Douglas C Wallace

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5975339/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Advanced approach for comprehensive mtDNA genome testing in mitochondrial disease. Molecular Genetics and Metabolism, 2022, 135, 93-101.	0.5	5
2	A Three-Dimensional Printed Inertial Microfluidic Platform for Isolation of Minute Quantities of Vital Mitochondria. Analytical Chemistry, 2022, 94, 6930-6938.	3.2	7
3	Mitochondrial mutations alter endurance exercise response and determinants in mice. Proceedings of the United States of America, 2022, 119, e2200549119.	3.3	3
4	An mtDNA mutant mouse demonstrates that mitochondrial deficiency can result in autism endophenotypes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	21
5	Mitochondrial DNA variation and cancer. Nature Reviews Cancer, 2021, 21, 431-445.	12.8	98
6	NADH Fluorescence Lifetime Imaging Microscopy Reveals Selective Mitochondrial Dysfunction in Neurons Overexpressing Alzheimer's Disease–Related Proteins. Frontiers in Molecular Biosciences, 2021, 8, 671274.	1.6	6
7	Association of Mitochondrial Biogenesis With Variable Penetrance of Schizophrenia. JAMA Psychiatry, 2021, 78, 911.	6.0	25
8	Role of miR-2392 in driving SARS-CoV-2 infection. Cell Reports, 2021, 37, 109839.	2.9	52
9	Genome-wide surveillance of transcription errors in response to genotoxic stress. Proceedings of the United States of America, 2021, 118, .	3.3	19
10	MitoScape: A big-data, machine-learning platform for obtaining mitochondrial DNA from next-generation sequencing data. PLoS Computational Biology, 2021, 17, e1009594.	1.5	11
11	Unlocking the Complexity of Mitochondrial DNA: A Key to Understanding Neurodegenerative Disease Caused by Injury. Cells, 2021, 10, 3460.	1.8	5
12	An ultra-high bandwidth nano-electronic interface to the interior of living cells with integrated fluorescence readout of metabolic activity. Scientific Reports, 2020, 10, 10756.	1.6	2
13	Fundamental Biological Features of Spaceflight: Advancing the Field to Enable Deep-Space Exploration. Cell, 2020, 183, 1162-1184.	13.5	185
14	Comprehensive Multi-omics Analysis Reveals Mitochondrial Stress as a Central Biological Hub for Spaceflight Impact. Cell, 2020, 183, 1185-1201.e20.	13.5	161
15	Mitochondrial Nuclear Retrograde Regulator 1 (MNRR1) rescues the cellular phenotype of MELAS by inducing homeostatic mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32056-32065.	3.3	31
16	Bioinformatics resources, databases, and tools for human mtDNA. , 2020, , 277-304.		0
17	Specifications of the ACMG/AMP standards and guidelines for mitochondrial DNA variant interpretation. Human Mutation, 2020, 41, 2028-2057.	1.1	84
18	CRISPR-Free Mitochondrial DNA Base Editing. CRISPR Journal, 2020, 3, 228-230.	1.4	1

#	Article	IF	CITATIONS
19	Lactate Limits T Cell Proliferation via the NAD(H) Redox State. Cell Reports, 2020, 33, 108500.	2.9	135
20	HDAC10 deletion promotes Foxp3+ T-regulatory cell function. Scientific Reports, 2020, 10, 424.	1.6	42
21	The mitochondrial derived peptide humanin is a regulator of lifespan and healthspan. Aging, 2020, 12, 11185-11199.	1.4	67
22	H+ transport is an integral function of the mitochondrial ADP/ATP carrier. Nature, 2019, 571, 515-520.	13.7	183
23	Regulation of nuclear epigenome by mitochondrial DNA heteroplasmy. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16028-16035.	3.3	108
24	Host mitochondria influence gut microbiome diversity: A role for ROS. Science Signaling, 2019, 12, .	1.6	106
25	BKCa (Slo) Channel Regulates Mitochondrial Function and Lifespan in Drosophila melanogaster. Cells, 2019, 8, 945.	1.8	19
