Hao Ming Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5975417/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tracking high-valent surface iron species in the oxygen evolution reaction on cobalt iron (oxy)hydroxides. Energy and Environmental Science, 2022, 15, 206-214.	30.8	59
2	Bisulfate as a redox-active ligand in vanadium-based electrocatalysis for CH ₄ functionalization. Chemical Communications, 2022, 58, 2524-2527.	4.1	1
3	Tracking the <i>in situ</i> generation of hetero-metal–metal bonds in phosphide electrocatalysts for electrocatalysts for electrocatalytic hydrogen evolution. Catalysis Science and Technology, 2022, 12, 3234-3239.	4.1	3
4	Engineering Lattice Disorder on a Photocatalyst: Photochromic BiOBr Nanosheets Enhance Activation of Aromatic C–H Bonds via Water Oxidation. Journal of the American Chemical Society, 2022, 144, 3386-3397.	13.7	96
5	Strong Correlation between the Dynamic Chemical State and Product Profile of Carbon Dioxide Electroreduction. ACS Applied Materials & Interfaces, 2022, 14, 22681-22696.	8.0	30
6	Atomic Metal–Support Interaction Enables Reconstruction-Free Dual-Site Electrocatalyst. Journal of the American Chemical Society, 2022, 144, 1174-1186.	13.7	191
7	Lead-free hybrid perovskite photocatalysts: surface engineering, charge-carrier behaviors, and solar-driven applications. Journal of Materials Chemistry A, 2022, 10, 12296-12316.	10.3	29
8	Pt–Ru Dimer Electrocatalyst with Electron Redistribution for Hydrogen Evolution Reaction. ACS Catalysis, 2022, 12, 5540-5548.	11.2	58
9	<i>In situ</i> probing the dynamic reconstruction of copper–zinc electrocatalysts for CO ₂ reduction. Nanoscale, 2022, 14, 8944-8950.	5.6	5
10	Dynamic Co(<i>µ</i> â€O) ₂ Ru Moiety Endowed Efficiently Catalytic Hydrogen Evolution. Advanced Energy Materials, 2022, 12, .	19.5	33
11	Product-Specific Active Site Motifs of Cu for Electrochemical CO2 Reduction. CheM, 2021, 7, 406-420.	11.7	72
12	In Situ Identifying the Dynamic Structure behind Activity of Atomically Dispersed Platinum Catalyst toward Hydrogen Evolution Reaction. Small, 2021, 17, e2005713.	10.0	38
13	Vertical 2D/3D Heterojunction of Tin Perovskites for Highly Efficient HTM-Free Perovskite Solar Cell. ACS Applied Energy Materials, 2021, 4, 2041-2048.	5.1	26
14	A Universal Approach for Controllable Synthesis of <i>n</i> ‣pecific Layered 2D Perovskite Nanoplates. Angewandte Chemie - International Edition, 2021, 60, 7866-7872.	13.8	24
15	A Universal Approach for Controllable Synthesis of n â€Specific Layered 2D Perovskite Nanoplates. Angewandte Chemie, 2021, 133, 7945-7951.	2.0	6
16	Linking the Dynamic Chemical State of Catalysts with the Product Profile of Electrocatalytic CO ₂ Reduction. Angewandte Chemie, 2021, 133, 17394-17407.	2.0	42
17	Heterocyclic-Additive-Activated Dinuclear Dysprosium Electrocatalysts for Heterogeneous Water Oxidation. Inorganic Chemistry, 2021, 60, 6930-6938.	4.0	5
18	Pt Single Atoms Supported on Nâ€Doped Mesoporous Hollow Carbon Spheres with Enhanced Electrocatalytic H ₂ â€Evolution Activity. Advanced Materials, 2021, 33, e2008599.	21.0	314

#	Article	IF	CITATIONS
19	Linking the Dynamic Chemical State of Catalysts with the Product Profile of Electrocatalytic CO ₂ Reduction. Angewandte Chemie - International Edition, 2021, 60, 17254-17267.	13.8	185
20	Materials Engineering of Violin Soundboards by Stradivari and Guarneri. Angewandte Chemie, 2021, 133, 19293-19303.	2.0	6
21	Unveiling the In Situ Generation of a Monovalent Fe(I) Site in the Single-Fe-Atom Catalyst for Electrochemical CO ₂ Reduction. ACS Catalysis, 2021, 11, 7292-7301.	11.2	51
22	Materials Engineering of Violin Soundboards by Stradivari and Guarneri. Angewandte Chemie - International Edition, 2021, 60, 19144-19154.	13.8	11
