self-enhancing Antifreeze Proteins from the Beetle Dendroides canadensis in Arabidopsis thaliana. Plant Molecular Biology Reporter, 2011, 29, 802-813.	1.8	12
99	Gene Expression is Highly Regulated in Early Developing Fruit of Apple. Plant Molecular Biology Reporter, 2011, 29, 885-897.	1.8	40
100	Ectopic expression of a novel peach (Prunus persica) CBF transcription factor in apple (MalusÂ×Âdomestica) results in short-day induced dormancy and increased cold hardiness. Planta, 2011, 233, 971-983.	3.2	172
101	Characterizing Water Use Efficiency and Water Deficit Responses in Apple (Malus ×domestica Borkh.) Tj ETQq1 Hortcultural Science, 2011, 46, 1079-1084.	1 0.78431 1.0	
102	Superoxide anion and hydrogen peroxide in the yeast antagonist–fruit interaction: A new role for reactive oxygen species in postharvest biocontrol? Postharvest Biology and Technology, 2010, 58, 194-202.	6.0	129
103	Interspecific Analysis of Xylem Freezing Responses in Acer and Betula. Hortscience: A Publication of the American Society for Hortcultural Science, 2010, 45, 165-168.	1.0	3
104	Comparative Analysis and Functional Annotation of a Large Expressed Sequence Tag Collection of Apple. Plant Genome, 2009, 2, .	2.8	28
105	<i>Aureobasidium pullulans</i> as a biocontrol agent of postharvest pathogens of apples in Uruguay. Biocontrol Science and Technology, 2009, 19, 1033-1049.	1.3	51
106	Twenty years of postharvest biocontrol research: Is it time for a new paradigm?. Postharvest Biology and Technology, 2009, 52, 137-145.	6.0	601
107	Comparative expression and transcript initiation of three peach dehydrin genes. Planta, 2009, 230, 107-118.	3.2	55
108	Characteristics and transferability of new apple EST-derived SSRs to other Rosaceae species. Molecular Breeding, 2009, 23, 397-411.	2.1	73

#	Article	IF	Citations
109	Rapid transcriptional response of apple to fire blight disease revealed by cDNA suppression subtractive hybridization analysis. Tree Genetics and Genomes, 2009, 5, 27-40.	1.6	59
110	Proteomic analysis of $\langle i \rangle \hat{l}^2 \langle i \rangle \hat{a} \in \mathbf{a}$ minobutyric acid priming and abscisic acid $\hat{a} \in \mathbf{a}$ induction of drought resistance in crabapple ($\langle i \rangle M$ alus pumila $\langle i \rangle$): effect on general metabolism, the phenylpropanoid pathway and cell wall enzymes. Plant, Cell and Environment, 2009, 32, 1612-1631.	5.7	48
111	Quantitative proteomic analysis of short photoperiod and low-temperature responses in bark tissues of peach (Prunus persica L. Batsch). Tree Genetics and Genomes, 2008, 4, 589-600.	1.6	101
112	Expressed sequence tag analysis of the response of apple (<i>Malus</i> x <i>domestica</i> †Royal Galaâ€) to low temperature and water deficit. Physiologia Plantarum, 2008, 133, 298-317.	5.2	61
113	Improved biocontrol of fruit decay fungi with Pichia pastoris recombinant strains expressing Psd1 antifungal peptide. Postharvest Biology and Technology, 2008, 47, 218-225.	6.0	24
114	Role of citrus volatiles in host recognition, germination and growth of Penicillium digitatum and Penicillium italicum. Postharvest Biology and Technology, 2008, 49, 386-396.	6.0	157
115	Using Infrared Thermography to Study Freezing in Plants. Hortscience: A Publication of the American Society for Hortcultural Science, 2008, 43, 1648-1651.	1.0	19