26	Unlocking the Secrets of Mitochondria in the Cardiovascular System. Circulation, 2019, 140, 1205-1216.	1.6	91
27	Premature Lambs Exhibit Normal Mitochondrial Respiration after Long-Term Extrauterine Support. Fetal Diagnosis and Therapy, 2019, 46, 306-312.	0.6	7
28	The Pediatric Cell Atlas: Defining the Growth Phase of Human Development at Single-Cell Resolution. Developmental Cell, 2019, 49, 10-29.	3.1	57
29	The phenotype modifier: is the mitochondrial DNA background responsible for individual differences in disease severity. Journal of Inherited Metabolic Disease, 2019, 42, 3-4.	1.7	15
30	Mitochondrial deficits in human iPSC-derived neurons from patients with 22q11.2 deletion syndrome and schizophrenia. Translational Psychiatry, 2019, 9, 302.	2.4	62
31	The ADP/ATP translocase drives mitophagy independent of nucleotide exchange. Nature, 2019, 575, 375-379.	13.7	149
32	Mitochondrial DNA Variation Dictates Expressivity and Progression of Nuclear DNA Mutations Causing Cardiomyopathy. Cell Metabolism, 2019, 29, 78-90.e5.	7.2	53
33	The association of mitochondrial DNA haplogroups with POAG in African Americans. Experimental Eye Research, 2019, 181, 85-89.	1.2	10
34	Mitochondrial Biology and Medicine. , 2019, , 267-322.		2
35	Loss of Drosophila FMRP leads to alterations in energy metabolism and mitochondrial function. Human Molecular Genetics, 2018, 27, 95-106.	1.4	36
36	Homozygous boricua <i>TBCK</i> mutation causes neurodegeneration and aberrant autophagy. Annals of Neurology, 2018, 83, 153-165.	2.8	32

#	Article	IF	CITATIONS
37	Mitochondrial Etiology of Psychiatric Disorders—Reply. JAMA Psychiatry, 2018, 75, 527.	6.0	2
38	MSeqDR mvTool: A mitochondrial DNA Web and API resource for comprehensive variant annotation, universal nomenclature collation, and reference genome conversion. Human Mutation, 2018, 39, 806-810.	1.1	32
39	A novel inborn error of the coenzyme Q10 biosynthesis pathway: cerebellar ataxia and static encephalomyopathy due to COQ5 Câ€methyltransferase deficiency. Human Mutation, 2018, 39, 69-79.	1.1	43
40	Mitochondrial Etiology of Neuropsychiatric Disorders. Biological Psychiatry, 2018, 83, 722-730.	0.7	121
41	Mitochondrial DNA Variation and Disease Susceptibility in Primary Open-Angle Glaucoma. , 2018, 59, 4598.		20
42	Mitochondrial genetic medicine. Nature Genetics, 2018, 50, 1642-1649.	9.4	226
43	Scanning Microwave Microscopy of Vital Mitochondria in Respiration Buffer. , 2018, 2018, 115-118.		15
44	Mitochondrial DNA associations with East Asian metabolic syndrome. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 878-892.	0.5	22
45	USMG5 Ashkenazi Jewish founder mutation impairs mitochondrial complex V dimerization and ATP synthesis. Human Molecular Genetics, 2018, 27, 3305-3312.	1.4	45
46	Highly efficient 5' capping of mitochondrial RNA with NAD+ and NADH by yeast and human mitochondrial RNA polymerase. ELife, 2018, 7, .	2.8	64
47	Mitochondrial energy deficiency leads to hyperproliferation of skeletal muscle mitochondria and enhanced insulin sensitivity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2705-2710.	3.3	73
48	Leber Hereditary Optic Neuropathy: Exemplar of an mtDNA Disease. Handbook of Experimental Pharmacology, 2017, 240, 339-376.	0.9	46
49	Foxp3 Reprograms T Cell Metabolism to Function in Low-Glucose, High-Lactate Environments. Cell Metabolism, 2017, 25, 1282-1293.e7.	7.2	741
50	Deleterious variants in TRAK1 disrupt mitochondrial movement and cause fatal encephalopathy. Brain, 2017, 140, 568-581.	3.7	53
51	Mitochondrial DNA 3243A>G heteroplasmy is associated with changes in cytoskeletal protein expression and cell mechanics. Journal of the Royal Society Interface, 2017, 14, 20170071.	1.5	7