23	MOF-Templated Sulfurization of Atomically Dispersed Manganese Catalysts Facilitating Electroreduction of CO ₂ to CO. ACS Applied Materials & Interfaces, 2021, 13, 52134-52143.	8.0	17
24	Frontispiece: Materials Engineering of Violin Soundboards by Stradivari and Guarneri. Angewandte Chemie - International Edition, 2021, 60, .	13.8	0
25	Frontispiz: Materials Engineering of Violin Soundboards by Stradivari and Guarneri. Angewandte Chemie, 2021, 133, .	2.0	0
26	Emerging dynamic structure of electrocatalysts unveiled by <i>in situ</i> X-ray diffraction/absorption spectroscopy. Energy and Environmental Science, 2021, 14, 1928-1958.	30.8	179
27	Electrocatalytic Methane Functionalization with d ⁰ Early Transition Metals Under Ambient Conditions. Angewandte Chemie - International Edition, 2021, 60, 26630-26638.	13.8	5
28	Electrocatalytic Methane Functionalization with d ⁰ Early Transition Metals Under Ambient Conditions. Angewandte Chemie, 2021, 133, 26834-26842.	2.0	1
29	Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis. Nature Energy, 2021, 6, 1054-1066.	39.5	159
30	Operando time-resolved X-ray absorption spectroscopy reveals the chemical nature enabling highly selective CO2 reduction. Nature Communications, 2020, 11, 3525.	12.8	242
31	Identification of the Electronic and Structural Dynamics of Catalytic Centers in Single-Fe-Atom Material. CheM, 2020, 6, 3440-3454.	11.7	231
32	The individual role of active sites in bimetallic oxygen evolution reaction catalysts. Dalton Transactions, 2020, 49, 17505-17510.	3.3	13
33	Ambient methane functionalization initiated by electrochemical oxidation of a vanadium (V)-oxo dimer. Nature Communications, 2020, 11, 3686.	12.8	36
34	<i>In situ</i> unraveling of the effect of the dynamic chemical state on selective CO ₂ reduction upon zinc electrocatalysts. Nanoscale, 2020, 12, 18013-18021.	5.6	23
35	Facet engineering accelerates spillover hydrogenation on highly diluted metal nanocatalysts. Nature Nanotechnology, 2020, 15, 848-853.	31.5	210
36	<i>In situ</i> X-ray diffraction and X-ray absorption spectroscopy of electrocatalysts for energy conversion reactions. Journal of Materials Chemistry A, 2020, 8, 19079-19112.	10.3	98

#	Article	IF	CITATIONS
37	Coordination engineering of iridium nanocluster bifunctional electrocatalyst for highly efficient and pH-universal overall water splitting. Nature Communications, 2020, 11, 4246.	12.8	221
38	Strong Catalyst–Support Interactions in Electrochemical Oxygen Evolution on Ni–Fe Layered Double Hydroxide. ACS Energy Letters, 2020, 5, 3185-3194.	17.4	44
39	Amorphous Multimetal Alloy Oxygen Evolving Catalysts. , 2020, 2, 624-632.		45
40	Electrochemical Reduction of CO ₂ to Ethane through Stabilization of an Ethoxy Intermediate. Angewandte Chemie, 2020, 132, 19817-19821.	2.0	33
41	Electronic structure inspired a highly robust electrocatalyst for the oxygen-evolution reaction. Chemical Communications, 2020, 56, 8071-8074.	4.1	15
42	Mechanism of Oxygen Evolution Catalyzed by Cobalt Oxyhydroxide: Cobalt Superoxide Species as a Key Intermediate and Dioxygen Release as a Rate-Determining Step. Journal of the American Chemical Society, 2020, 142, 11901-11914.	13.7	452
43	Dynamic Reoxidation/Reduction-Driven Atomic Interdiffusion for Highly Selective CO ₂ Reduction toward Methane. Journal of the American Chemical Society, 2020, 142, 12119-12132.	13.7	200
44	In situ Observation of Electrodeposited Bimetallic p‧i Micropillar Array Photocathode for Solarâ€Driven Hydrogen Evolution. Solar Rrl, 2020, 4, 2000028.	5.8	3
45	<i>In Situ</i> / <i>Operando</i> Studies for Designing Next-Generation Electrocatalysts. ACS Energy Letters, 2020, 5, 1281-1291.	17.4	309