116	<i>Penicillium digitatum</i> Suppresses Production of Hydrogen Peroxide in Host Tissue During Infection of Citrus Fruit. Phytopathology, 2007, 97, 1491-1500.	2.2	175
117	Ectopic expression of Mn-SOD in Lycopersicon esculentum leads to enhanced tolerance to salt and oxidative stress. Journal of Applied Horticulture, 2007, 09, 3-8.	0.2	39
118	Differential regulation of two dehydrin genes from peach (Prunus persica) by photoperiod, low temperature and water deficit. Tree Physiology, 2006, 26, 575-584.	3.1	92
119	Deacclimation and reacclimation of cold-hardy plants: Current understanding and emerging concepts. Plant Science, 2006, 171, 3-16.	3.6	287
120	Proteomics and low-temperature studies: bridging the gap between gene expression and metabolism. Physiologia Plantarum, 2006, 126, 97-109.	5. 2	155
121	Global Analysis of Genes Regulated by Low Temperature and Photoperiod in Peach Bark. Journal of the American Society for Horticultural Science, 2006, 131, 551-563.	1.0	59
122	Transgenic tomato (Lycopersicon esculentum) overexpressing cAPX exhibits enhanced tolerance to UV-B and heat stress. Journal of Applied Horticulture, 2006, 08, 87-90.	0.2	54
123	Antifreeze Proteins Modify the Freezing Process In Planta. Plant Physiology, 2005, 138, 330-340.	4.8	124
124	Characterization of an S-locus receptor protein kinase-like gene from peach. Tree Physiology, 2005, 25, 403-411.	3.1	22
125	(455) Differential Patterns of Expression and Regulation of Two Dehydrin Genes from Peach (Prunus) Tj ETQq1 1 2005, 40, 1036D-1036.	0.784314 1.0	rgBT /Overlo
126	Overexpression of Cytosolic Ascorbate Peroxidase in Tomato Confers Tolerance to Chilling and Salt Stress. Journal of the American Society for Horticultural Science, 2005, 130, 167-173.	1.0	149

#	Article	IF	Citations
127	Distribution and partial characterization of seasonally expressed proteins in different aged shoots and roots of 'Loring' peach (Prunus persica). Tree Physiology, 2004, 24, 339-345.	3.1	41
128	The Effect of Water, Sugars, and Proteins on the Pattern of Ice Nucleation and Propagation in Acclimated and Nonacclimated Canola Leaves. Plant Physiology, 2004, 135, 1642-1653.	4.8	144
129	Characterization of extracellular lytic enzymes produced by the yeast biocontrol agent Candida oleophila. Current Genetics, 2004, 45, 140-148.	1.7	113
130	Biologically-Based Alternatives to Synthetic Fungicides for the Control of Postharvest diseases of Fruit and Vegetables. , 2004, , 511-535.		39
131	lce Nucleation, Propagation, and Deep Supercooling in Woody Plants. Journal of Crop Improvement, 2004, 10, 5-16.	1.7	16
132	Influence of food additives on the control of postharvest rots of apple and peach and efficacy of the yeast-based biocontrol product aspire. Postharvest Biology and Technology, 2003, 27, 127-135.	6.0	159
133	Characterization of a defensin in bark and fruit tissues of peach and antimicrobial activity of a recombinant defensin in the yeast, Pichia pastoris. Physiologia Plantarum, 2003, 119, 563-572.	5.2	37
134	The effect of under- and overexpressedCoEXG1-encoded exoglucanase secreted byCandida oleophila on the biocontrol ofPenicillium digitatum. Yeast, 2003, 20, 771-780.	1.7	29
135	Control of Postharvest Decay of Apple Fruit with Candida saitoana and Induction of Defense Responses. Phytopathology, 2003, 93, 344-348.	2.2	148