52	A Mitochondrial Etiology of Neuropsychiatric Disorders. JAMA Psychiatry, 2017, 74, 863.	6.0	30
53	Precancer Atlas to Drive Precision Prevention Trials. Cancer Research, 2017, 77, 1510-1541.	0.4	116
54	Association Between Mitochondrial DNA Haplogroup Variation and Autism Spectrum Disorders. JAMA Psychiatry, 2017, 74, 1161.	6.0	57

#	Article	lF	CITATIONS
55	Resistive flow sensing of vital mitochondria with nanoelectrodes. Mitochondrion, 2017, 37, 8-16.	1.6	9
56	Predicting the pathogenicity of novel variants in mitochondrial tRNA with MitoTIP. PLoS Computational Biology, 2017, 13, e1005867.	1.5	93
57	MSeqDR: A Centralized Knowledge Repository and Bioinformatics Web Resource to Facilitate Genomic Investigations in Mitochondrial Disease. Human Mutation, 2016, 37, 540-548.	1.1	42
58	Mitochondrial DNA in evolution and disease. Nature, 2016, 535, 498-500.	13.7	82
59	Metabolic and Growth Rate Alterations in Lymphoblastic Cell Lines Discriminate Between Down Syndrome and Alzheimer's Disease. Journal of Alzheimer's Disease, 2016, 55, 737-748.	1.2	16
60	The rise of mitochondria in medicine. Mitochondrion, 2016, 30, 105-116.	1.6	349
61	Cristae remodeling causes acidification detected by integrated graphene sensor during mitochondrial outer membrane permeabilization. Scientific Reports, 2016, 6, 35907.	1.6	18
62	Mitochondrial respiration is sensitive to cytoarchitectural breakdown. Integrative Biology (United) Tj ETQqO 0 0	rgBT /Ove	rlock 10 Tf 50
63	Deficiency in the mouse mitochondrial adenine nucleotide translocator isoform 2 gene is associated with cardiac noncompaction. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 1203-1212.	0.5	25
64	Differential Mitochondrial Requirements for Radially and Non-radially Migrating Cortical Neurons: Implications for Mitochondrial Disorders. Cell Reports, 2016, 15, 229-237.	2.9	51
65	High throughput gene complementation screening permits identification of a mammalian mitochondrial protein synthesis (쥉^`) mutant. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 1336-1343.	0.5	3
66	Targeting ACLY sensitizes castration-resistant prostate cancer cells to AR antagonism by impinging on an ACLY-AMPK-AR feedback mechanism. Oncotarget, 2016, 7, 43713-43730.	0.8	62
67	Mitochondrial DNA variants can mediate methylation status of inflammation, angiogenesis and signaling genes. Human Molecular Genetics, 2015, 24, 4491-4503.	1.4	52
68	Trans-mitochondrial coordination of cristae at regulated membrane junctions. Nature Communications, 2015, 6, 6259.	5.8	143
69	Mitochondrial Disease Sequence Data Resource (MSeqDR): A global grass-roots consortium to facilitate deposition, curation, annotation, and integrated analysis of genomic data for the mitochondrial disease clinical and research communities. Molecular Genetics and Metabolism, 2015, 114, 388-396.	0.5	76
70	Phy-Mer: a novel alignment-free and reference-independent mitochondrial haplogroup classifier. Bioinformatics, 2015, 31, 1310-1312.	1.8	55
71	Mutations of Human NARS2, Encoding the Mitochondrial Asparaginyl-tRNA Synthetase, Cause	15	07

/1	Nonsyndromic Deafness and Leigh Syndrome. PLoS Genetics, 2015, 11, e1005097.	1.0	21
72	Essential role of mitochondrial energy metabolism in Foxp3 ⁺ Tâ€regulatory cell function and allograft survival. FASEB Journal, 2015, 29, 2315-2326.	0.2	213

#	Article	IF	CITATIONS
73	Mitochondrial DNA Variation in Human Radiation and Disease. Cell, 2015, 163, 33-38.	13.5	197
74	Survivin promotes oxidative phosphorylation, subcellular mitochondrial repositioning, and tumor cell invasion. Science Signaling, 2015, 8, ra80.	1.6	84
