Agathe Subtil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5975632/publications.pdf

Version: 2024-02-01

59 papers

3,654 citations

34 h-index 56 g-index

64 all docs

64
docs citations

64 times ranked $\begin{array}{c} 3831 \\ \text{citing authors} \end{array}$

#	Article	IF	CITATIONS
1	ATG16L1 functions in cell homeostasis beyond autophagy. FEBS Journal, 2022, 289, 1779-1800.	4.7	13
2	Primary ectocervical epithelial cells display lower permissivity to Chlamydia trachomatis than HeLa cells and a globally higher pro-inflammatory profile. Scientific Reports, 2021, 11, 5848.	3.3	3
3	A Protein-Engineered, Enhanced Yeast Display Platform for Rapid Evolution of Challenging Targets. ACS Synthetic Biology, 2021, 10, 3445-3460.	3.8	28
4	The <i>Chlamydia</i> effector CT622/TaiP targets a nonautophagy related function of ATG16L1. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26784-26794.	7.1	13
5	Make It a Sweet Home. , 2020, , 155-165.		O
6	Infectionâ€driven activation of transglutaminase 2 boosts glucose uptake and hexosamine biosynthesis in epithelial cells. EMBO Journal, 2020, 39, e102166.	7.8	12
7	Chlamydia-induced curvature of the host-cell plasma membrane is required for infection. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2634-2644.	7.1	16
8	Make It a Sweet Home: Responses of Chlamydia trachomatis to the Challenges of an Intravacuolar Lifestyle. Microbiology Spectrum, 2019, 7, .	3.0	9
9	The Loss of Expression of a Single Type 3 Effector (CT622) Strongly Reduces Chlamydia trachomatis Infectivity and Growth. Frontiers in Cellular and Infection Microbiology, 2018, 8, 145.	3.9	21
10	Biotic Host–Pathogen Interactions As Major Drivers of Plastid Endosymbiosis. Trends in Plant Science, 2017, 22, 316-328.	8.8	39
11	Tracking Proteins Secreted by Bacteria: What's in the Toolbox?. Frontiers in Cellular and Infection Microbiology, 2017, 7, 221.	3.9	47
12	The DUF582 Proteins of Chlamydia trachomatis Bind to Components of the ESCRT Machinery, Which Is Dispensable for Bacterial Growth In vitro. Frontiers in Cellular and Infection Microbiology, 2016, 6, 123.	3.9	17
13	One Face of Chlamydia trachomatis: The Infectious Elementary Body. Current Topics in Microbiology and Immunology, 2016, 412, 35-58.	1.1	28
14	Sequestration of host metabolism by an intracellular pathogen. ELife, 2016, 5, e12552.	6.0	75
15	Quantitative Monitoring of the Chlamydia trachomatis Developmental Cycle Using GFP-Expressing Bacteria, Microscopy and Flow Cytometry. PLoS ONE, 2014, 9, e99197.	2.5	46
16	Biochemical and Structural Insights into Microtubule Perturbation by CopN from Chlamydia pneumoniae. Journal of Biological Chemistry, 2014, 289, 25199-25210.	3.4	22
17	Massive Expansion of Ubiquitination-Related Gene Families within the Chlamydiae. Molecular Biology and Evolution, 2014, 31, 2890-2904.	8.9	43
18	Tracing the primordial Chlamydiae: extinct parasites of plants?. Trends in Plant Science, 2014, 19, 36-43.	8.8	36

#	Article	IF	CITATIONS
19	Exploitation of host lipids by bacteria. Current Opinion in Microbiology, 2014, 17, 38-45.	5.1	44
20	Editorial overview: Host–microbe interactions: bacteria. War and peace: the fragile equilibrium between bacteria and host. Current Opinion in Microbiology, 2014, 17, v-vii.	5.1	0
21	The Intracellular Bacteria Chlamydia Hijack Peroxisomes and Utilize Their Enzymatic Capacity to Produce Bacteria-Specific Phospholipids. PLoS ONE, 2014, 9, e86196.	2.5	47
22	The chlamydial OTU domain-containing protein <i>Chla</i> OTU is an early type III secretion effector targeting ubiquitin and NDP52. Cellular Microbiology, 2013, 15, 2064-2079.	2.1	39
23	Metabolic Effectors Secreted by Bacterial Pathogens: Essential Facilitators of Plastid Endosymbiosis? Â. Plant Cell, 2013, 25, 7-21.	6.6	112
24	Activation of Type III Interferon Genes by Pathogenic Bacteria in Infected Epithelial Cells and Mouse Placenta. PLoS ONE, 2012, 7, e39080.	2.5	85
25	<i>Chlamydia</i> coâ€opts the rod shapeâ€determining proteins MreB and Pbp2 for cell division. Molecular Microbiology, 2012, 85, 164-178.	2.5	95
26	Multi-genome identification and characterization of chlamydiae-specific type III secretion substrates: the Inc proteins. BMC Genomics, 2011, 12, 109.	2.8	126
27	Identification of a Family of Effectors Secreted by the Type III Secretion System That Are Conserved in Pathogenic Chlamydiae. Infection and Immunity, 2011, 79, 571-580.	2.2	42
28	Rerouting of Host Lipids by Bacteria: Are You CERTain You Need a Vesicle?. PLoS Pathogens, 2011, 7, e1002208.	4.7	7
29	Production of Reactive Oxygen Species Is Turned On and Rapidly Shut Down in Epithelial Cells Infected with <i>Chlamydia trachomatis</i>). Infection and Immunity, 2010, 78, 80-87.	2.2	63
30	Histone Methylation by NUE, a Novel Nuclear Effector of the Intracellular Pathogen Chlamydia trachomatis. PLoS Pathogens, 2010, 6, e1000995.	4.7	154
31	Small molecule inhibitors of the Yersinia type III secretion system impair the development of Chlamydia after entry into host cells. BMC Microbiology, 2009, 9, 75.	3.3	31
32	Intracellular Bacteria Encode Inhibitory SNARE-Like Proteins. PLoS ONE, 2009, 4, e7375.	2.5	79
33	SNARE Protein Mimicry by an Intracellular Bacterium. PLoS Pathogens, 2008, 4, e1000022.	4.7	156
34	Correlation Between Chlamydia pneumoniaeDetection From Coronary Angioplasty Balloons and Atherosclerosis Severity. Journal of the American College of Cardiology, 2006, 47, 1229-1231.	2.8	7
35	Development of a real-time PCR for the detection of Chlamydia psittaci. Journal of Medical Microbiology, 2006, 55, 471-473.	1.8	63
36	Re: Evidence for an Association Between Chlamydia psittaci and Ocular Adnexal Lymphomas. Journal of the National Cancer Institute, 2006, 98, 365-366.	6.3	47