46	Efficient Hydrogen Oxidation Catalyzed by Strainâ€Engineered Nickel Nanoparticles. Angewandte Chemie - International Edition, 2020, 59, 10797-10801.	13.8	81
47	A Single Cu-Center Containing Enzyme-Mimic Enabling Full Photosynthesis under CO ₂ Reduction. ACS Nano, 2020, 14, 8584-8593.	14.6	166
48	Enabling Direct H2O2 Production in Acidic Media through Rational Design of Transition Metal Single Atom Catalyst. CheM, 2020, 6, 658-674.	11.7	418
49	Comprehensively Probing the Contribution of Site Activity and Population of Active Sites toward Heterogeneous Electrocatalysis. ChemCatChem, 2020, 12, 1926-1933.	3.7	7
50	Electrochemical Reduction of CO ₂ to Ethane through Stabilization of an Ethoxy Intermediate. Angewandte Chemie - International Edition, 2020, 59, 19649-19653.	13.8	122
51	Efficient Hydrogen Oxidation Catalyzed by Strainâ€Engineered Nickel Nanoparticles. Angewandte Chemie, 2020, 132, 10889-10893.	2.0	13
52	A Cobalt–Iron Double-Atom Catalyst for the Oxygen Evolution Reaction. Journal of the American Chemical Society, 2019, 141, 14190-14199.	13.7	401
53	Anionic Effects on Metal Pair of Se-Doped Nickel Diphosphide for Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 14247-14255.	6.7	30
54	Lightâ€Induced Activation of Adaptive Junction for Efficient Solarâ€Driven Oxygen Evolution: In Situ Unraveling the Interfacial Metal–Silicon Junction. Advanced Energy Materials, 2019, 9, 1901308.	19.5	27

#	Article	IF	CITATIONS
55	Defect Passivation by Amide-Based Hole-Transporting Interfacial Layer Enhanced Perovskite Grain Growth for Efficient p–i–n Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 40050-40061.	8.0	46
56	In Situ Spatially Coherent Identification of Phosphide-Based Catalysts: Crystallographic Latching for Highly Efficient Overall Water Electrolysis. ACS Energy Letters, 2019, 4, 2813-2820.	17.4	75
57	Layered Structure Causes Bulk NiFe Layered Double Hydroxide Unstable in Alkaline Oxygen Evolution Reaction. Advanced Materials, 2019, 31, e1903909.	21.0	345
58	Markedly Enhanced Oxygen Reduction Activity of Single-Atom Fe Catalysts via Integration with Fe Nanoclusters. ACS Nano, 2019, 13, 11853-11862.	14.6	340
59	Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nature Chemistry, 2019, 11, 222-228.	13.6	571
60	Breaking Long-Range Order in Iridium Oxide by Alkali Ion for Efficient Water Oxidation. Journal of the American Chemical Society, 2019, 141, 3014-3023.	13.7	337
61	Harnessing Dielectric Confinement on Tin Perovskites to Achieve Emission Quantum Yield up to 21%. Journal of the American Chemical Society, 2019, 141, 10324-10330.	13.7	76
62	Atomically dispersed Fe ³⁺ sites catalyze efficient CO ₂ electroreduction to CO. Science, 2019, 364, 1091-1094.	12.6	1,164
63	An Amorphous Nickel–Ironâ€Based Electrocatalyst with Unusual Local Structures for Ultrafast Oxygen Evolution Reaction. Advanced Materials, 2019, 31, e1900883.	21.0	243
64	Potential of Plasmon-Activated Water as a Comprehensive Active Green Energy Resource. ACS Omega, 2019, 4, 8007-8014.	3.5	1
65	Morphology Manipulation of Copper Nanocrystals and Product Selectivity in the Electrocatalytic Reduction of Carbon Dioxide. ACS Catalysis, 2019, 9, 5217-5222.	11.2	105
66	Dynamic Evolution of Atomically Dispersed Cu Species for CO ₂ Photoreduction to Solar Fuels. ACS Catalysis, 2019, 9, 4824-4833.	11.2	230
67	Operando Unraveling of the Structural and Chemical Stability of P-Substituted CoSe ₂ Electrocatalysts toward Hydrogen and Oxygen Evolution Reactions in Alkaline Electrolyte. ACS Energy Letters, 2019, 4, 987-994.	17.4	363
68	Ni ₃ N as an Active Hydrogen Oxidation Reaction Catalyst in Alkaline Medium. Angewandte Chemie - International Edition, 2019, 58, 7445-7449.	13.8	217