75	Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6614-23.	3.3	209
76	TSPO, a Mitochondrial Outer Membrane Protein, Controls Ethanol-Related Behaviors in Drosophila. PLoS Genetics, 2015, 11, e1005366.	1.5	17
77	Peripheral Blood Mitochondrial DNA as a Biomarker of Cerebral Mitochondrial Dysfunction following Traumatic Brain Injury in a Porcine Model. PLoS ONE, 2015, 10, e0130927.	1.1	38
78	Human Retinal Transmitochondrial Cybrids with J or H mtDNA Haplogroups Respond Differently to Ultraviolet Radiation: Implications for Retinal Diseases. PLoS ONE, 2014, 9, e99003.	1.1	30
79	Progressive increase in mtDNA 3243A>G heteroplasmy causes abrupt transcriptional reprogramming. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4033-42.	3.3	251
80	Genetic analysis of <scp>dTSPO</scp> , an outer mitochondrial membrane protein, reveals its functions in apoptosis, longevity, and Aβ42â€induced neurodegeneration. Aging Cell, 2014, 13, 507-518.	3.0	60
81	Molecular and bioenergetic differences between cells with African versus European inherited mitochondrial DNA haplogroups: Implications for population susceptibility to diseases. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 208-219.	1.8	136
82	Inherited mitochondrial DNA variants can affect complement, inflammation and apoptosis pathways: insights into mitochondrial-nuclear interactions. Human Molecular Genetics, 2014, 23, 3537-3551.	1.4	101
83	A mitochondrial etiology of metabolic and degenerative diseases, cancer and aging (94.1). FASEB Journal, 2014, 28, 94.1.	0.2	Ο
84	A mitochondrial bioenergetic hypothesis for autism spectrum disorder (570.3). FASEB Journal, 2014, 28, 570.3.	0.2	0
85	mtDNA Variation and Analysis Using Mitomap and Mitomaster. Current Protocols in Bioinformatics, 2013, 44, 1.23.1-26.	25.8	390
86	Mitochondrial DNA Genetics and the Heteroplasmy Conundrum in Evolution and Disease. Cold Spring Harbor Perspectives in Biology, 2013, 5, a021220-a021220.	2.3	496
87	An Inherited Heteroplasmic Mutation in Mitochondrial Gene COI in a Patient with Prostate Cancer Alters Reactive Oxygen, Reactive Nitrogen and Proliferation. BioMed Research International, 2013, 2013, 1-10.	0.9	43
88	Bioenergetics in human evolution and disease: implications for the origins of biological complexity and the missing genetic variation of common diseases. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120267.	1.8	102
89	Severity of cardiomyopathy associated with adenine nucleotide translocator-1 deficiency correlates with mtDNA haplogroup. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3453-3458.	3.3	87
90	A mitochondrial bioenergetic etiology of disease. Journal of Clinical Investigation, 2013, 123, 1405-1412.	3.9	261

#	Article	IF	CITATIONS
91	Mitochondrial DNA variant associated with Leber hereditary optic neuropathy and high-altitude Tibetans. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7391-7396.	3.3	129
92	Mouse mtDNA mutant model of Leber hereditary optic neuropathy. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20065-20070.	3.3	189
93	Comparison of male chimeric mice generated from microinjection of JM8.N4 embryonic stem cells into C57BL/6J and C57BL/6NTac blastocysts. Transgenic Research, 2012, 21, 1149-1158.	1.3	8
94	Heteroplasmy of Mouse mtDNA Is Genetically Unstable and Results in Altered Behavior and Cognition. Cell, 2012, 151, 333-343.	13.5	333
95	Mitochondrial and ion channel gene alterations in autism. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 1796-1802.	0.5	47