136	An Overview of Cold Hardiness in Woody Plants: Seeing the Forest Through the Trees. Hortscience: A Publication of the American Society for Hortcultural Science, 2003, 38, 952-959.	1.0	98
137	Visualization of freezing progression in turfgrasses using infrared video thermography. Crop Science, 2003, 43, 415.	1.8	12
138	Biological control of postharvest diseases of fruits and vegetables. Applied Mycology and Biotechnology, 2002, , 219-238.	0.3	23
139	Biological Control of Postharvest Diseases of Citrus Fruits. , 2002, , .		0
140	Characterization of biocontrol activity of two yeast strains from Uruguay against blue mold of apple. Postharvest Biology and Technology, 2002, 26, 91-98.	6.0	94
141	Cloning and analysis of CoEXG1, a secreted 1,3-?-glucanase of the yeast biocontrol agent Candida oleophila. Yeast, 2002, 19, 1171-1182.	1.7	21
142	Expression of an insect (Dendroides canadensis) antifreeze protein in Arabidopsis thaliana results in a decrease in plant freezing temperature. Plant Molecular Biology, 2002, 50, 333-344.	3.9	64
143	Extrinsic Ice Nucleation in Plants. , 2002, , 211-221.		12
144	Use of a Hydrophobic Particle Film as a Barrier to Extrinsic Ice Nucleation in Tomato Plants. Journal of the American Society for Horticultural Science, 2002, 127, 358-364.	1.0	49

#	Article	IF	Citations
145	A transformation system for the biocontrol yeast, Candida oleophila , based on hygromycin B resistance. Current Genetics, 2001, 40, 282-287.	1.7	24
146	Use of a Long-acting Inhaled \hat{l}^2 (sub>2-Adrenergic Agonist, Salmeterol Xinafoate, in Patients with Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2001, 163, 1087-1092.	5 . 6	246
147	Mechanisms of Frost Survival and Freeze-Damage in Nature. Tree Physiology, 2001, , 89-120.	2.5	33
148	Induction of Proteins in Response to Biotic and Abiotic Stresses. , 2001, , .		1
149	Patterns of Ice Formation and Movement in Blackcurrant. Hortscience: A Publication of the American Society for Hortcultural Science, 2001, 36, 1027-1032.	1.0	31
150	Application of Candida saitoana and Glycolchitosan for the Control of Postharvest Diseases of Apple and Citrus Fruit Under Semi-Commercial Conditions. Plant Disease, 2000, 84, 243-248.	1.4	116
151	Control of postharvest decay of apple fruit by Aureobasidium pullulans and induction of defense responses. Postharvest Biology and Technology, 2000, 19, 265-272.	6.0	323
152	Structural and Biochemical Aspects of Cold Hardiness in Woody Plants. Forestry Sciences, 2000, , 419-437.	0.4	11
153	Improved Control of Apple and Citrus Fruit Decay with a Combination of Candida saitoana and 2-Deoxy-D-Glucose. Plant Disease, 2000, 84, 249-253.	1.4	103
154	189 The Use of Hydrophobic Clay Films as a Barrier to Ice Nucleation in Plants. Hortscience: A Publication of the American Society for Hortcultural Science, 2000, 35, 423B-423.	1.0	0
155	082 Identification and Partial Characterization of Seasonally Regulated Proteins in Apple Bark Tissues. Hortscience: A Publication of the American Society for Hortcultural Science, 2000, 35, 402E-402.	1.0	0
156	Biologically Based Technology for the Control of Postharvest Diseases of Fruits and Vegetables. , 2000, , .		1
157	Purification, immunolocalization, cryoprotective, and antifreeze activity of PCA60: A dehydrin from peach (Prunus persica). Physiologia Plantarum, 1999, 105, 600-608.	5.2	257