69	An Unconventional Iron Nickel Catalyst for the Oxygen Evolution Reaction. ACS Central Science, 2019, 5, 558-568.	11.3	263
70	Revealing the structural transformation of rutile RuO ₂ <i>via in situ</i> X-ray absorption spectroscopy during the oxygen evolution reaction. Dalton Transactions, 2019, 48, 7122-7129.	3.3	30
71	Quantitatively Unraveling the Redox Shuttle of Spontaneous Oxidation/Electroreduction of CuO _{<i>x</i>} on Silver Nanowires Using in Situ X-ray Absorption Spectroscopy. ACS Central Science, 2019, 5, 1998-2009.	11.3	74
72	Dualâ€Hole Excitons Activated Photoelectrolysis in Neutral Solution. Small, 2018, 14, e1704047.	10.0	0

#	Article	IF	CITATIONS
73	Electrocatalysts: Unraveling Geometrical Site Confinement in Highly Efficient Ironâ€Doped Electrocatalysts toward Oxygen Evolution Reaction (Adv. Energy Mater. 7/2018). Advanced Energy Materials, 2018, 8, 1870032.	19.5	5
74	Stabilizing ultrasmall Au clusters for enhanced photoredox catalysis. Nature Communications, 2018, 9, 1543.	12.8	223
75	Tuning the Electronic Spin State of Catalysts by Strain Control for Highly Efficient Water Electrolysis. Small Methods, 2018, 2, 1800001.	8.6	70
76	Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction. Nature Energy, 2018, 3, 140-147.	39.5	1,594
77	Tunable Electrodeposition of Ni Electrocatalysts onto Si Microwires Array for Photoelectrochemical Water Oxidation. Particle and Particle Systems Characterization, 2018, 35, 1700321.	2.3	10
78	High Spin State Promotes Water Oxidation Catalysis at Neutral pH in Spinel Cobalt Oxide. Industrial & Engineering Chemistry Research, 2018, 57, 1441-1445.	3.7	28
79	Surface-Enhanced Raman Scattering-Active Substrate Prepared with New Plasmon-Activated Water. ACS Omega, 2018, 3, 4743-4751.	3.5	1
80	Water Oxidation: Tunable Electrodeposition of Ni Electrocatalysts onto Si Microwires Array for Photoelectrochemical Water Oxidation (Part. Part. Syst. Charact. 1/2018). Particle and Particle Systems Characterization, 2018, 35, 1870002.	2.3	1
81	Nanomaterials: Dual-Hole Excitons Activated Photoelectrolysis in Neutral Solution (Small 14/2018). Small, 2018, 14, 1870061.	10.0	0
82	Strongly Coupled Tinâ€Halide Perovskites to Modulate Light Emission: Tunable 550–640 nm Light Emission (FWHM 36–80 nm) with a Quantum Yield of up to 6.4%. Advanced Materials, 2018, 30, e1706592.	21.0	51
83	A Universal Method to Engineer Metal Oxide–Metal–Carbon Interface for Highly Efficient Oxygen Reduction. ACS Nano, 2018, 12, 3042-3051.	14.6	125
84	Unraveling Geometrical Site Confinement in Highly Efficient Ironâ€Doped Electrocatalysts toward Oxygen Evolution Reaction. Advanced Energy Materials, 2018, 8, 1701686.	19.5	125
85	Identification of Stabilizing High-Valent Active Sites by Operando High-Energy Resolution Fluorescence-Detected X-ray Absorption Spectroscopy for High-Efficiency Water Oxidation. Journal of the American Chemical Society, 2018, 140, 17263-17270.	13.7	92
86	In Situ Creation of Surface-Enhanced Raman Scattering Active Au–AuO <i>_x</i> Nanostructures through Electrochemical Process for Pigment Detection. ACS Omega, 2018, 3, 16576-16584.	3.5	15
87	Ï€â€Conjugated Organic–Inorganic Hybrid Photoanodes: Revealing the Photochemical Behavior through In Situ Xâ€Ray Absorption Spectroscopy. Chemistry - A European Journal, 2018, 24, 18419-18423.	3.3	1
88	Innovatively Therapeutic Strategy on Lung Cancer by Daily Drinking Antioxidative Plasmon-Induced Activated Water. Scientific Reports, 2018, 8, 6316.	3.3	9
89	Photocatalysis: Single-Atom Engineering of Directional Charge Transfer Channels and Active Sites for Photocatalytic Hydrogen Evolution (Adv. Funct. Mater. 32/2018). Advanced Functional Materials, 2018, 28, 1870224.	14.9	6