96	A mitochondrial etiology of Alzheimer and Parkinson disease. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 553-564.	1.1	268
97	Mitochondria and cancer. Nature Reviews Cancer, 2012, 12, 685-698.	12.8	1,829
98	Adenine Nucleotide Translocase 1 Deficiency Results in Dilated Cardiomyopathy With Defects in Myocardial Mechanics, Histopathological Alterations, and Activation of Apoptosis. JACC: Cardiovascular Imaging, 2011, 4, 1-10.	2.3	51
99	Mitochondrial dysfunction in CA1 hippocampal neurons of the UBE3A deficient mouse model for Angelman syndrome. Neuroscience Letters, 2011, 487, 129-133.	1.0	65
100	Mitochondrial DNA mutations in disease and aging. Environmental and Molecular Mutagenesis, 2010, 51, 440-450.	0.9	479
101	Bioenergetics and the epigenome: Interface between the environment and genes in common diseases. Developmental Disabilities Research Reviews, 2010, 16, 114-119.	2.9	57
102	Bioenergetics, the origins of complexity, and the ascent of man. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8947-8953.	3.3	113
103	Mitochondrial Energetics and Therapeutics. Annual Review of Pathology: Mechanisms of Disease, 2010, 5, 297-348.	9.6	610
104	Energetics, epigenetics, mitochondrial genetics. Mitochondrion, 2010, 10, 12-31.	1.6	428
105	Association between mitochondrial DNA variations and Alzheimer's disease in the ADNI cohort. Neurobiology of Aging, 2010, 31, 1355-1363.	1.5	97
106	Systemic Mitochondrial Dysfunction and the Etiology of Alzheimer's Disease and Down Syndrome Dementia. Journal of Alzheimer's Disease, 2010, 20, S293-S310.	1.2	133
107	The epigenome and the mitochondrion: bioenergetics and the environment. Genes and Development, 2010, 24, 1571-1573.	2.7	42
108	The pathophysiology of mitochondrial disease as modeled in the mouse. Genes and Development, 2009, 23, 1714-1736.	2.7	179

#	Article	IF	CITATIONS
109	Mitochondrial Physiology in Health and Disease: Changes with Aging Blood, 2009, 114, SCI-1-SCI-1.	0.6	0
110	A Mitochondrial Etiology of Neurodegenerative Diseases: Evidence from Parkinson's Disease. Annals of the New York Academy of Sciences, 2008, 1147, 1-20.	1.8	92
111	MITOCHIP assessment of differential gene expression in the skeletal muscle of Ant1 knockout mice: Coordinate regulation of OXPHOS, antioxidant, and apoptotic genes. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 666-675.	0.5	28
112	A Mouse Model of Mitochondrial Disease Reveals Germline Selection Against Severe mtDNA Mutations. Science, 2008, 319, 958-962.	6.0	408
113	Mitochondria as Chi. Genetics, 2008, 179, 727-735.	1.2	125
114	Mitochondrial DNA haplogroups influence AIDS progression. Aids, 2008, 22, 2429-2439.	1.0	78
115	A Mitochondrial Paradigm for Degenerative Diseases and Ageing. Novartis Foundation Symposium, 2008, 235, 247-266.	1.2	174
116	A Mitochondrial Paradigm for Metabolic and Degenerative Diseases, Aging, and Cancer. FASEB Journal, 2008, 22, 249.2.	0.2	0
117	Why Do We Still Have a Maternally Inherited Mitochondrial DNA? Insights from Evolutionary Medicine. Annual Review of Biochemistry, 2007, 76, 781-821.	5.0	310
118	Life extension through neurofibromin mitochondrial regulation and antioxidant therapy for neurofibromatosis-1 in Drosophila melanogaster. Nature Genetics, 2007, 39, 476-485.	9.4	111
119	Functional Estrogen Receptors in the Mitochondria of Breast Cancer Cells. Molecular Biology of the Cell, 2006, 17, 2125-2137.	0.9	236
120	Evidence for adaptive selection acting on the tRNA and rRNA genes of human mitochondrial DNA. Human Mutation, 2006, 27, 1072-1081.	1.1	152
121	mtDNA mutations increase tumorigenicity in prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 719-724.	3.3	763