158	Immunological Identification of Dehydrin-Related Proteins in the Wood of Five Species of Populus and in Salix caprea L Journal of Plant Physiology, 1999, 154, 781-788.	3. 5	24
159	Efficacy of Salmeterol Xinafoate in the Treatment of COPD. Chest, 1999, 115, 957-965.	0.8	481
160	Low-temperature Tolerance of Blackcurrant Flowers. Hortscience: A Publication of the American Society for Hortcultural Science, 1999, 34, 855-859.	1.0	17
161	Ice Nucleation and Propagation in Cranberry Uprights and Fruit Using Infrared Video Thermography. Journal of the American Society for Horticultural Science, 1999, 124, 619-625.	1.0	50
162	The use of infrared thermal imaging in the study of ice nucleation and freezing of plants. Journal of Thermal Biology, 1998, 23, 81-89.	2.5	75

#	Article	IF	Citations
163	Ultrastructural and Cytochemical Aspects of the Biological Control of Botrytis cinerea by Candida saitoana in Apple Fruit. Phytopathology, 1998, 88, 282-291.	2.2	141
164	Antifungal Activity of 2-Deoxy-D-Glucose on Botrytis cinerea, Penicillium expansum, and Rhizopus stolonifer: Ultrastructural and Cytochemical Aspects. Phytopathology, 1997, 87, 772-779.	2.2	24
165	Observations of Ice Nucleation and Propagation in Plants Using Infrared Video Thermography. Plant Physiology, 1997, 113, 327-334.	4.8	175
166	Influence of CaCl2 on Penicillium digitatum, Grapefruit Peel Tissue, and Biocontrol Activity of Pichia guilliermondii. Phytopathology, 1997, 87, 310-315.	2.2	127
167	Rapid Evaluation of Plant Extracts and Essential Oils for Antifungal Activity Against Botrytis cinerea. Plant Disease, 1997, 81, 204-210.	1.4	371
168	Seasonal expression of a dehydrin gene in sibling deciduous and evergreen genotypes of peach (Prunus) Tj ETQq(ე <u>ც ც</u> rgBT	/Qverlock 10
169	Quantifying Bud Dormancy: Physiological Approaches. Hortscience: A Publication of the American Society for Hortcultural Science, 1997, 32, 618-623.	1.0	26
170	Tissue-specific Expression of a Dehydrin Gene in One-year-old `Rio Oso Gem' Peach Trees. Journal of the American Society for Horticultural Science, 1997, 122, 784-787.	1.0	27
171	A Study of Ice Nucleation and Propagation in Cranberry Plant using Infrared Video Thermography. Hortscience: A Publication of the American Society for Hortcultural Science, 1997, 32, 448B-448.	1.0	0
172	Characterization of Ice Nucleation and Propagation in Bean (Phaseolus vulgaris cv. Bush Blue Lake) using Infrared Video Thermography. Hortscience: A Publication of the American Society for Hortcultural Science, 1997, 32, 538C-538.	1.0	0
173	Seasonal Expression of a 700–800-Base Pair Transcript in Bark Tissues of Peach (Prunus persica). Hortscience: A Publication of the American Society for Hortcultural Science, 1997, 32, 514B-514.	1.0	0
174	Immunolocalization and in Vitro Cryoprotective Activity of PCA60: A Peach Dehydrin. Hortscience: A Publication of the American Society for Hortcultural Science, 1997, 32, 514C-514.	1.0	0
175	Plant hormesis induced by ultraviolet light-C for controlling postharvest diseases of tree fruits. Crop Protection, 1996, 15, 129-134.	2.1	108
176	Interrelationships between ultrastructure, sugar levels, and frost hardiness of ray parenchyma cells during frost acclimation and deacclimation in poplar (Populus × canadensis Moench ‹robusta›) Wood. Journal of Plant Physiology, 1996, 149, 451-461.	3.5	98