90	Singleâ€Atom Engineering of Directional Charge Transfer Channels and Active Sites for Photocatalytic Hydrogen Evolution. Advanced Functional Materials, 2018, 28, 1802169.	14.9	287

#	Article	IF	CITATIONS
91	In Situ Identification of Photo- and Moisture-Dependent Phase Evolution of Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 342-348.	17.4	62
92	Progressive Design of Plasmonic Metal–Semiconductor Ensemble toward Regulated Charge Flow and Improved Vis–NIRâ€Ðriven Solarâ€ŧo hemical Conversion. Small, 2017, 13, 1602947.	10.0	88
93	Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chemical Society Reviews, 2017, 46, 337-365.	38.1	4,505
94	Edgeless Ag–Pt Bimetallic Nanocages: In Situ Monitor Plasmon-Induced Suppression of Hydrogen Peroxide Formation. Journal of the American Chemical Society, 2017, 139, 2224-2233.	13.7	111
95	Valence- and element-dependent water oxidation behaviors: in situ X-ray diffraction, absorption and electrochemical impedance spectroscopies. Physical Chemistry Chemical Physics, 2017, 19, 8681-8693.	2.8	80
96	Semiconductors: Progressive Design of Plasmonic Metal–Semiconductor Ensemble toward Regulated Charge Flow and Improved Vis–NIRâ€Driven Solarâ€ŧoâ€Chemical Conversion (Small 14/2017). Small, 2017, 13	3, ^{10.0}	0
97	Chemical distinctions between Stradivari's maple and modern tonewood. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 27-32.	7.1	36
98	Identifying the electrocatalytic sites of nickel disulfide in alkaline hydrogen evolution reaction. Nano Energy, 2017, 41, 148-153.	16.0	168
99	In Situ Electrochemical Production of Ultrathin Nickel Nanosheets for Hydrogen Evolution Electrocatalysis. CheM, 2017, 3, 122-133.	11.7	214
100	Mesoporous TiO ₂ Embedded with a Uniform Distribution of CuO Exhibit Enhanced Charge Separation and Photocatalytic Efficiency. ACS Applied Materials & Interfaces, 2017, 9, 42425-42429.	8.0	62
101	Facile preparation of electroactive graphene derivative and its potential application in electrochemical detection. Sensors and Actuators B: Chemical, 2017, 240, 1153-1159.	7.8	11
102	Breakthrough to Non-Vacuum Deposition of Single-Crystal, Ultra-Thin, Homogeneous Nanoparticle Layers: A Better Alternative to Chemical Bath Deposition and Atomic Layer Deposition. Nanomaterials, 2017, 7, 78.	4.1	5
103	Multifunctions of Excited Cold Nanoparticles Decorated Artificial Kidney with Efficient Hemodialysis and Therapeutic Potential. ACS Applied Materials & amp; Interfaces, 2016, 8, 19691-19700.	8.0	41
104	Triggering comprehensive enhancement in oxygen evolution reaction by using newly created solvent. Scientific Reports, 2016, 6, 28456.	3.3	11
105	Creation of Electron-doping Liquid Water with Reduced Hydrogen Bonds. Scientific Reports, 2016, 6, 22166.	3.3	26
106	In situ morphological transformation and investigation of electrocatalytic properties of cobalt oxide nanostructures toward oxygen evolution. CrystEngComm, 2016, 18, 6008-6012.	2.6	21
107	Modulation of Crystal Surface and Lattice by Doping: Achieving Ultrafast Metal-Ion Insertion in Anatase TiO ₂ . ACS Applied Materials & amp; Interfaces, 2016, 8, 29186-29193.	8.0	23
108	Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst. Science Advances, 2016, 2, e1501122.	10.3	1,078

#	Article	IF	CITATIONS
109	Iridium Oxideâ€Assisted Plasmonâ€Induced Hot Carriers: Improvement on Kinetics and Thermodynamics of Hot Carriers. Advanced Energy Materials, 2016, 6, 1501339.	19.5	111
110	Nanostructures: Iridium Oxideâ€Assisted Plasmonâ€Induced Hot Carriers: Improvement on Kinetics and Thermodynamics of Hot Carriers (Adv. Energy Mater. 8/2016). Advanced Energy Materials, 2016, 6, .	19.5	0
111	An environmentally friendly etching agent: vapor from hot electron-activated liquid water. Green Chemistry, 2016, 18, 3098-3105.	9.0	16