122	A Mitochondrial Paradigm of Metabolic and Degenerative Diseases, Aging, and Cancer: A Dawn for Evolutionary Medicine. Annual Review of Genetics, 2005, 39, 359-407.	3.2	2,836
123	The mitochondrial genome in human adaptive radiation and disease: On the road to therapeutics and performance enhancement. Gene, 2005, 354, 169-180.	1.0	177
124	Extension of Murine Life Span by Overexpression of Catalase Targeted to Mitochondria. Science, 2005, 308, 1909-1911.	6.0	1,576
125	Alzheimer's brains harbor somatic mtDNA control-region mutations that suppress mitochondrial transcription and replication. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10726-10731.	3.3	500
126	The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature, 2004, 427, 461-465.	13.7	986

#	Article	IF	CITATIONS
127	Effects of Purifying and Adaptive Selection on Regional Variation in Human mtDNA. Science, 2004, 303, 223-226.	6.0	719
128	Mitochondrial DNA-like sequences in the nucleus (NUMTs): Insights into our African origins and the mechanism of foreign DNA integration. Human Mutation, 2004, 23, 125-133.	1.1	122
129	Natural selection shaped regional mtDNA variation in humans. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 171-176.	3.3	889
130	Mitochondrial DNA Diversity in Southeast Asian Populations. Human Biology, 2002, 74, 431-452.	0.4	42
131	Animal Models for Mitochondrial Disease. , 2002, 197, 003-054.		83
132	African Origin of Modern Humans in East Asia: A Tale of 12,000 Y Chromosomes. Science, 2001, 292, 1151-1153.	6.0	310
133	Mitochondrial Genes in Degenerative Disease and Aging. Scientific World Journal, The, 2001, 1, 83-0.	0.8	2
134	Mitochondrial defects in neurodegenerative disease. Mental Retardation and Developmental Disabilities Research Reviews, 2001, 7, 158-166.	3.5	67
135	Clinical, genetic, and biochemical characterization of a Leber hereditary optic neuropathy family containing both the 11778 and 14484 primary mutations. American Journal of Medical Genetics Part A, 2001, 104, 331-338.	2.4	71
136	Mouse models for mitochondrial disease. American Journal of Medical Genetics Part A, 2001, 106, 71-93.	2.4	151
137	Novel mtDNA mutations and oxidative phosphorylation dysfunction in Russian LHON families. Human Genetics, 2001, 109, 33-39.	1.8	90
138	Mitochondrial Diseases in Men and Mice. Genetics in Medicine, 2000, 2, 6-6.	1.1	2
139	mtDNA Variation in the South African Kung and Khwe—and Their Genetic Relationships to Other African Populations. American Journal of Human Genetics, 2000, 66, 1362-1383.	2.6	188
140	Coordinate Induction of Energy Gene Expression in Tissues of Mitochondrial Disease Patients. Journal of Biological Chemistry, 1999, 274, 22968-22976.	1.6	150
141	A novel neurological phenotype in mice lacking mitochondrial manganese superoxide dismutase. Nature Genetics, 1998, 18, 159-163.	9.4	477
142	MITOMAP: a human mitochondrial genome database1998 update. Nucleic Acids Research, 1998, 26, 112-115.	6.5	108
143	A mouse model for mitochondrial myopathy and cardiomyopathy resulting from a deficiency in the heart/muscle isoform of the adenine nucleotide translocator. Nature Genetics, 1997, 16, 226-234.	9.4	523
144	[42]Assessment of mitochondrial oxidative phosphorylation in patient muscle biopsies, lymphoblasts, and transmitochondrial cell lines. Methods in Enzymology, 1996, 264, 484-509.	0.4	696

#	Article	IF	CITATIONS
145	Production of transmitochondrial mouse cell lines by cybrid rescue of rhodamine-6G pre-treated L-cells. Somatic Cell and Molecular Genetics, 1996, 22, 81-85.	0.7	63