#	Article	IF	CITATIONS
37	Recent insights into the mechanisms of Chlamydia entry. Cellular Microbiology, 2005, 7, 051020044249005-???.	2.1	98
38	A directed screen for chlamydial proteins secreted by a type III mechanism identifies a translocated protein and numerous other new candidates. Molecular Microbiology, 2005, 56, 1636-1647.	2.5	123
39	ARF6 GTPase controls bacterial invasion by actin remodelling. Journal of Cell Science, 2005, 118, 2201-2210.	2.0	59
40	Analysis of Chlamydia caviae entry sites and involvement of Cdc42 and Rac activity. Journal of Cell Science, 2004, 117, 3923-3933.	2.0	62
41	Conservation of the Biochemical Properties of IncA from Chlamydia trachomatis and Chlamydia caviae. Journal of Biological Chemistry, 2004, 279, 46896-46906.	3.4	82
42	Chlamydia: five years A.G. (after genome). Current Opinion in Microbiology, 2004, 7, 85-92.	5.1	28
43	Les Chlamydia, une longue pratique du parasitisme intracellulaire. Medecine/Sciences, 2004, 20, 850-851.	0.2	0
44	Secretion of predicted Inc proteins of Chlamydia pneumoniae by a heterologous type III machinery. Molecular Microbiology, 2001, 39, 792-800.	2.5	175
45	Involvement of the Ubiquitin/Proteasome System in Sorting of the Interleukin 2 Receptor \hat{l}^2 Chain to Late Endocytic Compartments. Molecular Biology of the Cell, 2001, 12, 1293-1301.	2.1	110
46	Type III secretion system in Chlamydia species: identified members and candidates. Microbes and Infection, 2000, 2, 367-369.	1.9	49
47	Characterization of the Insulin-regulated Endocytic Recycling Mechanism in 3T3-L1 Adipocytes Using a Novel Reporter Molecule. Journal of Biological Chemistry, 2000, 275, 4787-4795.	3.4	72
48	Enhancement of endocytosis due to aminophospholipid transport across the plasma membrane of living cells. American Journal of Physiology - Cell Physiology, 1999, 276, C725-C733.	4.6	128
49	Acute cholesterol depletion inhibits clathrin-coated pit budding. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 6775-6780.	7.1	538
50	Endocytosis: Biochemical Analyses. Current Protocols in Cell Biology, 1999, 3, Unit 15.3.	2.3	9
51	Several weak signals in the cytosolic and transmembrane domains of the interleukin-2-receptor beta chain allow for its efficient endocytosis. FEBS Journal, 1998, 253, 525-530.	0.2	13
52	Identification of an Insulin-responsive, Slow Endocytic Recycling Mechanism in Chinese Hamster Ovary Cells. Journal of Biological Chemistry, 1998, 273, 17968-17977.	3.4	46
53	Molecular Characterization of the Signal Responsible for the Targeting of the Interleukin 2 Receptor β Chain toward Intracellular Degradation. Journal of Biological Chemistry, 1998, 273, 29424-29429.	3.4	19
54	An Î \pm -Helical Signal in the Cytosolic Domain of the Interleukin 2 Receptor Î 2 Chain Mediates Sorting Towards Degradation after Endocytosis. Journal of Cell Biology, 1997, 136, 583-595.	5.2	49

AGATHE SUBTIL

#	Article	IF	CITATION
55	Endocytosis of interleukin 2 receptors in human T lymphocytes: distinct intracellular localization and fate of the receptor alpha, beta, and gamma chains Journal of Cell Biology, 1995, 129, 55-64.	5.2	189
56	Human immunodeficiency virus type 1 Nef induces accumulation of CD4 in early endosomes. Journal of Virology, 1995, 69, 528-533.	3.4	83
57	Endocytosis of the \hat{I}^2 chain of interleukin-2 receptor requires neither interleukin-2 nor the \hat{I}^3 chain. European Journal of Immunology, 1994, 24, 1951-1955.	2.9	23
58	Detection of Three Nonsense Mutations and One Missense Mutation in the Interleukin-2 Receptor \hat{l}^3 Chain Gene in SCIDX1 That Differently Affect the mRNA Processing. Genomics, 1994, 21, 291-293.	2.9	31
59	CT295 Is Chlamydia trachomatis' Phosphoglucomutase and a Type 3 Secretion Substrate. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	1