112	In Operando Identification of Geometrical-Site-Dependent Water Oxidation Activity of Spinel Co ₃ O ₄ . Journal of the American Chemical Society, 2016, 138, 36-39.	13.7	787
113	The synergistic effect of a well-defined Au@Pt core–shell nanostructure toward photocatalytic hydrogen generation: interface engineering to improve the Schottky barrier and hydrogen-evolved kinetics. Chemical Communications, 2016, 52, 1567-1570.	4.1	52
114	Innovative Strategy on Hydrogen Evolution Reaction Utilizing Activated Liquid Water. Scientific Reports, 2015, 5, 16263.	3.3	30
115	Effective Energy Transfer via Plasmon-Activated High-Energy Water Promotes Its Fundamental Activities of Solubility, Ionic Conductivity and Extraction at Room Temperature. Scientific Reports, 2015, 5, 18152.	3.3	14
116	Light-Induced In Situ Transformation of Metal Clusters to Metal Nanocrystals for Photocatalysis. ACS Applied Materials & Interfaces, 2015, 7, 28105-28109.	8.0	59
117	Quantitative Evaluation on Activated Property-Tunable Bulk Liquid Water with Reduced Hydrogen Bonds Using Deconvoluted Raman Spectroscopy. Analytical Chemistry, 2015, 87, 808-815.	6.5	21
118	Direct electron transfer of glucose oxidase and dual hydrogen peroxide and glucose detection based on water-dispersible carbon nanotubes derivative. Analytica Chimica Acta, 2015, 867, 83-91.	5.4	26
119	Ni ³⁺ â€Induced Formation of Active NiOOH on the Spinel Ni–Co Oxide Surface for Efficient Oxygen Evolution Reaction. Advanced Energy Materials, 2015, 5, 1500091.	19.5	408
120	One-step fabrication of SERS-active substrates based on plasmon-induced activated water, with improved activity and excellent reproducibility. Journal of Electroanalytical Chemistry, 2015, 750, 27-35.	3.8	2
121	Heterojunction of Zinc Blende/Wurtzite in Zn _{1–<i>x</i>} Cd _{<i>x</i>} S Solid Solution for Efficient Solar Hydrogen Generation: X-ray Absorption/Diffraction Approaches. ACS Applied Materials & Interfaces, 2015, 7, 22558-22569.	8.0	74
122	Reversible adapting layer produces robust single-crystal electrocatalyst for oxygen evolution. Nature Communications, 2015, 6, 8106.	12.8	377
123	Hierarchical Ni-Mo-S nanosheets on carbon fiber cloth: A flexible electrode for efficient hydrogen generation in neutral electrolyte. Science Advances, 2015, 1, e1500259.	10.3	427
124	A sensitive and selective magnetic graphene composite-modified polycrystalline-silicon nanowire field-effect transistor for bladder cancer diagnosis. Biosensors and Bioelectronics, 2015, 66, 198-207.	10.1	47
125	Quantum-Dot-Sensitized Nitrogen-Doped ZnO for Efficient Photoelectrochemical Water Splitting. European Journal of Inorganic Chemistry, 2014, 2014, 773-779.	2.0	31
126	More conductive polypyrrole electrodeposited on substrates with close-packed gold nanoparticles. Journal of Electroanalytical Chemistry, 2014, 722-723, 83-89.	3.8	4

#	Article	IF	CITATIONS
127	Surfactant-assisted preparation of surface-enhanced Raman scattering-active substrates. RSC Advances, 2014, 4, 10553.	3.6	5
128	Stable Quantum Dot Photoelectrolysis Cell for Unassisted Visible Light Solar Water Splitting. ACS Nano, 2014, 8, 10403-10413.	14.6	162
129	Active and Stable Liquid Water Innovatively Prepared Using Resonantly Illuminated Gold Nanoparticles. ACS Nano, 2014, 8, 2704-2713.	14.6	52
130	Probing the Spatial Organization of Bacteriochlorophyll <i>c</i> by Solid-State Nuclear Magnetic Resonance. Biochemistry, 2014, 53, 5515-5525.	2.5	14
131	New sample preparation procedure for effective improvement on surface-enhanced Raman scattering effects. Journal of Electroanalytical Chemistry, 2014, 724, 48-54.	3.8	2
132	Innovative strategy with potential to increase hemodialysis efficiency and safety. Scientific Reports, 2014, 4, 4425.	3.3	33