146	Fast capillary electrophoresis-laser induced fluorescence analysis of ligase chain reaction products: Human mitochondrial DNA point mutations causing Leber's hereditary optic neuropathy. Electrophoresis, 1996, 17, 1875-1883.	1.3	21
147	Mitochondrial DNA sequence analysis of four Alzheimer's and Parkinson's disease patients. , 1996, 61, 283-289.		83
148	Mitochondrial DNA sequence analysis of four Alzheimer's and Parkinson's disease patients. , 1996, 61, 283.		3
149	Classification of European mtDNAs From an Analysis of Three European Populations. Genetics, 1996, 144, 1835-1850.	1.2	709
150	Leber's hereditary optic neuropathy plus dystonia is caused by a mitochondrial DNA point mutation. Annals of Neurology, 1995, 38, 163-169.	2.8	102
151	African, Native American, and European mitochondrial DNAs in Cubans from Pinar del Rio Province and implications for the recent epidemic neuropathy in Cuba. Human Mutation, 1995, 5, 310-317.	1.1	25
152	Phylogenetic analysis of Leber's hereditary optic neuropathy mitochondrial DNA's indicates multiple independent occurrences of the common mutations. Human Mutation, 1995, 6, 311-325.	1.1	235
153	Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nature Genetics, 1995, 11, 376-381.	9.4	1,609
154	Mitochondrial DNA analysis in Tibet: Implications for the origin of the Tibetan population and its adaptation to high altitude. American Journal of Physical Anthropology, 1994, 93, 189-199.	2.1	187
155	Mitochondrial DNA Mutations in Epilepsy and Neurological Disease. Epilepsia, 1994, 35, S43-50.	2.6	49
156	Marked Changes in Mitochondrial DNA Deletion Levels in Alzheimer Brains. Genomics, 1994, 23, 471-476.	1.3	290
157	Mitochondrial DNA Variants Observed in Alzheimer Disease and Parkinson Disease Patients. Genomics, 1993, 17, 171-184.	1.3	456
158	Diseases of the Mitochondrial DNA. Annual Review of Biochemistry, 1992, 61, 1175-1212.	5.0	1,316
159	Leber's hereditary optic neuropathy: a model for mitochondrial neurodegenerative diseases. FASEB Journal, 1992, 6, 2791-2799.	0.2	190
160	Maternally transmitted diabetes and deafness associated with a 10.4 kb mitochondrial DNA deletion. Nature Genetics, 1992, 1, 11-15.	9.4	602
161	Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age. Nature Genetics, 1992, 2, 324-329.	9.4	862
162	Mitochondrial oxidative phosphorylation defects in parkinson's disease. Annals of Neurology, 1991, 30, 332-339.	2.8	314

#	Article	IF	CITATIONS
163	The structure of human mitochondrial DNA variation. Journal of Molecular Evolution, 1991, 33, 543-555.	0.8	213
164	Mitochondrial DNA Mutations Associated with Neuromuscular Diseases: Analysis and Diagnosis Using the Polymerase Chain Reaction. Pediatric Research, 1990, 28, 525-528.	1.1	24
165	Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNALys mutation. Cell, 1990, 61, 931-937.	13.5	1,446
166	Familial mitochondrial encephalomyopathy (MERRF): Genetic, pathophysiological, and biochemical characterization of a mitochondrial DNA disease. Cell, 1988, 55, 601-610.	13.5	510
167	Sequence analysis of cDNAs for the human and bovine ATP synthase ? subunit: mitochondrial DNA genes sustain seventeen times more mutations. Current Genetics, 1987, 12, 81-90.	0.8	223
168	Conformational mutations in human mitochondrial DNA. Nature, 1987, 329, 270-272.	13.7	27
169	Mitotic segregation of mitochondrial dnas in human cell hybrids and expression of chloramphenicol resistance. Somatic Cell and Molecular Genetics, 1986, 12, 41-49.	0.7	87
170	Dramatic founder effects in Amerindian mitochondrial DNAs. American Journal of Physical Anthropology, 1985, 68, 149-155.	2.1	181
171	Maternally inherited mitochondrial myopathy and myoclonic epilepsy. Annals of Neurology, 1985, 17, 228-237.	2.8	199