177	Seasonal patterns of dehydrins and 70-kDa heat-shock proteins in bark tissues of eight species of woody plants. Physiologia Plantarum, 1996, 96, 496-505.	5 . 2	95
178	Seasonal patterns of dehydrins and 70-kDa heat-shock proteins in bark tissues of eight species of woody plants. Physiologia Plantarum, 1996, 96, 496-505.	5.2	77
179	Are Biological Antagonists an Alternative to Synthetic Fungicides for Preventing Postharvest Diseases of Fruits and Vegetables?. Reviews on Environmental Health, 1996, 11, 71-7.	2.4	2
180	Progress Toward Identifying Markers Linked to Genes Controlling Chilling Requirement and Cold Hardiness in Blueberry. International Journal of Fruit Science, 1996, 3, 39-52.	0.2	4

#	Article	IF	CITATIONS
181	Accumulation of a 60-kD Dehydrin Protein in Peach Xylem Tissues and Its Relationship to Cold Acclimation. Hortscience: A Publication of the American Society for Hortcultural Science, 1996, 31, 923-925.	1.0	38
182	Cold Acclimation and Alterations in Dehydrin-like and Bark Storage Proteins in the Leaves of Sibling Deciduous and Evergreen Peach. Journal of the American Society for Horticultural Science, 1996, 121, 915-919.	1.0	41
183	Recent Advances in Plant Responses to Stress: Bridging the Gap between Science and Technology: Introduction to the Colloquium. Hortscience: A Publication of the American Society for Hortcultural Science, 1996, 31, 30-31.	1.0	0
184	Isolation and Preliminary Characterization of a Receptor-like Protein Kinase from Cold Acclimated Peach Bark. Hortscience: A Publication of the American Society for Hortcultural Science, 1996, 31, 585d-585.	1.0	0
185	Host Response to Introduction of Antagonistic Yeasts Used for Control of Postharvest Decay. , 1996, , 73-89.		1
186	Ultrastructural and protein changes in cell suspension cultures of peach associated with low temperature-induced cold acclimation and abscisic acid treatment. Plant Cell, Tissue and Organ Culture, 1995, 40, 17-24.	2.3	18
187	Immunogold localization of pectins and glycoproteins in tissues of peach with reference to deep supercooling. Trees - Structure and Function, 1995, 9, 253.	1.9	45
188	Effects of Ca2+and Mg2+on Botrytis cinerea and Penicillium expansum in vitro and on the biocontrol activity of Candida oleophila. Plant Pathology, 1995, 44, 1016-1024.	2.4	152
189	Seasonal Patterns of Dehydrins in Bark Tissue of Eight Species of Woody Plants. Hortscience: A Publication of the American Society for Hortcultural Science, 1995, 30, 851A-851.	1.0	2
190	COLD ACCLIMATION IN THE LEAVES OF SIBLING DECIDUOUS AND EVERGREEN PEACH: ALTERATIONS IN DEHYDRIN AND BARK STORAGE PROTEINS. Hortscience: A Publication of the American Society for Hortcultural Science, 1995, 30, 190f-191.	1.0	0
191	An Over-the-row Micronized-dust Applicator for Fruit Trees. HortTechnology, 1995, 5, 309-313.	0.9	1
192	Cold Acclimation in Genetically Related (Sibling) Deciduous and Evergreen Peach (Prunus persica [L.]) Tj ETQq0 0 (0 rgBT /Ov 4.8	verlock 10 Tf 131
193	556 PB 371 EFFECTS OF SUBLETHAL HEAT STRESS ON ENDODOPMANCY AND ECODORMANCY OF PEACH AND HYBRID POPLAR. Hortscience: A Publication of the American Society for Hortcultural Science, 1994, 29, 511c-511.	1.0	4
194	Factors affecting UV-induced resistance in grapefruit against the green mould decay caused by Penicillium digitatum. Plant Pathology, 1993, 42, 418-424.	2.4	99