133	Plasmonic Photocatalyst for Photodegradation with Spinning Optical Disk Reactor. , 2014, , .		0
134	Plasmon-enhanced near-infrared-active materials in photoelectrochemical water splitting. Chemical Communications, 2013, 49, 7917.	4.1	61
135	Large-Scale Synthesis of Transition-Metal-Doped TiO ₂ Nanowires with Controllable Overpotential. Journal of the American Chemical Society, 2013, 135, 9995-9998.	13.7	326
136	Hydrogen Generation: Plasmonic ZnO/Ag Embedded Structures as Collecting Layers for Photogenerating Electrons in Solar Hydrogen Generation Photoelectrodes (Small 17/2013). Small, 2013, 9, 2830-2830.	10.0	0
137	Targeting polymeric fluorescent nanodiamond-gold/silver multi-functional nanoparticles as a light-transforming hyperthermia reagent for cancer cells. Nanoscale, 2013, 5, 3931.	5.6	53
138	Plasmonic ZnO/Ag Embedded Structures as Collecting Layers for Photogenerating Electrons in Solar Hydrogen Generation Photoelectrodes. Small, 2013, 9, 2926-2936.	10.0	76
139	A Fully Integrated Nanosystem of Semiconductor Nanowires for Direct Solar Water Splitting. Nano Letters, 2013, 13, 2989-2992.	9.1	506
140	Zinc Oxide Nanorod Optical Disk Photocatalytic Reactor for Photodegradation. , 2013, , .		0
141	Plasmonic zinc oxide/silver photoelectrode for green hydrogen production. SPIE Newsroom, 2013, , .	0.1	0
142	ZnO nanorod optical disk photocatalytic reactor for photodegradation of methyl orange. Optics Express, 2013, 21, 7240.	3.4	40
143	Fast Fabrication of a Ag Nanostructure Substrate Using the Femtosecond Laser for Broad-Band and Tunable Plasmonic Enhancement. ACS Nano, 2012, 6, 5190-5197.	14.6	67
144	Plasmon Inducing Effects for Enhanced Photoelectrochemical Water Splitting: X-ray Absorption Approach to Electronic Structures. ACS Nano, 2012, 6, 7362-7372.	14.6	307

#	Article	IF	CITATIONS
145	Seedless, silver-induced synthesis of star-shaped gold/silver bimetallic nanoparticles as high efficiency photothermal therapy reagent. Journal of Materials Chemistry, 2012, 22, 2244-2253.	6.7	205
146	Nano-architecture and material designs for water splitting photoelectrodes. Chemical Society Reviews, 2012, 41, 5654.	38.1	483
147	Magnetically recyclable Fe@Co core-shell catalysts for dehydrogenation of sodium borohydride in fuel cells. International Journal of Hydrogen Energy, 2012, 37, 3338-3343.	7.1	36
148	An alternative cobalt oxide-supported platinum catalyst for efficient hydrolysis of sodium borohydride. Journal of Materials Chemistry, 2011, 21, 11754.	6.7	43
149	Spectrally Precoded OFDM and OFDMA with Cyclic Prefix and Unconstrained Guard Ratios. IEEE Transactions on Wireless Communications, 2011, 10, 1416-1427.	9.2	38
150	An Improved Spectral Precoding Technique for Constant-Envelope OFDM. , 2011, , .		1
151	Ni@NiO Core–Shell Structure-Modified Nitrogen-Doped InTaO ₄ for Solar-Driven Highly Efficient CO ₂ Reduction to Methanol. Journal of Physical Chemistry C, 2011, 115, 10180-10186.	3.1	165
152	Architecture of Metallic Nanostructures: Synthesis Strategy and Specific Applications. Journal of Physical Chemistry C, 2011, 115, 3513-3527.	3.1	156
153	A novel CO-tolerant PtRu core–shell structured electrocatalyst with Ru rich in core and Pt rich in shell for hydrogen oxidation reaction and its implication in proton exchange membrane fuel cell. Journal of Power Sources, 2011, 196, 9117-9123.	7.8	44
154	Carbon incorporated FeN/C electrocatalyst for oxygen reduction enhancement in direct methanol fuel cells: X-ray absorption approach to local structures. Electrochimica Acta, 2011, 56, 8734-8738.	5.2	25
155	Multi-Bandgap-Sensitized ZnO Nanorod Photoelectrode Arrays for Water Splitting: An X-ray Absorption Spectroscopy Approach for the Electronic Evolution under Solar Illumination. Journal of Physical Chemistry C, 2011, 115, 21971-21980.	3.1	67
156	A New Approach to Solar Hydrogen Production: a ZnO–ZnS Solid Solution Nanowire Array Photoanode. Advanced Energy Materials, 2011, 1, 742-747.	19.5	86
157	Quantum Dot Monolayer Sensitized ZnO Nanowireâ€Array Photoelectrodes: True Efficiency for Water Splitting. Angewandte Chemie - International Edition, 2010, 49, 5966-5969.	13.8	254
158	Adaptive spectrally precoded OFDM with cyclic prefix. , 2010, , .		1
159	Biosensing, Cytotoxicity, and Cellular Uptake Studies of Surface-Modified Gold Nanorods. Journal of Physical Chemistry C, 2009, 113, 7574-7578.	3.1	126
160	Pdâ~'Câ~'Fe Nanoparticles Investigated by X-ray Absorption Spectroscopy as Electrocatalysts for Oxygen Reduction. Chemistry of Materials, 2009, 21, 4030-4036.	6.7	33
161	Ferromagnetic CoPt ₃ Nanowires: Structural Evolution from fcc to Ordered L1 ₂ . Journal of the American Chemical Society, 2009, 131, 15794-15801.	13.7	38
162	A Versatile Route to the Controlled Synthesis of Gold Nanostructures. Crystal Growth and Design, 2009, 9, 2079-2087.	3.0	63

#	Article	IF	CITATIONS
163	Investigation on Mechanism of Catalysis by Ptâ^'LiCoO ₂ for Hydrolysis of Sodium Borohydride Using X-ray Absorption. Journal of Physical Chemistry B, 2008, 112, 4870-4875.	2.6	27
164	Hollow Platinum Spheres with Nano-Channels: Synthesis and Enhanced Catalysis for Oxygen Reduction. Journal of Physical Chemistry C, 2008, 112, 7522-7526.	3.1	220
165	One-dimensional Nanorods and Nanowires. , 2008, , 163-167.		0
166	Plasmonic optical properties of a single gold nano-rod. Optics Express, 2007, 15, 7132.	3.4	63
167	Synthesis and Characterization of Multi-Pod-Shaped Gold/Silver Nanostructures. Journal of Physical Chemistry C, 2007, 111, 5909-5914.	3.1	71
168	Controlling Length of Gold Nanowires with Large-Scale:  X-ray Absorption Spectroscopy Approaches to the Growth Process. Journal of Physical Chemistry C, 2007, 111, 18550-18557.	3.1	43
169	Controlling Optical Properties of Aluminum Oxide Using Electrochemical Deposition. Journal of the Electrochemical Society, 2007, 154, K11.	2.9	39
170	Synthesis and characterization of long gold nanorods. IEEJ Transactions on Electrical and Electronic Engineering, 2007, 2, 468-472.	1.4	2
171	Fabrication of Nanorattles with Passive Shell. Journal of Physical Chemistry B, 2006, 110, 19162-19167.	2.6	38
172	Morphology and Surface Plasma Changes of Au–Pt Bimetallic Nanoparticles. Journal of Nanoscience and Nanotechnology, 2006, 6, 1411-1415.	0.9	5
173	Controlling Length and Monitoring Growth of Gold Nanorods. Journal of the Chinese Chemical Society, 2006, 53, 1343-1348.	1.4	3
174	Local structural characterization of Au/Pt bimetallic nanoparticles. Chemical Physics Letters, 2006, 420, 484-488.	2.6	25
175	Characterization of core–shell type and alloy Ag/Au bimetallic clusters by using extended X-ray absorption fine structure spectroscopy. Chemical Physics Letters, 2006, 421, 118-123.	2.6	99
176	Local structural characterization of gold nanowires using extended X-ray absorption fine structure spectroscopy. Chemical Physics Letters, 2006, 428, 93-97.	2.6	1
177	Cenerating Isotropic Superparamagnetic Interconnectivity for the Two-Dimensional Organization of Nanostructured Building Blocks. Angewandte Chemie - International Edition, 2006, 45, 2713-2717.	13.8	50
178	Controlling the Length and Shape of Gold Nanorods. Journal of Physical Chemistry B, 2005, 109, 19553-19555.	2.6	67
179	Highly efficient urchin-like bimetallic nanoparticles for photothermal cancer therapy. SPIE Newsroom, 0, , .	0.1	4
180	Turn the Trash into Treasure: Egg-White-Derived Single-Atom Electrocatalysts Boost Oxygen Reduction Reaction. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	6