195	Pilot Testing of Pichia guilliermondii: A Biocontrol Agent of Postharvest Diseases of Citrus Fruit. Biological Control, 1993, 3, 47-52.	3.0	98
196	A selection strategy for microbial antagonists to control postharvest diseases of fruits and vegetables. Scientia Horticulturae, 1993, 53, 183-189.	3.6	142
197	Assessment of Freeze Injury in `Boskoop Giant' Black Currant Buds. Hortscience: A Publication of the American Society for Hortcultural Science, 1993, 28, 652-654.	1.0	15

 $\textbf{Cold Acclimation in Genetically Related (Sibling) Deciduous and Evergreen Peach ($<$$i>Prunus)$ Tj ETQq0 0 0 0 rgBT /Oyerlock 10 Tf 50 62 To 20 188 ($<$i>Prunus)$ Tj ETQq0 0 0 0 rgBT /Oyerlock 10 Tf 50 62 To 20 188 ($<$i>Prunus)$ Tj ETQq0 0 0 0 rgBT /Oyerlock 10 Tf 50 62 To 20 188 ($<$i>Prunus)$ Tj ETQq0 0 0 0 rgBT /Oyerlock 10 Tf 50 62 To 20 188 ($<$i>Prunus)$ Tj ETQq0 0 0 0 rgBT /Oyerlock 10 Tf 50 62 To 20 188 ($<$i>Prunus)$ Tj ETQq0 0 0 0 rgBT /Oyerlock 10 Tf 50 62 To 20 188 ($<$i>Prunus)$ Tj ETQq0 0 0 0 rgBT /Oyerlock 10 Tf 50 62 To 20 188 ($<$i>Prunus)$ Tj ETQq0 0 0 0 rgBT /Oyerlock 10 Tf 50 62 To 20 188 ($<$i>Prunus)$ Tj ETQq0 0 0 0 rgBT /Oyerlock 10 Tf 50 62 To 20 188 ($<$i>Prunus)$ Tj ETQq0 0 0 0 rgBT /Oyerlock 10 Tf 50 62 To 20 188 ($<$i>Prunus)$ Tj ETQq0 0 0 0 rgBT /Oyerlock 10 Tf 50 62 To 20 188 ($<$i>Prunus)$ Tj ETQq0 0 0 0 rgBT /Oyerlock 10 Tf 50 62 To 20 188 ($<$i>Prunus)$ Tj ETQq0 0 0 0 rgBT /Oyerlock 10 Tf 50 62 To 20 188 ($<$i>Prunus)$ Tj ETQq0 0 0 0 rgBT /Oyerlock 10 Tf 50 62 To 20 188 ($<$i>Prunus)$ Tj ETQq0 0 0 0 rgBT /Oyerlock 10 Tf 50 62 To 20 188 ($<$i>Prunus)$ Tj ETQq0 0 0 0 rgBT /Oyerlock 10 Tf 50 62 To 20 188 ($<$i>Prunus)$ Tj ETQq0 0 0 0 rgBT /Oyerlock 10 Tf 50 62 To 20 188 ($<$i>Prunus)$ Tj ETQq0 0 0 0 rgBT /Oyerlock 10 Tf 50 62 To 20 188 ($<$i>Prunus)$ Tj ETQq0 0 0 0 rgBT /Oyerlock 10 Tf 50 62 To 20 188 ($<$i>Prunus)$ Tj ETQq0 0 0 0 rgBT /Oyerlock 10 Tf 50 62 To 20 188 ($<$i>Prunus)$ Tj ETQq0 0 0 0 rgBT /Oyerlock 10 Tf 50 62 To 20 188 ($<$i>Prunus)$ Tj ETQq0 0 0 0 rgBT /Oyerlock 10 Tf 50 62 To 20 188 ($<$i>Prunus)$ Tj ETQq0 0 0 0 rgBT /Oyerlock 10 Tf 50 62 To 20 188 ($<$i>Prunus)$ Tj ETQq0 0 0 0 rgBT /Oyerlock 10 Tf 50 62 To 20 188 ($<$i>Prunus)$ Tj ETQq0 0 0 0 rgBT /Oyerlock 10 Tf 50 62 To 20 188 ($<$i>Prunus)$ Tj ETQq0 0 0 0 rgBT /Oyerlock 10 Tf 50 62 Tf$

198

#	Article	IF	Citations
199	UV-induced resistance to postharvest diseases of citrus fruit. Journal of Photochemistry and Photobiology B: Biology, 1992, 15, 367-371.	3.8	38
200	Biological control of postharvest diseases: a promising alternative to the use of synthetic fungicides. Phytoparasitica, 1992, 20, S149-S153.	1.2	59
201	Biological Control of Postharvest Diseases of Fruits and Vegetables: Recent Advances. Hortscience: A Publication of the American Society for Hortcultural Science, 1992, 27, 94-98.	1.0	208
202	Frost Hardiness of Asparagus officinalis L Hortscience: A Publication of the American Society for Hortcultural Science, 1992, 27, 823-824.	1.0	7
203	LOCALIZATION OF PECTINS IN XYLEM RAY CELLS OF WOODY PLANTS Hortscience: A Publication of the American Society for Hortcultural Science, 1992, 27, 656g-657.	1.0	0
204	Biological control of post-harvest diseases of fruits and vegetables: alternatives to synthetic fungicides. Crop Protection, 1991, 10, 172-177.	2.1	103
205	Mode of action of the postharvest biocontrol yeast, Pichia guilliermondii. I. Characterization of attachment to Botrytis cinerea. Physiological and Molecular Plant Pathology, 1991, 39, 245-258.	2.5	224
206	Mediation of deep supercooling of peach and dogwood by enzymatic modifications in cell-wall structure. Planta, 1991, 184, 254-260.	3.2	38
207	Effect of Macerase, Oxalic Acid, and EGTA on Deep Supercooling and Pit Membrane Structure of Xylem Parenchyma of Peach. Plant Physiology, 1991, 96, 1354-1359.	4.8	37
208	Mediation of deep supercooling of peach and dogwood by enzymatic modifications in cell-wall structure. Planta, 1991, 184, 254-260.	3.2	34
209	Occlusion of Water Pores Prevents Guttation in Older Strawberry Leaves. Journal of the American Society for Horticultural Science, 1991, 116, 1122-1125.	1.0	39
210	SEASONAL PATTERNS OF COLD HARDINESS AND POLYPEPTIDES IN BARK AND XYLEM OF GENETICALLY RELATED (SIBLING) DECIDUOUS AND EVERGREEN PEACH TREES Hortscience: A Publication of the American Society for Hortcultural Science, 1991, 26, 727C-727.	1.0	0
211	System configuration for microcomputer-controlled, low-temperature differential thermal analysis. Computers and Electronics in Agriculture, 1990, 5, 223-232.	7.7	11
212	Colloidal gold in prescribed sizes as an apoplastic tracer for the determination of pore size in woody plant tissues. Journal of Electron Microscopy Technique, 1990, 15, 318-319.	1.1	3
213	EFFECT OF CALCIUM CHELATORS ON WALL STRUCTURE AND DEEP SUPERCOOLING OF XYLEM PARENCHYMA OF PEACH. Hortscience: A Publication of the American Society for Hortcultural Science, 1990, 25, 1080a-1080.	1.0	0
214	DEVELOPMENT OF THE AMORPHOUS LAYER (PROTECTIVE LAYER) IN XYLEM PARENCHYMA OF CV. GOLDEN DELICIOUS APPLE, CV. LORING PEACH, AND WILLOW. American Journal of Botany, 1989, 76, 1569-1582.	1.7	15
215	Evidence for the Involvement of a Specific Cell Wall Layer in Regulation of Deep Supercooling of Xylem Parenchyma. Plant Physiology, 1989, 91, 151-156.	4.8	36
216	The formation and distribution of ice within dormant and deacclimated peach flower buds. Plant, Cell and Environment, 1989, 12, 521-528.	5.7	46

#	Article	IF	CITATIONS
217	Characterization of inhibition of <i>Rhizopus stolonifer</i> germination and growth by <i>Enterobacter cloacae</i> . Canadian Journal of Botany, 1989, 67, 2317-2323.	1.1	58
218	The use of lanthanum to characterize cell wall permeability in relation to deep supercooling and extracellular freezing in woody plants. Protoplasma, 1987, 139, 105-116.	2.1	37
219	A Comparison of Seasonal Ultrastructural Changes in Stem Tissues of Peach (Prunus persica) that Exhibit Contrasting Mechanisms of Cold Hardiness. Botanical Gazette, 1986, 147, 407-417.	0.6	50
220	CHANGES IN THE ULTRASTRUCTURE OF XYLEM PARENCHYMA CELLS OF PEACH (PRUNUS PERSICA) AND RED OAK (QUERCUS RUBRA) IN RESPONSE TO A FREEZING STRESS. American Journal of Botany, 1985, 72, 1364-1376.	1.7	21
221	Changes in the Ultrastructure of Xylem Parenchyma Cells of Peach (Prunus persica) and Red Oak (Quercus rubra) in Response to a Freezing Stress. American Journal of Botany, 1985, 72, 1364.	1.7	9
222	THE ONTOGENY OF THE INFLORESCENCE AND FLOWER OF LIQUIDAMBAR STYRACIFLUA L. (HAMAMELIDACEAE). American Journal of Botany, 1982, 69, 1612-1624.	1.7	21